
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 404 - 411

__

404

IJRITCC | June 2016, Available @ http://www.ijritcc.org

__

JSP Custom Tag for Pagination, Sorting and Filtering – A Case Study

Dr.Poornima G. Naik

Professor

Department of Computer Studies

CSIBER

Kolhapur, India

pgnaik@siberindia.edu.in

Girish R. Naik
Associate Professor

Production Department

KIT’s College of Engineering

Kolhapur, India

girishnaik2025@gmail.com

Abstract— Tag libraries have the power of reducing complex functionalities to one liners by separating out implementation part

from tag declarations. Tags do hide the implementation specific tasks from the end user by making the code more readable. The

frequently and widely used functionality in any application is database operations which involve lot of code repetition. Such a

repeated code can be hidden behind a couple of custom tags where the end user can be concerned only with the tag usage which

renders the application bug free and also aids in rapid application development. Majority of automation softwares at the minimal

incorporate functionalities for interaction with repository of data . The need for quick searching of required data and retrieving

subsets of data demand sorting, pagination, and filtering capabilities to be an integral part of any application. With the exponential

growth in data these functionalities become mandatory to be incorporated in any application irrespective of its type and size.

Further, Rich Internet Application (RIA) demands an attractive graphical user interface providing visual clues on the type of data

to be entered or to be displayed. In order to cater a solution to this issue, in the current paper, the authors have designed and

implemented a JSP custom tag for displaying a database table data in columns of different types such as check boxes, images,

hyperlinks etc. Boolean attributes are added to the tag for enabling one or more of the features corresponding to pagination,

sorting and filtering.

Keywords- BodyTagSupport, Graphical User Interface, JSP Custom Tag, Tag Attribute, Tag Library Descriptor, Tag Handler Class.

__*****___

I. INTRODUCTION

When displaying huge data, it is often desirable to display
only a portion of the data at the outset and then allow the user
to step through the data a specified no. of records at a time. At
the same time an end user’s experience can be enhanced if they
are able to view data sorted by one of the columns.
Incorporating these functionalities in a pair of custom tags
offers several advantages as the tags provide implementation of
these functionalities in a platform independent way and operate
in a secure environment. One of the authors has demonstrated
implementation of JSP custom tags for displaying the contents
of table for variety of backend database management systems,
performing various DML operations on database and
displaying master-detail relationships by encapsulating the
large amount of JDBC code behind couple of custom tags. In
the current work, authors demonstrate incorporating sorting,
pagination and filtering capabilities in custom tags.

The prime benefits offered by custom tags are two fold. On
one hand they play a key role in realizing code reusability and
on the other hand enable code separation from its presentation.
Since the tags are based on the proven Java technology, they
reap the benefits offered by the Java technology such as
security, robustness and platform independency apart from
code reusability.

 The preliminary steps employed in implementation of
a custom tag are [1] :

• Implementation of a tag handler class
• Generation of a tag library descriptor document for

storing tag specific information in XML file
format.

• Designing JSP page using custom tag.

II. LITERATURE REVIEW

Custom tags play an important role in web applications. JSP
custom tags are written to extract data from database using
drop down menu to generate options dynamically [4]. A
through investigation for categorization of requirements and
design of tag software in web application has been carried out
by [5]. Authors have presented a case study of freely available
tag software. The development and testing of an accurate
mass–time (AMT) tag approach for the LC/MS-based
identification of plant natural products in complex extracts has
been reported by [6]. Its utility is verified by the detection and
annotation of active principles in different medicinal plant
species with diverse chemical constituents. Tagging plays a
vital role in bioinformatics also . A method to generate poly(A)
tags libraries for high-throughput sequencing (PAT-seq) has
been reported by [7]. This method has been applied to
investigate mRNA polyadenylation in Arabidopsis. Internet has
become a vital source of information. Due to this there is need
for powerful internet systems which can help in audiovisual
content searching on internet. A new technique of searching
and indexing of audio visual contents on the internet has been
carried out by [8]. When developers are working on different
platforms then code migration is a major issue. Three methods
of code migrations from JSP to ASP.NET Entire code
transform migration, Reserved migration and Neutral migration
has been proposed by [9]. In development of IOT based
applications there is need for a way to connect things and
services together and processing of data emitted by them using
data flow paradigms. Automation of distribution of these data
flows using appropriate distribution mechanism has been
carried out by [10].

