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Abstract—Estimation of the channel accurately in a MIMO-OFDM system is crucial to guarantee the performance of the system. In this paper 

the Subspace Pursuit (SP), Orthogonal Matching Pursuit (OMP), Compressed Sampling Matching Pursuit(CoSaMP) and Distributed 

Compressed Sensing(DCS) algorithms combined with Minimum Mean Square Error(MMSE) and Least Mean Square (LMS) tools are used to  

estimate the channel coefficients for MIMO-OFDM system. These algorithms are used for the channel estimation in MIMO-OFDM system to 

develop the joint sparsity of the MIMO channel. Simulation results shows  that SP, OMP, CoSaMP and DCS   algorithms combined with  

MMSE and   LMS tools provides  significant reduction in Normalized Mean Square Error (NMSE) when compared to SP ,CoSaMP, DCS 

algorithms  with Least Square (LS) tool and also the conventional channel estimation methods such as LS, MMSE and LMS. Moreover DCS 

combined with LMS tool performs better than SP and OMP techniques with LMS tool with less computational time complexity. 

 

Keywords— MIMO-OFDM, Compressed Sensing(CS), Compressed Sampling Matching Pursuit(CoSaMP), Subspace Pursuit (SP), Orthogonal 

Matching Pursuit (OMP) 
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I. INTRODUCTION 

Channel estimation is crucial to the performance of 

coherent demodulation in multi-input–multi-output orthogonal 

frequency division multiplexing (MIMO-OFDM) systems. It  

determines the channel state information (CSI) that is used to 

support pre-coding and scheduling [1]–[2].Generally, CSI is 

obtained by embedding pilot symbols in OFDM symbols and 

using linear channel estimators such as Least Squares (LS), 

Minimum Mean Square Error (MMSE) and Least Mean 

Square(LMS)[4] -[5].However, the multipath channels tend to 

exhibit sparse structures [6]. Conventional channel estimation 

methods do not use multipath channel inner sparsity 

completely. Recently, compressive sensing (CS) techniques 

have been applied in the field of channel estimation[7]. CS 

theory demonstrates that a sparse or compressive signal can be 

used to efficiently reconstruct the signal from very few limited 

sample values [8-10]. CS algorithms are extended to MIMO-

OFDM channel estimation systems in [11].  

 

The CS algorithm SP is compared with OMP for MIMO-

OFDM system in [12], where it is shown that the 

computational complexity of SP is less than OMP. The 

computational complexity of SP and OMP is O(m.N.log(K)) 

and O(K.m.N)  respectively[13],where m is number of pilots 

or rows in the measurement matrix, N is number of columns in 

the measurement matrix and K is the sparsity level. 

However, in all these papers, LS tool is used for the 

channel estimation. LS tool does not take channel statistics 

into account and suffers from high mean-square 

error(MSE).The MSE can be reduced using MMSE tool and a 

better estimate can be obtained by using LMS tool which is an 

adaptive estimation technique[13]. It obtains more information 

about the channel and the estimated channel coefficients are 

continuously updated at every iteration. The knowledge of 

noise statistics and channel statistics are not necessary to 

estimate the channel. 

In this paper, the compressed sensing algorithms such as 

SP, OMP, CoSaMP and DCS are combined with LS and LMS 

methods in the frequency domain channel estimation of 

MIMO-OFDM systems. A MIMO-OFDM system model is 

briefly described in Section II. In section III CoSaMP and 

DCS   algorithms are illustrated. The results are compared 

with traditional methods such as LS, MMSE and LMS and 

also with SP, OMP , CoSaMP and DCS with LS approach in 

section IV.  Performance analysis shows that DCS combined 

with LMS performs better than other methods with the 

computational complexity O(m.N) and these conclusions are 

shown in Section V. 

