
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 135 - 138

__

135

IJRITCC | June 2016, Available @ http://www.ijritcc.org

A Review on working of Cflow

Madhuri Bhalekar
Computer Dept

MIT, Pune

Arjun Jain
Computer Dept

MIT, Pune

Debajyoti Majumdar
Computer Dept

MIT, Pune

Nigrah Bamb
Computer Dept

MIT, Pune

Ajinkya Shendre
Computer Dept

MIT, Pune

Abstract— In the field of program analysis, call graphs provide a succinct and human readable visual form of function flows in a program.

Typically, call graphs are directed graphs, that determine the sequence of invocation of subroutines depicting the caller callee dependencies. This

is used to tap the flow a program takes during execution, laying a foundation for further needful analysis. In this context, Call graph generators,

taking a program as input, are typically used to generate call graphs. GNU Cflow, is one such tool. It accepts a C program or a number of C

programs as input and generates a procedure flow, with clear caller-callee sequence distinguished by level indentation, with callee functions

indented inside caller functions. This output can be altered by supplying different available flags and output-formatting options to suit the

requirement. There is a lot of scope to revamp the Cflow source code and utilize the dispensed output. In this paper, we discuss the nature of

cflow, its expected output, its limitations and scope for future research in it.

Keywords— Cflow, call graph, function flow, call graph generators, caller callee

__*****___

I. INTRODUCTION

In order to effectively analyze programs, one must be aware

of the function-invocation sequence in the program.

Analyzing the function invocations does not limit itself to

trivial order in which they are called, rather it involves an

elaborate approach to jot the caller functions and the

functions called by them in a graphical view using suitable

and distinct notations for user‟s aid. Its vital applications

include determining the flow of values between the

subroutines and finding the unreachable functions to name a

few. Call graph generators are equipped with the necessary

gear to generate these graphs, in accordance with the

programmers or users requirement. However, there is a need

to identify the path a program takes through the control

structures like if-else, switch. Runtime analysis reveals the

utilization of only the selected path based on the satisfied

conditions, whereas static analysis typically ignores the

control structures to display the function invocation within

them sequentially. Open source tools are available which

provide static or dynamic call graph generation. Cflow is a

GNU Cflow is a static call graph
generator which produces a lucid indented output depicting

caller-callee dependencies.

II. GNU CFLOW- AN OVERVIEW

GNU Cflow is a utility which is useful for analyzing a

collection of functionally interdependent C files and

producing an indented output, which exhibits functional

dependency between procedures in the listed files. The

generated output comprises of clear notations used to show

the line number and the source file a function was

encountered in. Moreover, function recursion also has a

definite notation, which charts the line number and file

where its original definition exists. Typically, cflow scans

the listed source files, extracts the function definitions and

invocations throughout, and generates a neatly indented

output, with calling function as a parent and called functions

slightly indented to the right of the caller. This scheme of

indentation is recursively forwarded from the main()

function till the end of the last function invoked by main.

observe the typical output below . A typical cflow

invocation syntax looks like follows [1]:

cflow [<file> | -<options>]

where option can be expanded as:

<options>: I | m <func> | o <file> | u

Options may also appear between the filenames, with no

attention to order of appearance. –i option lets cflow open

and read #include files referred to in the source code. A

function name following the –m option instructs cFlow to

start the dependency tree from that function instead of main.

The –o option redirects the output to the given destination

file. –u option enables the inclusion of undefined functions

in the dependency tree. For a given C program (Fig. 1) , the

Cflow output looks like follows.

#include <stdio.h>
void add(int num1, int num2){
int result = num1 + num2;
display(result);
}
void display(int result){
printf("\n sum is: %d", result);

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 135 - 138

__

136

IJRITCC | June 2016, Available @ http://www.ijritcc.org

display(result);
}
int main(){
int num1, num2;
printf("\n enter two integers: \n");
scanf("%d", &num1);
scanf("%d", &num2);
add(num1, num2);
return 0;
}

Fig. 1 The example C code

The typical cFlow output consists of a distinct notation,

(recursive: see 3), for displaying recursive functions, which

indicates the line number in the listed files where the

original function is defined (Fig. 2). (R) indicates the

invocation of the parent function.

main() <int main () at add.c:15>:
printf()
scanf()
add() <void add (int num1, int num2) at
add.c:3>:
display() <void display (int result) at
add.c:10> (R):
printf()

display() <void display (int result) at
add.c:10> (recursive: see 5)

Fig. 2 The typical Cflow output

The above output can be further understood pictorially with

the help of following figure:

Fig. 3 Pictorial representation of Cflow output

III. THE CFLOW SOURCE FILES

The Cflow source files provide the core functioning

skeleton of the tool. The files can be segregated ino Header

files (the declaration and initialization part) and Core files,

which contain the definitions of all the function needed for

Cflow operation.