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 404 - 411

__

405

IJRITCC | June 2016, Available @ http://www.ijritcc.org

__

III. THEORETICAL FRAMEWORK FOR TAG DESIGN

Since the tag works independent of back end database

management system, retrieving a range of records sequentially

poses a big challenge in implementation. Further, MS-Access

does not support any pseudo columns as is the case with other

back end database managements systems such as MySQL ,

Oracle etc. These systems support pseudo columns with the

name either ROWID, or ROWNUM, depending on the system

which makes the task easier. The authors have come up with a

query in MS-Access for sequential retrieval of records in a

specified range.

For retrieving first N records from book table, the MS-Access

query is

 SELECT TOP N * FROM book;

For retrieving the records in the range N1-N2 the query can be

formulated as shown below:

 No of Records per Page = (N2-N1+1)

 SELECT TOP <No of Records per Page> * FROM book

WHERE <PK> not in (select TOP <N1-1> * No of Records

per Page > <PK> from book);

where <PK> refers to primary key column. Table I. depicts

using the query for retrieving records in different range.

TABLE I. RETRIEVING RECORDS IN DIFFERENT RANGES IN MS-
ACCESS.

A. Tag Library Descriptor Document

A tag library descriptor file is a simple XML file with the

extension .tld embedding a set of custom tags. The structure of

a typical tag library descriptor file is shown below:

<?xml version="1.0" ?>

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library

1.2//EN"

 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

 <taglib>

 <tlib-version>1.0</tlib-version>

 <jsp-version>1.1</jsp-version>

 <short-name>simpletaglib</short-name>

 <description>My first Tag Library</description>

<tag>

 <name>…</name>

 <tag-class>…</tag-class>

 <body-content>…</body-content>

 <attribute>

 <name>…</name>

 .

 .

 </attribute>

 .

 .

 </tag>

 .

 .

 <tag>

 </tag>

</taglib>

The required child elements of <tag> element are <name>,

<tag-class> and <body-content> and optional child element is

<attribute>. The <attribute> child element contains the

compulsory child element <name> and other optional child

elements such as <rtexprvalue>, <required>, etc.

B. Class Diagram

The structure of the various classes employed in tag design

and interaction between them is depicted in Figure 1.

Figure 1. Structure and Relationship Between Tag Handler Classes

The classes with solid background are pre-defined classes

while those with transparent background are custom classes.

The type attribute of a column tag can take one of the

following values.

 regular

 checkbox

 image

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 404 - 411

__

406

IJRITCC | June 2016, Available @ http://www.ijritcc.org

__

 hyperlink

The url and hyperlink attributes are NOT NULL only if the

type attribute is set to hyperlink while the url attribute alone is

NOT NULL if type attribute is set to image. This situation is

depicted in Table II.

TABLE II VALIDATION OF ATTRIBUTES OF COLUMN TAG

EMPLOYED IN TAG DESIGN

The life cycle of a tag handler class consists of 6 methods

of which doStartTag() and doEndTag() are frequently
implemented[11,12]. doStartTag() method is called when the
start tag is rendered which returns one of the constants
EVAL_BODY_INCLUDE or SKIP_BODY. In the former case
the body content of the tag which consists of nested column
tags in our case is evaluated while in the latter case the last
method in the life cycle of the tag doEndTag() is called. The
functionalities offered by the various tag handler classes are
shown in Table III.

TABLE III FUNCTIONALITIES ASSOCIATED WITH TAG

HANDLER CLASSES

IV. IMPLEMENTATION OF CUSTOM TAG

This section presents structure of tag library descriptor file, the

control flow diagram and the proposed algorithm for the

implementation of a custom tag.

A. Writing a Tag Library Descriptor

DisplayTable tag contains the following attributes for adding

sorting, pagination and filtering functionalities to the tag

which are optional and are set to the default value of false.

• allowSorting

• allowPaging

• allowFiltering

• recordsPerPage.

The first three attributes have default value of false which

means by default sorting, pagination and filtering are disabled.

If pagination is enabled, and recordsPerPage is not specified,

then recordsPerPage attribute defaults to a value of 10 records

per page.

The following code segment shows only a partial content of

customtag.tld file where the changes are incorporated.

