
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 98 - 102

98

IJRITCC | June 2016, Available @ http://www.ijritcc.org

Resilient security against hackers using enchanced encryption techniques:

Blowfish and Honey Encryption

Prof. Rohini S. More

Department of Computer Science and Engineering

A.G. Patil Institute Of Technology

Solapur, India

 e-mail: rohinimore0808@gmail.com

Prof. Smita S. Konda

Department of Computer Science and Engineering

A.G. Patil Institute Of Technology

Solapur, India

 e-mail: smitakonda@gmail.com

Abstract— Data security refers to protective digital privacy measures that are applied to prevent unauthorized access to computers, databases

and websites. Data security also protects data from corruption. Data security is the main priority for organizations of every size and genre. Data

security is also known as information security (IS) or computer security. So in this paper to provide security to our data we use encryption. The

primary purpose of encryption is to protect the confidentiality of digital data stored on computer systems or transmitted via the Internet or other

computer networks. To achieve encryption we are using two advanced encryption techniques: blowfish and honey encryption.

Keywords-Blowfish encryption, Honey encryption, DTE, Cryptography, Key expansion

__*****___

I. INTRODUCTION

An encryption algorithm plays a vital role to protect the

information during storage or transfer. The encryption

algorithms are of two types: Symmetric (secret) and

Asymmetric (public) keys encryption. In Symmetric key

encryption or secret key encryption, only 1 key is used for

encryption as well as for decryption of information ,Eg:

Blowfish Encryption algorithm Triple DES, Advanced

Encryption Standard(AES) and Data encryption

standard(DES). Asymmetric key encryption or public key

encryption

uses two keys, one for encryption and other for

decryption Eg: RSA.

In this paper for providing high security to data we are using

two encryption algorithms: 1) Blowfish Encryption Algorithm.

2) Honey Encryption Algorithm. Blowfish is a symmetric key

block cipher. It takes a variable-length keys for encryption as

well as decryption, ranges from 32 bits to 448 bits, to make it

ideal for both domestic and exportable use. Blowfish was

invented in 1993 by Bruce Schneier as a free, fast substitute to

existing encryption algorithms. Since then it has been analyzed

significantly, and it is slowly gaining recognition as a well-

built encryption algorithm. Blowfish is unpatented and

license-free, and is available free for all uses. Blowfish

provides a high-quality encryption rate in software and no

efficient cryptanalysis of it has been found to date. Schneier

considered Blowfish as a general-purpose algorithm, planned

as an substitute to the aging DES. Blowfish is known for both

its tremendous speed and overall effectiveness as many claim

that it has never been defeated. Blowfish can be found in

software categories ranging from e-commerce platforms for

securing payments to password management tools, where it

used to protect passwords. It’s definitely one of the more

flexible encryption methods available.

Figure No.1 The round function (Feistel function) of Blowfish

Honey encryption (HE) is a simple approach to encrypting

messages using low min-entropy keys such as passwords. HE

is designed to produce a ciphertext which, when decrypted

with any of a number of incorrect keys, yields plausible-

looking but bogus plaintexts called honey messages[8]. There

are Honey encryption schemes for password-based encryption

of RSA secret keys and credit card numbers. Honey

Encryption turns every wrong password guess made by a

hacker into a confusing dead-end. When an application or user

enters and sends a password key to access an encrypted

database or file, as long as the password is correct, the data is

decrypted and accessible in its original, and readable, format.