 

II. SYSTEM MODEL 

A. MIMO OFDM System Model 

The Channel Impulse Response (CIR) of a system with L 

number of Multipath, is given by [14] 

 

h(, t)= αq (t)δ(− q (t))L
q=1  (1) 

 

Whereq t ∈ ℝand αq (t) ∈ ℂ  are real-valued delay spread 

and complex-valued magnitude for path q, in turn. Assuming 

block-fading channel where each block has channel 

parameters are persistent and also neglecting the symbol 

synchronization, CIR in discrete form is given by 

h(, t) =  αq(t)δ((− q )Tq )

L

q=1

 

 

   (2) 

where Tq  is the sampling interval.  Tqmust be lower compared 

to the maximum DS(Delay Spread)in high data rate systems. 

Application of Eqn (2) results in a channel with comparatively 

more number of zero taps and few nonzero taps. Let P be the 

total number of channel taps with Q of them are nonzero 

(Q<<P) i.e. a Q-sparse channel. 

Consider OFDM system with Np subcarriers as pilots ,  at 

position t1,t2,……tNp (1≤ t1<t2<….<tNp ≤ N ).  
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X(t1),X(t2),…….,X(tNp)and Y(t1),Y(t2),…….Y(tNp) 

represent the transmitted symbols and the received symbols 

respectively  at pilot locations. The estimated transfer function 

on pilot subcarriers is 

H (k)=
Y(k)

X(k)
,                    k=t1, t2, . . ., tNp (3) 

The discrete channel transfer function Ĥ (k) (k = 1, 2,….,N) is 

obtained by considering the pilot subcarriers and interpolating 

as shown in Eqn(3). With channel sparsity included the 

problem can be expressed as[14] 

y = X. FNp ×L . h + n0 (4) 

 

where h=[h(1),h(2),h(3)….,h(L)
]T

 are the CIR,  

X=diag{X(t1),X(t2),…….,X(tNp)} transmitted symbol 

and n0=[n0(1),n0(2),……n0(Np)]
T
is the noise vector which is 

Additive White Gaussian in Noise (AWGN) in nature. And y 

is the output symbol as defined above, and   

 

𝐹𝑁𝑝×𝐿 =
1

 𝑁
 

1 𝑤𝑡1

1 𝑤𝑡2

⋯ 𝑤𝑡1(𝐿−1)

⋯ 𝑤𝑡2(𝐿−1)

⋮ ⋮

1 𝑤
𝑡𝑁𝑝

⋱ ⋮

⋯ 𝑤
𝑡𝑁𝑝 (𝐿−1)

  

 

 

wherew=𝑒−𝑗2𝜋/𝑁 . In fact 𝐹𝑁𝑝×𝐿 is a DFT sub matrix chosen by 

column indices [0, 1,…,L-1] and row indices [t1,t2,…tNp]  from 

a standard NxN Fourier matrix[11]. 

 

𝑦 = 𝐴𝑑 . ℎ + 𝑛0 (5) 

 

where Ad=X. FNp ×L . 

Purpose of channel estimation is to obtain h from y and Ad. If 

columns of Ad is less than its rows (L<Np), equation (5) can 

be viewed as regular LS problem and solution to it is given [4] 

 

h ls  =  (𝐴𝑑
𝐻𝐴𝑑) − 1𝐴𝑑

𝐻 . y 
 

(6) 

When the channel coefficients more than the pilots (Np>L), it 

significantly helps in decreasing pilots and therefore spectral 

efficiency is improved. Ideally, for sparse recovery problem 

[5] there is a feasible solution if most components of vector h 

are zero (Q<<L). 

 

B. Least Square Channel Estimation Technique 

LS is simple estimation technique and very straight 

forward. The received pilot signal is multiplied with the 

inverse of the transmitted pilot signal as given in the Eqn (3).  

  

 Mean Square Error (MSE) for the LS is, 

 

      MSELS=E{(H-Hest ))H(H-H LS)} (7) 

LS technique has low complexity and simple to implement. 

However, LS channel technique doesn’t take channel statistics 

into account and suffer from high mean-square error.  