<tag>

 <name>DisplayTable</name>

 <tag-class>csiber.DisplayTableTag</tag-class>

 <body-content>empty</body-content>

 <attribute>

 <name>dsnName</name>

 </attribute>

 <attribute>

 <name>tableName</name>

 </attribute>

 <attribute>

 <name>columnNames</name>

 </attribute>

 <attribute>

 <name>sortColumnName</name>

 </attribute>

 <attribute>

 <name>databaseName</name>

 </attribute>

 <attribute>

 <name>userName</name>

 </attribute>

 <attribute>

 <name>password</name>

 </attribute>

 <attribute>

 <name>backEnd</name>

 </attribute>

 <attribute>

 <name>allowSorting</name>

 </attribute>

 <attribute>

 <name>allowPaging</name>

 </attribute>

 <attribute>

 <name>recordsPerPage</name>

 </attribute>

 <attribute>

 <name>allowFiltering</name>

 </attribute>

 </tag>

Structure of ColumnTag Tag.

<tag>

<name>Column</name>

<tag-class>csiber.ColumnTag</tag-class>

<body-content>empty</body-content>

<attribute>

<name>name</name>

</attribute>

<attribute>

<name>type</name>

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 404 - 411

__

407

IJRITCC | June 2016, Available @ http://www.ijritcc.org

__

</attribute>

<attribute>

<name>url</name>

</attribute>

<attribute>

<name>hyperText</name>

</attribute>

</tag>

B. Nesting Tags

The column tag is nested inside DisplayTable tag. All the

nested columns are displayed by DisplayTable tag in the

specified column format. This is achieved by iteratively

invoking column tag and storing column-specific information

in a collection class of type ArrayList.

C. Folder Structure of a Custom Tag Project

 Different type of project components in an Eclipse project
folder with the name customtag is depicted in Figure 2.

Figure 2. Folder Structure Employed in Implementation of Custom Tag

D. Proposed Algorithm

The algorithm for displaying the master-detail relationship in a

hierarchical grid control in C++ style is presented below:

/*Any high level language interfacing with back end database

management system provides high level API for primitive

database functions such as creating a connection object and

generating a page request by sending the necessary input

information in a query string. Hence this algorithm assumes

some standard functions as shown below:

Standard Functions of language L used in the Algorithm

loadDriver() - is function in a language L for loading

appropriate DBMS driver in memory depending on the name

of DBMS passed as parameter.

connectTo() - is a function in a language L for establishing

the connection to remote DBMS depending on the name of

DBMS passed as a parameter.

getPageName() - is a function in language L for returning the

name of the web page requested.

getQueryString() - is a function in language L for returning

the value of the query string parameter whose name is passed

as a parameter to the function.

constructQuery() – is a function in language L for

constructing an SQL query for pulling data from the table

whose name is passed as a parameter.

executeQuery() – is a function in language L for executing the

query against backend database management system.

startsWith() - is a function in language L for checking whether

the string passed as a first parameter starts with the character

passed as second parameter.

displayDetailRecords() - is a function in language L for

displaying records of a detail table.

/*

Global Variables

String data;

ArrayList columns;

String query;

*/

struct Column

{

 String name;

 String type;

 String url;

 String ctype;

 String hyperText;

}

/* Invoked when start tag is rendered */

public int doStartTag()

{

 data=null;

 columns=new ArrayList();

 pageContext.setAttribute("columns", columns);

 return EVAL_BODY_INCLUDE;

}

/* Invoked when end tag is rendered */

public int doEndTag()

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 404 - 411

__

408

IJRITCC | June 2016, Available @ http://www.ijritcc.org

__

{

 /* Retrieve column information */

 String columnValue=null;

 columns=(ArrayList)pageContext.getAttribute(

 "columns");

 /* Retrieving Page name and query string information */

 String pagename =

 this.pageContext.getPage().toString();

 int to=pagename.indexOf("@");

 int from=pagename.lastIndexOf(".");

 String page=pagename.substring(from+1,

 to-4)+".jsp";

 int pageno=1;

 if (allowSorting==null)

 allowSorting="false";

 if (allowPaging==null)

 allowPaging="false";

 if (recordsPerPage==null)

 recordsPerPage="10";

 sortColumnName=getRequestParameter("

 columnname");

 pageno=getRequestParameter("page"));