If the password key is incorrect the data will continue to be

unreadable and encrypted. Hackers who steal databases of user

logins and passwords only have to guess a single correct

password in order to get access to the data. The way they

know they have the correct password is when the database or

file becomes readable. To speed up the process, hackers have

access to sophisticated software that can send thousands of

passwords each minute to applications in an attempt to decrypt

the data. Using higher speed, multi-core processors also

shortens the time it can take to break encryption. With Honey

http://www.ijritcc.org/
http://searchwindevelopment.techtarget.com/definition/Internet
http://searchnetworking.techtarget.com/definition/network
https://en.wikipedia.org/wiki/Cryptanalysis
https://en.wikipedia.org/wiki/Data_Encryption_Standard

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 98 - 102

99

IJRITCC | June 2016, Available @ http://www.ijritcc.org

Encryption, decrypting with an incorrect password results in fake, but realistic looking data for every incorrect password

attempt. For example, if a hacker made 100 password

attempts, they would receive 100 plain text results. Even if

one of the passwords were correct, the real data would be

indistinguishable from the fake data.

II. RELATED WORK

Nirvan Tyagi, Jessica Wang, Kevin Wen, Daniel Zuo[2].,

described in this paper about implementing message spaces

with the proper API. Various required functions can be

made for each specific message space.

 Cumulative distr(message) - takes in a message and

outputs cumulative probability representing where

in ordered message space the message lies

 Probability distr(message) - takes in a message and

outputs probability of that single message

 Next message(message) - takes in a message and

outputs the next message in ordered message space

 Get inverse cumul distr samples() - returns list of

pre-calculated sampling of cumulative distribution

values to messages

 Vinayak P P, Nahala M A[1]., proposed new encryption

technique in which an attacker tries to different keys

different decrypted data will be got, thus the brute forcer

will be confused totally about the actual content. Also new

message encoding scheme called a distribution transforming

encoder (DTE). Honey encryption represents the space of

original message using DTE.

Ari Juels, Thomas Ristenpart[4]., suggested that use of Low-

entropy keys such as passwords that helps resist brute-force

attacks that try every key; Low-entropy secrets such as

passwords are likely to persist in computer systems for

many years. Their use in encryption leaves resources

vulnerable to offline attack Gadkar Prathamesh S., Gawali

Sanket D., Khalkar Yogeshwar D.[5], Narode Aniket K.

described cryptographic system to ensure the protection to

the a variety of applications . They will propose a system to

strongly transmit provenance for sensor data. They will

introduce efficient technique for provenance data

verification. They will design the new system for secure

encryption & decryption. For that purpose privacy,

validation, reliability & accessibility are the basic security

requirements of wireless sensor network (WSN). The

security threats in WSN are broadly classified as 1. Inside

attacks versus outside attacks 2. Active attacks versus

passive attacks sensor class or laptop class attacks. To

achieve this, they have proposed various techniques: 1. Data

Encryption Standard (DES) 2. Triple Data Encryption

Standard (Triple DES) 3. Honey Encryption

 Pratap Chnadra Mandal [6] has done a fair comparison

between four most common and used symmetric key

algorithms: DES, 3DES, AES and Blowfish. The

comparison has been done on the basis of various

parameters like rounds block size, key size, and encryption /

decryption time, CPU process time in the form of

throughput and power utilization. So he analyzed that

blowfish is better than other algorithms. To achieve his goal

he used Cryptography scheme. The main purpose of

cryptography is privacy of data, non alteration of data. There

are several goals of cryptography: 1. Confidentiality: Data in

computer which is transmitted and should be accessed only

by the authorized person and not by anyone else. 2.

Authentication: The data received by any system has to

verify the identity of the sender that whether the information

is arriving from an authorized person or not. 3. Integrity:

Only the authorized person is permitted to alter the

transmitted information. 4. Non Repudiation: Ensures that

neither the sender, nor the receiver of message should be

able to deny the transmission. 5. Access Control: Only the

authorized person is able to access the given information.

Compared algorithms are RC2, DES, 3DES, AES, RC6 &

blowfish. In this paper finally he concluded that blowfish is

best of all. In future he can perform same experiments on

image, audio & video and developing a stronger encryption

algorithm with high speed and least energy utilization.

 Ankita Deshpande, P.S.Choudhary [7] described blowfish

is not only safe, but also quick and suitable for different

platforms, therefore, it has high value of application in the

field of information security. One should find it important

that the maximum key size was used, and the key was

chosen at random from the full key space of size 2448, since

maximum key length is 448 bits. Blowfish has 3 parts 1.