C. MMSE channel Estimation technique 

The MSE can be reduced by using MMSE technique 

 

𝐻𝑒𝑠𝑡
𝑀𝑀𝑆𝐸 =𝑅H𝐻 𝐿𝑠

(𝑅𝐻𝐻+
𝜎𝑤

2

𝜎𝑏
2  I)-1𝐻 𝐿𝑆  (8) 

where RHH Ls
  and     RHH  is the cross correlation and the 

autocorrelation respectively and 
σw

2

σb
2  is the SNR.  

D. LMS channel estimation 

Practically, channel is time varying. In order to estimate 

the time varying channel the channel coefficients have to be 

adjusted accordingly. LMS is an adaptive estimation technique 

gets more information about the channel. The estimated 

channel coefficients are continuously updated at each iteration. 

The knowledge of noise and channel statistics is not necessary. 

The LMS solely depends on the step size. 

 
Figure 1: Illustration the LMS channel estimation [13] 

 

 Fig 1 illustrates the LMS channel estimation.  B(n) is the 

transmitted signal, A(n)=is the received signal, and W(n) is the 

Additive noise. The received signal A(n) is given by 

 

𝐴 𝑛 = 𝐻𝑇 𝑛 𝐵 𝑛 + 𝑊 𝑛  

 
(9) 

where B=(B0….BL-1)
T
,A=(A0…..AL-1)

T,
 

W=(W0,W1,……,WL-1)
T 

and H=(H0,H1……,HL-1)
T
. 

 

The output of the adaptive filter is given as in the Eqn (10) 

 

𝑌 𝑛 = 𝐻𝑒𝑠𝑡
𝑇 (n)+ B(n) 

 
(10) 

Hest (n) is the estimated channel coefficient. 

The recursive method can be used to update Hest (n) as given 

in equation (11) 

    𝐻𝑒𝑠𝑡  𝑛 + 1 =     𝐻𝑒𝑠𝑡  𝑛 + µ𝐵(𝑛)𝑒 ∗ (𝑛) (11) 

  
µ  is the step size for adaptive LMS algorithm.  

And e(n)=A(n)-Y(n) is the error vector for updating the 

weights..  

 

III. COMPRESSED SENSING ALGORITHMS 

Compressed sensing constructs based on the necessary fact 

that many signals can be categorized with only a few non-zero 

coefficients in appropriate basis or dictionary. The recovery 

process of such signals, utilizing non-zero measurements, can 

then be enabled by the nonlinear optimization. A Q-sparse 

vector hϵℝL   can be recovered from equation (5) with 

deliberately designed Ad ϵℝNp ×L  and  by solving l0 norm 

minimization problem [14]. 

min hϵℝL h 0s. t.  y − Ad . h 2 ≤ σn    (12) 
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Where  h 0 is sum of non-zero components of h and 

σn       is the variance.  This problem is NP hard and 

combinatorial. The problem can be resolved using greedy 

algorithms or convex optimization algorithms[5].   

 

min hϵℝL h 1s. t.  y − Ad . h 2 ≤ σn  (13) 

In application of time-varying channel where channel 

estimation is frequently carried out, it’s inappropriate to 

choose high computational convex optimization algorithms 

[19]. Greedy algorithms are focused here since its   complexity 

is less than the other one[18]. 

Calculation of best non-linear estimate to a signal in a 

complete, redundant dictionary is achieved by the Matching 

Pursuit[MP] which is a basic greedy algorithm. MP forms a 

series of sparse estimates to the signal step wise that builds a 

linear combination of matrix columns closest to the signal 

[15]. The complexity is reduced compared to traditional LS 

approach. However the computational time complexity of 

OMP is more than that of other greedy algorithms like SP and 

CoSaMP. This is because at each step only one atom is 

selected[16]. The total computational time of OMP is given by 

O(m.N.K). 

Another greedy algorithm with less computational time 

and better BER performance is SP. The idea of SP is to 

iteratively refine S columns selection from the dictionary 

matrix through LS method until the stop condition is satisfied. 