/* Loading JDBC Driver and constructing Connection object

depending on DBMS */

 if (backEnd==”MS-Access”)

 {

 loadDriver(“MS-Access”);

 connectTo(“MS-Access”);

 }

 if (backEnd==”MySQL”)

 {

 loadDriver(“MySQL”);

 connectTo(“MySQL”);

 }

 if (backEnd==”Oracle”)

 {

 loadDriver(“Oracle”);

 connectTo(“Oracle”);

 }

/* Construct Table Header depending on attributes specified in

Tag */

 query="SELECT * FROM " + tableName;

 executeQuery(query);

 if (sortColumnName != null)

 {

 query += " ORDER BY ";

 query += sortColumnName;

 }

 if (allowPaging.equals("true"))

 {

 if (backEnd.equals("MS-Access"))

 {

 if (pageno==1)

 query="SELECT TOP " + recordsPerPage +

 " * FROM " + tableName;

 else

 query="SELECT TOP " +

 recordsPerPage + " * FROM " + tableName + "

 WHERE " + colname + " NOT IN (select TOP "

 + recordsPerPage * (pageno-1)) + " " + colname

 + " FROM " + tableName +")";

 if (sortColumnName != null)

 {

 query += " ORDER BY ";

 query += sortColumnName;

 }

 }

 else

 {

 query="SELECT * FROM " + tableName;

 if (sortColumnName != null)

 {

 query += " ORDER BY ";

 query += sortColumnName;

 }

 String line= " LIMIT " +

 recordsPerPage * (pageno-1) + "," +

recordsPerPage;

 query+=line;

 }

 }

 else

 {

 query="SELECT * FROM " + tableName;

 if (sortColumnName != null)

 {

 query += " ORDER BY ";

 query += sortColumnName;

 }

 }

 Iterator it=columns.iterator();

 while (it.hasNext())

 {

 Column c = (Column)it.next();

 columnName=c.getName();

 type=c.getType();

 url=c.getUrl();

 hyperText=c.getHyperText();

 if (allowSorting.equals("true"))

 {

 data+="<a href='";

 data+=page;

 data+="?columnName=";

 data+=columnName;

 if (page != null)

 {

 data+="&page=";

 data+=pageno;

 }

 data+="'>";

 data+=columnName;

 data+="";

 }

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 404 - 411

__

409

IJRITCC | June 2016, Available @ http://www.ijritcc.org

__

 else

 data+=columnName;

 }

 it=columns.iterator();

 while (it.hasNext())

 {

 Column c = (Column)it.next();

 name=c.getName();

 type=c.getType();

 url=c.getUrl();

 query="SELECT " + name + "

 FROM " + tableName + " WHERE 1 = 2 ";

 executeQuery(query);

 }

 while (nextRecord())

 {

 it=columns.iterator();

 while (it.hasNext())

 {

 Column c = (Column)it.next();

 name=c.getName();

 type=c.getType();

 url=c.getUrl();

hyperText=c.getHyperText();

 if (type.equals("regular"))

 {

 data+=columnValue;

 }

 else if (type.equals("checkbox"))

 {

 if (columnValue.equals("true"))

 data+="<input type='checkbox'

 checked='true'>";

 else

 data+="<input

 type='checkbox'>";

 }

 else if (type.equals("image"))

 {

 data+="<image src='";

 data+=columnValue;

 data+="' height=50

 width=50>";

 }

 else if (type.equals("hyperlink"))

 {

 data+="<a href='";

 data+=columnValue;

 data+="' download>";

 data+=hyperText;

 data+="";

 }

 }

 }

 print(data);

 }

}

V. RESULTS AND DISCUSSIONS

The algorithm presented above is implemented in Java Server

Pages using Eclipse editor. The tag is tested for different

database management systems. Different test cases are

presented here.

Test Case 1 : Without Sorting, Pagination and Filtering

Enabled for MySQL Database.

JSP code snippet in which sorting, pagination and filtering are

disabled is shown below:

<%@ taglib uri="/WEB-INF/lib/customtag.tld"

prefix="Database" %>

<%

 String fid=request.getParameter("fid");

 if (fid == null || fid == "")

 fid="1";

%>

<html>

 <head>

 <title>Custom Tag for Sorting, Pagination and

Filtering</title>

 </head>

 <body>

 <h3>Sorting and Pagination</h3>

 <Database:DisplayTable databaseName="library"

backEnd="MySQL"

 userName="root" password="mca"

tableName="book" columnNames="all"/>

 </body>

</html>

GUI generated by the tag is shown in Figure 3.