Encryption algorithm 2. Key-expansion 3. Decryption

algorithm. In future a variety of encryption algorithms will

be used to accommodate the wireless network applications

& can be optimized further in future. In addition, a stronger

encryption algorithm with high speed and least amount of

energy utilization can be developed to get enhanced security

and the performance evaluation parameters can be

optimised.

 Ms NehaKhatri – Valmik, Prof. V. K Kshirsagar [8].,

discussed Blowfish algorithm and concluded that it is faster

than DES. Blowfish is provides stronger security and also

placed in public domains.

 Jawahar Thakur, Nagesh Kumar [9]., discussed comparison

between three most common symmetric key cryptography

algorithms: DES, AES, and Blowfish. The comparison is

made on the basis of these parameters: speed, block size,

and key size.

III. BLOWFISH ALGORITHM

The algorithm uses variable key size encryption algorithm.

As it is symmetric encryption only one key is used for

encryption as well as decryption. One advantage is that it

can use different key size upto the length of 448 bits.

Blowfish is a symmetric block encryption algorithm

designed with,

Fast: 32-bit microprocessors and rate of 26 clock cycles per

byte.

 Compact: runs in less than 5K of memory.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 98 - 102

100

IJRITCC | June 2016, Available @ http://www.ijritcc.org

 Simple: for addition, XOR, lookup table with 32-bit

operands.

Secure: variable key length, it can be in the range of

32~448 bits: default 128 bits key length.

Figure No.2 Symmetric encryption/decryption process for

Blowfish Algorithm [7]

Figure No.3 The Fiestel structure of Blowfish. [3]

Divide x into two 32-bit halves: xL, xR

 For i = 1 to 16:

 xL = XL XOR Pi

 xR = F(XL) XOR xR

 Swap XL and xR

 Swap XL and xR (Undo the last swap.)

 xR = xR XOR P17

 xL = xL XOR P18

 Recombine xL and xR

Figure No.4 Blowfish Encryption [8].

The structure of Blowfish is divided into two parts: data-

expansion and key encryption. In the key expansion phase,

the input key is converted into several sub key arrays total

4168 bytes. There are P array and S-boxes in the design of

Blowfish. There are S-boxes, which are four 32-bit arrays

with 256 entries each and P array is eighteen 32-bit boxes.

First the string initialization process is done by the first 32

bits of the key are XORed with P1. For decryption, the same

process is repeated, except that the sub-keys Pi must be

supplied in reverse order. The Fiestel network ensures that

every half is swapped for the next round [14].

There are three parts of Blowfish: Encryption algorithm,

Key-expansion and Decryption algorithm.

In Encryption algorithm, encryption is done by taking the

first 32 bits of the key and XOR with the first 32-bit box in

the P-array. Then the next 32 bits of the key are XORed

with next 32-bit box in the P-array., and so on, until all 448,

or fewer, key bits have been XOR. This cycle is completed

by returning to the beginning of the key, until the entire P-

array has been XOR with the key.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 98 - 102

101

IJRITCC | June 2016, Available @ http://www.ijritcc.org

In Key-expansion, a simple cipher, where same key is used.

Exclusive-OR the key with the plaintext. Then it is reversed

by another exclusive-OR of the same key with the cipher

text. In the case of the Blowfish, there are a number of

rounds, needing the key, so the actual key size is 64 bytes.

In Decryption algorithm, the same procedure is repeated as

encryption only the thing that the P-arrays are used in

reverse order.

IV. HONEY ENCRYPTION

Ari Juels and Thomas Ristenpart of the University of

Wisconsin, the developers of the encryption system,

presented a paper on Honey Encryption at the 2014 Euro

crypt cryptography conference. Honey encryption provides a

high security against brute force attacks for certain

messages. The honey encryption provides a cipher text C

that decrypts under any key or password that is provided by

the attacker and it will be reasonable or believable looking

message .The forged key or password will get a fake

message when trying to decrypt the data that looks like legal

to an attacker as it is the actual message. The internal

structure of the honey encryption includes a specialized

encoding schema and a normal encryption schema[2].