A. Header Files

Cflow operation is realized by the numerous definitions

inside the header files. Each header file, has useful

declarations and pre-specifications carrying a significant

global usage throughout the functioning of this utility.
1) Cflow.h: This header file is responsible for the

declaration of environment variables and structures used by

functions across different files in the source folder. A

prominent structure defined inside cflow.h is Symbol. This

structure is an assortment of pointers and varibles used to

assign name of the encountered symbol/token, line number,

token type, storage type, recursive check, and most

importantly it consists of pointers to two major structures

linked_list_entry and linked_list. There exist two pointers

“caller” and “callee” inside this structure which point to the

linked_list structure and help in formulating the dependency

matrix. Another prominent structure definition inside

cflow.h is linked_list_entry. Each encountered function is

added to a list specified in the structure with the next and

previous pointers to traverse the same. The function details

like name,line number, arguments are handled by the “data”

pointer.

2) Parser.h: each token has been assigned a particular ID

based on their syntactical classes for instance

IDENTIFIERS, MODIFIERS, QUALIFIERS, WORD,

LBRACE, RBRACE to name an important few.

On carefully examining the working of this utility using the

mentioned techniques, it is observed that cflow like all C

programs kickstarts from the main.c file in the source folder.

There onwards, the interworking of lexer-parser is initiated,

with the tokens being extracted in the c.l file and the syntax

checking being performed in the parser.c file. Parser.c

implements a sequence of functions to filter only the desired

tokens from the listed file, according to the specified goal of

cFlow. Lastly, each function-token from the listed files is

appended to a linked list. The linked list operations are

looked upon in the linked-list.c file. symbol.c file compares

symbols obtained from the lexer, and calculates its hash

value. gnu.c generates a level-indented tree based on its type

(direct or inverted) which is displayed using output.c. A

brief description of each file is a follows:

B. Core Files

1) main.c: The main.c is responsible for initiating the

lexer-parser co-routine by calling yyparse function. Apart

from this, it also checks for the existence of the listed file.

main.c also takes care of initialization of the environment,

by invoking the init() function. Init takes care of pre-

appending spaces and initializing the cflow canvas. Two

major functions invoked by init are init_lex() and

init_token(). init_lex further calls init_tokens() (different

from init token()) function in c.l that handles the keyword,

types, and qualifiers initialization.

2) c.l: c.l comprises of essential declarations,

structures and initializations required by the scanner and

parser. The life-granting yylex() function of a lexer is

invoked by the c.l through the get_token() function. As

mentioned above, an array of keywords, types and qualifiers

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 135 - 138

__

137

IJRITCC | June 2016, Available @ http://www.ijritcc.org

is declared and initialized. Moreover, the source() function

looks after the listed file by making it available for scanning

,that is, it opens the file in read mode.

3) parser.c: Parser.c is encapsulates the core

functionality of filtering the tokens in the desired manner,

that is, deal with functions, variables, arguments in a

manner, suitable for the required output of cFlow. Major

syntax checking is done here so as to segregate variables,

functions, handle arguments, and match patterns to decide if

the encountered token is a function or not. A number of vital

functions influence the operation of parser.c . Broadly

speaking, cflow follows a nomenclature for a function

definition (the function definitions that exist before main())

, by calling the encountered function a “caller” and

assigning it to the caller variable. For an indented output, it

also keeps track of the nesting level for a particular function.

This is handled by the 'level' variable. As specified,

yyparse() is responsible for initiating parsing, and initializes

the caller and level variables. To check if the encountered

token is a function or a variable, it invokes

parse_declaration ().

parse_declaration () verifies if the encountered token is a

function and thereby calls is_function () to perform the

check.

is_function() comes into action as soon as a return-type is

encountered in the input file/s. Based on the return value of

is_function() it evokes parse_function_declaration() if true,

else parse_variable_declaration().

parse_function_declaration() procedure looks after the

assignment of the encountered function definition to the

caller variable and then hands over the subsequent

functionality to func_body().

func_body() is a significant function that influences the

nesting level of the encountered function in the listed file. It

checks the function declaration syntax of the encountered

procedure using expression() . Consequently, It works as a

scanner that implements a while loop to recursively scan the

body of the function and the same treatment is meted out to

the functions and variables as described above, by invoking

the above functions with current parameters.

The expression() function does the notable task of checking

the function declaration by examining the current token. If it

is an IDENTIFIER and followed by a „ („ , it should be

appended in a linked list, with the help of call() function.

The existence of parameters, for the current function, is

examined in call() using 'arity'. Consequentially, the

function is appended to the linked list using

linked_list_append () in linked_list.c .