At each step, it selects S columns rather than only one column 

as in MP and OMP. The sub space spanned by S columns is 

thus tracked down. The disadvantage of SP is that we must 

have prior knowledge of S before we start the algorithm. So 

it’s required to extend SP to the instance where the sparsity is 

not known. The total computational time of SP is given by 

O(m.N.log(K)). The computational time complexity of SP is 

reduced compared to OMP because batch selection is done 

instead of one. 

A.  Channel Estimation Using   CoSaMP Algorithm 

 

Algorithm 1: CoSaMP 

A= measurement Matrix (dictionary). 

x=Sparse Approximation of b. 

B=received Signal (samples obtained). 

K=Sparsity required 

= measurement Matrix(dictionary) . 

Inputs AM×N , BN×1 , K 

r←B, ←Ǿ 

While stopping criterion not met do 

c← AH r 

←U find Largest Indices (apply Model(|c|2),2K) 

xtemp←arg minx||Asupportxsupport-y||22 

←find Largest Indices(apply Model(|xtemp|2),K) 

r  ←  r-A support xtemp,support 

end while 

x←  0, xsupport←xtemp 

 

 

In CoSaMP first identifies 2K(where K is the sparsity 

level) atoms using a matched filter and it is combined with the 

support-matrix or set estimated in the earlier iteration. 

Candidate-set is the set of atoms which are estimated from the 

matched filter. The support set and its union with candidate-set 

of previous step can be called as union set. From, the union 

set, a new K-dimensional subspace is identified from the 

union-set using least-squares. This will reduce the 

reconstruction error of the sparse signal. The total 

computational time of CoSaMP is given by O (m.N).which is 

much small compared to OMP and SP. 

B. Channel Estimation Using DCS  Algorithm 

 

Algorithm 2: DCS 

 

A= measurement Matrix (dictionary). 

x=Sparse Approximation of b. 

B=received Signal (samples obtained). 

K=Sparsity required 

= measurement Matrix(dictionary) . 

Inputs AM×N , BN×1 , K 

r←B, ←Ǿ 

While stopping criterion not met do 

c← AH r 

←U find Largest Indices (apply Model(|c|2),2K) 

xtemp←arg minx||Asupportxsupport-y||22 

←find Largest Indices(apply Model(|xtemp|2),K) 

r  ←  r-A support xtemp,support 

end while 

x←  0, xsupport←xtemp 

b←  Merge channel estimates 

Find the dominant  channel coefficients 

c= supp (b, x) 

Prune channel estimates: 

y = x 
Update the estimation residual 

end while 

 

DCS is an algorithm which is based on CoSaMP. The 

difference between the two is that CoSaMP builds the 

solution by operating on the entire 2K(where K is the 

sparsity level)  atoms that contains all the channel 

components in the MIMO system while DCS operates on 

each channel component hij between the ith receive 

antenna and jth transmit antenna individually. Thus the 

proposed DCS algorithm reduces the computational 

complexity with increased accuracy. The iterative DCS 

algorithm is stopped when the l2 norm of the residuals 

saturate to a constant level. In case of MIMO-OFDM 

channel estimation, this saturation bound is found to be 

at the iteration index K, the sparsity of each channel 

component. 
 

IV. SIMULATION RESULTS 

In this section, the OMP, SP, CoSaMP and DCS 

compressed sensing channel estimation methods combined 
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with LS, MMSE and LMS methods for MIMO-OFDM system 

in frequency-selection Rayleigh fading channels are compared. 

The number of  OFDM subcarriers used is 256. Out of which 

12 are used as pilot subcarriers and these subcarriers are 

placed according to the RIP (Restricted Isometric Property) 

among all OFDM subcarriers [17]. The main parameters of the 

concerned MIMO-OFDM system are listed in Table 1. 
Table 1. Parameters for the simulated MIMO-OFDM systems 

 

 

Figure2 gives the performance comparison of the 

conventional channel estimation techniques in 2x2 MIMO-

OFDM systems. It shows that the performance of LMS is 

better than LS and MMSE. Since LMS tool is an adaptive 

estimation technique. Estimated channel coefficients are 

continuously updated at till it meets the stopping criteria 

Figure3 gives the performance comparison of the LS 

channel estimation using CoSaMP and SP algorithms in 2x2 

MIMO-OFDM systems. The plots are calculated using 

different sparsity levels: 20, 30 and 50.Normalised MMSE 

reduces as the number of non zero coefficients i.e., the sparsity 

levels increases. 