Honey Encryption is a type of data encryption that produces

a ciphertext, which, when decrypted with an incorrect key as

guessed by the attacker, presents a plausible-looking yet

incorrect plaintext password or encryption key.

A. Method of protection

A brute-force attack involves frequent decryption with

random keys. This is corresponding to selecting random

plaintexts from the all possible plaintexts with a uniform

distribution. This is efficient because even though the

attacker is evenly probable to see any given plaintext, most

plaintexts are very implausible to be genuine i.e. the

distribution of valid plaintexts is non-uniform. Honey

Encryption defeats such attacks by first transforming the

plaintext into a space such that the distribution of legitimate

plaintexts is uniform. Thus an attacker guessing keys will

see legitimate-looking plaintexts regularly and random-

looking plaintexts rarely. This makes it hard to determine

when the right key has been guessed. In effect, Honey

Encryption provides false data in response to every false

guess of the password or encryption key. Honey Encryption

can defend against these attacks by first mapping credit card

numbers to a larger space where they match their probability

of authenticity. Numbers with invalid IINs and checksums

are not mapped at all (i.e. have probability 0 of authenticity).

Numbers from large brands like MasterCard and Visa map

to big regions of this space, while less popular brands map

to minor regions, etc. An attacker brute-forcing such an

encryption scheme would only see legitimate-looking credit

card numbers when they brute-force, and the numbers would

come out with the frequency the attacker would expect from

the real world.

B. Honey Encryption Scheme Set-up

We now describe the original honey encryption scheme

proposed by Juels and Ristenpart. In this construction, we

have a message space M which consists of all possible

messages. We map these messages to a seed space S through

the use of a distribution-transforming encoder (DTE). The

seed space is simply the space of all n-bit binary strings for

some predetermined n. Each message in m Є M is mapped

to a seed range in S. The size of the seed range of m is

directly proportional to how probable m is in the message

space M. We need some knowledge about the message

space M in order for the DTE to map messages to seed

ranges; particularly the DTE requires the cumulative

distribution function (CDF) of M and some information on

the ordering of messages. Furthermore, the seed space has to

be large enough so that even the message with least

likelihood in the message space is assigned at least one seed.

With this information, we can get the cumulative likelihood

range corresponding the message m and map it to the same

percentile seed range in S. We illustrate the encryption

process below with a basic example.

Figure No.5 Encryption process [2].