 Figure 3. GUI Generated by the Custom Tag on Disabling Sorting,

Pagination and Filtering

Test Case 2 : Sorting Enabled – allowSorting attribute of

DisplayTableTag tag is set to true for MS-Access Database.

JSP code snippet in which sorting enabled is shown below:

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 404 - 411

__

410

IJRITCC | June 2016, Available @ http://www.ijritcc.org

__

<%@ taglib uri="/WEB-INF/lib/customtag.tld" prefix =

"Database" %>

<html>

 <head>

 <title>Custom Tag for Enabling Sorting</title>

 </head>

 <body>

 <h3>Sorting, Filtering and Pagination</h3>

 <Database:DisplayTable dsnName="clibrary"

 tableName="book" columnNames="all"

 allowSorting="true" />

 </body>

</html>

GUI generated by the tag is shown in Figure 4.

Figure 4. GUI Generated by the Custom Tag with Sorting Enabled

When allowSorting attribute of the tag is set to true the

table headers rendered by the tag handler class become
hyperlinks. On clicking the column’s hyperlink, the data is
sorted in ascending order.

Test Case 3 : Pagination Enabled - allowPaging attribute of
DisplayTableTag tag is set to true for Oracle 10g Database.

JSP code snippet in which pagination enabled is shown
below:

<%@ taglib uri="/WEB-INF/lib/customtag.tld"
prefix="Database" %>
<html>
 <head>
 <title>Custom Tags for Database Operations</title>
 </head>
 <body>
 <h3>Sorting, Filtering and Pagination</h3>
 <Database:DisplayTable backEnd="Oracle" userName
="system" password="siber" ipAddress="192.168.30.94"
tableName="book" columnNames="all" allowPaging
="true" />
 </body>
</html>

GUI generated by the tag is shown in Figure 5.

Figure 5. GUI Generated by the Custom Tag with Pagination

Enabled

When allowPaging of the attribute is set to true, the first page

displays recordsPerPage (default value is 10) no. of records.

The user can navigate to any other page by clicking the

appropriate page number rendered as a hyperlink in the footer.

Test Case 4 : Filtering Enabled - allowFiltering attribute of

DisplayTableTag tag is set to true

JSP code snippet in which pagination enabled is shown below:

<%@ taglib uri="/WEB-INF/lib/customtag.tld"

prefix="Database" %>

<html>

 <head>

 <title>Custom Tags for Database Operations</title>

 </head>

 <body>

 <h3>Sorting, Filtering and Pagination</h3>

 <Database:DisplayTable dsnName="clibrary" tableName

="book" columnNames="all" allowFiltering="true" />

 </body>

</html>

GUI generated by the tag is shown in Figure 6.

Figure 6. GUI Generated by the Custom Tag with Filtering Enabled

When allowFiltering attribute of the tag is set to true, the drop-

down lists appear in the place of column headers which

contain unique values in that particular column. The user can

select the required value for filtering in the records containing

that value.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 404 - 411

__

411

IJRITCC | June 2016, Available @ http://www.ijritcc.org

__

Test Case 5 : Displaying Columns in Different Formats.

JSP code snippet in which pagination enabled is shown below:

<%@taglib uri="/WEB-INF/lib/customtag.tld"

prefix="Database"%>

<html>

<head>

<title>Custom Tags for Database Operations</title>

</head>

<body>

<h3>Sorting and Pagination</h3>

<Database:DisplayTable dsnName="clibrary"

tableName="book">

<Database:Column name="bookId" type="regular"/>

<Database:Column name="bookName" type="regular"/>

<Database:Column name="issued" type="checkbox"/>

<Database:Column name="bookImage" type="image"/>

<Database:Column name="Abstract" type="hyperlink"

hyperText="View"/>

</Database:DisplayTable>

</body>

</html>

GUI generated by the tag is shown in Figure 7.