To create (using linked_list_create()) and allocate memory

to the linked list, add_reference() is invoked. Another

function called nexttoken() is the core function which

obtains the tokens from the lexer using the get_token()

function, as described above. As soon as the token is

obtained, it is pushed on a local stack, along with its line

number and type using the tokpush () operation which is

instrumental in assigning the memory location to the current

token, by pushing the type, line along with the token on the

stack.

4) linked-list.c: cFlow uses linked list to store and

retrieve the functions for all purposes. Thus, linked-list.c file

comprises of functions directing the linked list operations.

Two major functions in the file are linked_list_create() and

linked_list_append(). linked_list_create(): This function is

invoked by add_reference() in parser.c to allocate memory

dynamically, according to size of the list.

linked_list_append(): The task of appending a function to

the linked list is handled by this function. Memory equal to

the linked_list_entry structure(mentioned previously) is

allocated , which encapsulates the the current symbol name,

its previous and next symbol in the list. If the current token

is a first , it is made the head, else appended to the tail of the

list.

5) output.c: output.c is responsible for shaping the

output format, achieved with the help of direct_tree ()

function. This is realized by traversing the formed linked

lists and calling the print_symbol() function defined in gnu.c

file. Likewise, another function inverted_tree () is used to

print an inverted tree, by performing the appropriate

traversal.

6) gnu.c: The output display format and notations are

printed on the standard output by gnu.c. A function

print_symbol() is invoked by direct_tree() in output.c, this

function is responsible for printing the encountered function

names with the desired indentation. This is majorly achieved

by invoking two functions, print_level() and

print_function_name(). print_level () decides upon the

indentation to be supplied on the basis of current level with

respect to the calling function, while print_function_name()

takes care of printing the function names with the suitable

notations. print_function_name() prints the final cflow

output in the desired format. The angular brackets in the

output notify the presence of the function declaration, the

(R) notation representation of a recursive function, the

source file name etc. are all printed using this function.

C. Tools to analyze Cflow

A number of tools can be used to analyze and determine

the activity taking place between Cflow functions. There

needs to be a mechanism to visually depict the functional

dpendency between various procedures in cflow, as well as,

to manually enter the files to make alterations and view the

corresponding output. Following are the two tools which can

be used for achieving the same.

1) pycflow2dot: Aforementioned description and

complex inter-functional dependencies can be difficult to

realize without the help of visual depiction of the same. To

aid in the same, pycflow2dot is a utility used to draw the call

graph of the c source code using cflow and dot . Output to

LateX, .dot, .PDF, .SVG, .PNG and from dot to all formats

supported from it [2]. Syntax to use pycflow2dot is:

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 135 - 138

__

138

IJRITCC | June 2016, Available @ http://www.ijritcc.org

cflow2dot –I file_name.c –f png Following figure exhibits a

typical output from this utility for the main () function inside

main.c file.

Fig. 3 Sample pycflow2dot output for main() function in main.c file

2) cscope: Ideally, visual depiction is insufficient to

determine the way a software like cFlow works. There is a

need for a mechanism to identify the structure of the

software, search and lookup for symbols and functions. To

navigate C-like code files, the C-scope interface is used.

Using Cscope, you can search for identifier or function

definitions, their uses, or even any regular expression [3].

Thus Cflow is a useful tool that helps a programmer to

determine the sequence of function invocation as well as the

the dependency between functions in a C program. It is

equipped with the essential flags that provide flexibility in

the nature of the output. Even though Cflow presents a

succint output format , there is scope for a lot of tweaks in

the source code contained in the assortment of files, to

achieve the desired output.

IV. CONCLUSIONS

This paper, provides a comprehensive overview of the

cflow skeleton. Cflow internally scans the listed files and

implements the common lexer parser scheme leading to

token handling and token-related operations. Cflow is

logically segregated into a number of vital header files and

core files that help in building its functionality. The header

files handle the major declarations and initializations that

are required throughout the core files. The core files consist

major functions which contain and direct the cflow

operations. Going through a number of stages, a final

indented output is displayed on screen, with proper

notations.

REFERENCES

[1] Asaf Arkin,"Cflow Operating Instructions", Internet:

http://ftp.stratus.com/vos/tools/cflow.txt, Oct. 20 , 1989 [20

January 2016].

[2] Ioannis Filippidis, "Layout cflow output using GraphViz dot

", Internet: https://github.com/johnyf/pycflow2dot, Feb. 28,

2015 [25 January 2016].

[3] Tonymec, "Cscope", Internet:

http://vim.wikia.com/wiki/Cscope, Nov. 25, 2009 [25

January 2016].

http://www.ijritcc.org/
http://ftp.stratus.com/vos/tools/cflow.txt
https://github.com/johnyf/pycflow2dot
http://vim.wikia.com/wiki/Cscope