Consider the simple example of encoding ice cream flavors

in figure 4. Our message space M consists of various

flavors, M = {chocolate, mint, strawberry, vanilla}. Through

facts of some population's first choice of ice cream flavors,

probabilities are assigned to each flavor. Consider a seed

space S of 3-bit strings. With these probabilities, we can

then map each flavor to a seed range. In this case, the

flavors are ordered alphabetically. Note that this is an

arbitrary ordering and a different ordering would lead to a

different mapping of seeds. Now consider the process of

encrypting a message, say chocolate. Using the DTE, we

randomly select a seed in the corresponding seed range. This

seed is XORed with a shared secret key to generate the

cipher text. Decryption is slightly difficult. The cipher text is

XORed with the secret key is return the seed. We know that

the seed falls into a seed range that corresponds to a

message's CDF value. Here we run into a problem. For most

message spaces, the CDF is one-way and we cannot go back

to a message given a value in its CDF range. Instead, we use

an inverse sampling table. Using a precalculated table of

sampled CDF values to messages from the message space,

http://www.ijritcc.org/
https://en.wikipedia.org/w/index.php?title=Ari_Juels&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Thomas_Ristenpart&action=edit&redlink=1
https://en.wikipedia.org/wiki/University_of_Wisconsin
https://en.wikipedia.org/wiki/University_of_Wisconsin
https://en.wikipedia.org/wiki/University_of_Wisconsin
https://en.wikipedia.org/wiki/Eurocrypt
https://en.wikipedia.org/wiki/Eurocrypt
https://en.wikipedia.org/wiki/Eurocrypt
https://en.wikipedia.org/wiki/Data_encryption
https://en.wikipedia.org/wiki/Ciphertext
https://en.wikipedia.org/wiki/Brute-force_attack
https://en.wikipedia.org/wiki/Uniform_distribution_(discrete)
https://en.wikipedia.org/wiki/Uniform_distribution_(discrete)
https://en.wikipedia.org/wiki/Uniform_distribution_(discrete)
https://en.wikipedia.org/wiki/Mastercard
https://en.wikipedia.org/wiki/Visa_Inc.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 6 98 - 102

102

IJRITCC | June 2016, Available @ http://www.ijritcc.org

we can run binary search on the inverse sampling table and

then linear scan the message space from there [2].

V. ADVANTAGES OF TWO TECHNIQUES

Blowfish is the most stronger and fast encryption algorithm.

It helps in providing high-speed data encryption that can be

applied to various I/O devices. It is most secure algorithm.

The design of S-boxes and P-boxes make the structure of

algorithm more powerful.

Honey encryption provides huge security against low

entropy to resist brute force attacks. Honey encryption is

also more powerful algorithm that works on keys.

VI. DISADVANTAGES OF TWO TECHNIQUES

Blowfish algorithm uses same key for two parties. This is

unique pair of keys given to each pair of users. So key

management is major problem. This algorithm doesn’t

provide non-repudiation and authentication services. This

algorithm also leads to time consumption.

Honey encryption fails to provide security when the

opponent has some side information about the message.

VII. CONCLUSION

Honey Encryption and Blowfish algorithms are a new,

innovative approach to defending against data theft and

brute forcing passwords. However it is not easy to generate

fake data for all possible real cases. But that challenge can

be overcome by using real data that are publicized across the

Internet during several data breaches.

VIII. FUTURE WORK

In future we will try to work on the drawbacks of both the

algorithms so that a problem like key management is carried

on smoothly as well as provide all security services.

Implementation can also be done by combining both the

algorithms to generate stronger algorithm that overcomes

these drawbacks.

REFERENCES

[1] Vinayak P P, Nahala M A, “Avoiding Brute Force attack

in MANET using Honey Encryption,” ISSN
(ONLINE): 2319-7064

[2] Nirvan Tyagi [ntyagi], Jessica Wang [jzwang], Kevin
Wen [kevinwen], Daniel Zuo [dzuo], “Honey Encryption
Applications,” 6.857 Computer & Network Security, 13
May 2015.

[3] http://iitd.vlab.co.in/?sub=66&brch=184&sim=1147&cnt
=1

[4] Ari Juels, Thomas Ristenpart, “Honey Encryption:
Security Beyond the Brute-Force Bound,” January 29,
2014

[5] Gadkar Prathamesh S., Gawali Sanket D., Khalkar
Yogeshwar D., Narode Aniket K., “Secure Data
Transmission in WSN using 3DES with Honey
Encryption,” Vol-1 Issue-4 2015, IJARIIE-ISSN(O)-
2395-4396.

[6] Pratap Chnadra Mandal, “Superiority of Blowfish
Algorithm,” Volume 2, Issue 9, September 2012, ISSN
:2277 128X.

[7] Ankita Deshpande, P.S.Choudhary, “FPGA
Implementation of Blowfish Cryptographic Algorithm,”
Volume 4, Issue 4, April 2014, ISSN:2277 128X

[8] Ms.NehaKhatri–Valmik, Prof. V. K Kshirsagar,
“Blowfish Algorithm,” Volume 16, Issue 2, Ver. X (Mar-
Apr. 2014), e-ISSN:2278-0661,p-ISSN:2278-8727

http://www.ijritcc.org/