Figure 7. GUI Generated by the Custom Tag Set for Displaying Columns in

Different Format

As seen from Figure 7. bookId and bookName columns are

displayed in regular format whereas issued, bookImage and

Abstract columns are displayed in checkbox, image and

hyperlink formats.

VI. CONCLUSION AND SCOPE FOR FUTURE WORK

The current work focuses on creating a custom tag for
displaying a table data independent of the database
management system in which it is stored in a pageable, sortable
and filterable grid view.

In the current work, the entire data from the underlying
database is retrieved and the correct subset of records to be

displayed is determined at code level, discarding the rest. This
is associated with large performance cost since the entire set of
records irrespective of the page to be displayed is being
returned from the underlying database of which only the
desired ones would be displayed. The performance can be
greatly enhanced if only the required subset of records which
are part of the page to be displayed are returned as it would
tremendously reduce a network traffic. In the current work, the
custom tag renders a unidirectional sortable grid view where
the data is sorted only in ascending order. In future, the tag can
be modified to incorporate a bi-directional sortable grid view in
which the data can be sorted either in ascending order or
descending order. On clicking the hyperlink for the first time,
the data is sorted in ascending order and the data is sorted in
descending order if the same hyperlink is clicked again

REFERENCES

[1] Dr. Poornima G. Naik, JSP Custom Tag Library for
Implementing JDBC Functionality,
http://www.codeproject.com/Articles/1084607/JSP-Custom-
Tag-Library-for-Implementing- JDBC-Funct, 11th March 2016.

[2] Dr. Poornima G. Naik, JSP Custom Tag Library (Version 2) for
DML Operations,
http://www.codeproject.com/Articles/1085185/JSP-Custom-
Tag-Library-Version-for-DML-Operations, 14th March, 2016

[3] Dr. Poornima G. Naik, JSP Custom Tag Library for Table Joins
and Master Detail Relationships,
http://www.codeproject.com/Articles/1086716/JSP-Custom-
Tag-Library-for-Table-Joins-and-Master, 19th March, 2016.

[4] Xiong, Yingyidu. "The design of automatically generating drop-
down a menu on JSP." Computer Science and Information
Processing (CSIP), 2012 International Conference on. IEEE,
2012.

[5] Gupta, Karan, and Anita Goel. "Requirement Estimation and
Design of Tag software in Web Application." International
Journal of Information Technology and Web Engineering
(IJITWE) 9.2 (2014): 1-19.

[6] Cuthbertson, Daniel J., et al. "Accurate mass–time tag library for
LC/MS based metabolite profiling of medicinal plants."
Phytochemistry 91 (2013): 187-197.

[7] Liu, Man, Xiaohui Wu, and Qingshun Quinn Li. "DNA/RNA
Hybrid Primer Mediated Poly (A) Tag Library Construction for
Illumina Sequencing."Polyadenylation in Plants: Methods and
Protocols (2015): 175-184.

[8] Kamal, Arif. "Tag Based Audiovisual Content Indexing.",
MASTER'S THESIS, Master of Science, Computer Science and
Engineering,Luleå University of Technology, Department of
Computer science, Electrical and Space engineering, 2016

[9] Xu, Ming, et al. "Research on the Method of Code Migration
from JSP to ASP. NETMing." Advanced materials research.
Vol. 756. 2013.

[10] Nam Ky Giang, Michael Blackstock, Rodger Lea, Victor C.M.
Leung , Developing IoT Applications in the Fog: a Distributed
Dataflow Approach. Procs. of the Internet of Things (IOT), 2015
International Conference on the, Seoul, Korea, Oct 26-28, 2015

[11] Dr. Poornima G. Naik and Dr. K.S.Oza, JSP Custom Tag
Library for In-Place Editing in Disconnected Architecture - A
Case Study, International Journal on Recent Trends in
Computing and Communication, vol. 4, no. 4, pp. 319-326,
April 2016. Barni M., Bartolini F., Piva A., Multichannel
watermarking of color images, IEEE Transaction on Circuits and
Systems of Video Technology 12(3) (2002) 142-156.

[12] Dr. Poornima G. Naik, Mr. Girish R. Naik, JSP Custom Tag for
Displaying Master- Detail Relationship in a Hierarchical Grid
Control – A Case Study, International Journal of Engineering
Applied Sciences and Technology, vol. 1, no 8, pp. 65-71, June
2016.

http://www.ijritcc.org/