Figure  4 and 5 gives the performance comparison of the 

SP, OMP and CoSaMP combined with LS and MMSE tools. 

CoSaMP combined with MMSE tool performs better than LS, 

SP and OMP combined with LS and MMSE tool. 

Fig 6 gives the performance comparison of the LMS 

channel estimation combined with SP, OMP and CoSaMP 

algorithms. Since in LMS channel estimated by adaptively 

changing the coefficients until the error between the combined 

output and received signal is zero. The performance CoSaMP 

combined with LMS is better. 

Fig 7 and 8 gives the  performance comparison of the  

CoSaMP and DCS algorithms with LS and LMS tools 

respectively.DCS operates on each channel component 

between the receive antenna and transmit antenna 

individually. The DCS algorithm reduces the 

computational complexity and accuracy is increased. 
Fig. 10(a) to (f) are the reconstructed images at the 

receiver for different SNRs for CoSaMp algorithm with LS 

tool for the original transmitted image shown in fig(9). We can 

observe that the quality of the image improves at higher SNR 

which is directly related to the BER observed. 

Fig. 11(a) to (f) are the reconstructed images at the 

receiver for SNR’s for CoSaMp algorithm with LMS tool for 

the original transmitted image shown in fig(9). The quality of 

the image improves at higher SNR and also the quality is 

better than CoSaMP with LS tool. Based on the results of the 

simulation CoSaMP with LMS tool MIMO channel estimation 

is superior to other CS algorithms.  

. 

 
           Figure2. Plot of Channel estimation in 2x2 MIMO-OFDM  

           using conventional methods with equispased pilots. 

 

 
          Figure 3.Plot of NMSE vs SNR for channel estimation in  

         2x2 MIMO-OFDM system using CoSaMP-LS and SP-LS 

         for different sparsity levels. 

 
Figure4. Plot of NMSE vs SNR for channel estimation 

in 2x2 MIMO-OFDM system using SP-LS, SP-MMSE 

 

Number of transmit antennas 2 

Number of receive antenna 2 

Channel type Rayleigh 

Input Sample period 10
-7

 

Total Number of subcarriers N = 256 

Number of pilot subcarriers Np = 12 

Number of cycles prefix NG = 64 

Delay spread 15 

Doppler frequency 0.1Hz 

Modulation QAM 
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            Figure 5.Plot of NMSE vs SNR for channel estimation in  

            2x2 MIMO-OFDM system using CoSaMP-LS,CoSaMP-  

            MMSE. 

 

 
           Figure6. Plot of NMSE vs SNR for channel estimation in 2x2    

           MIMO-OFDM system using LMS, CoSaMP-LMS,SP-LMS,  

           OMP-LMS. 

 
          Figure7. Plot of NMSE vs SNR for channel estimation in 2x2    

          MIMO-OFDM system using LS, CoSaMP-LS,DCS-LS 

 

 
          Figure 8. Plot of NMSE vs SNR for channel estimation in 2x2    

          MIMO-OFDM system using LMS, CoSaMP-LMS,DCS-LMS 

 

 
Figure9.Original image size: 159x119 

A. Simulation result of CoSaMP with LS tool for image data 

for different SNRs. 

 
(a)                                                  (b) 

 
(c)                                               (d) 

 

 
(e)                                          (f) 
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Figure 10.(a)Reconstructed Output Image at SNR=5, (b) 

Reconstructed Output Image at SNR=10, (c). Reconstructed Output 

Image at SNR=15,(d). Reconstructed Output Image at SNR=20, (e). 

Reconstructed Output Image at SNR=25,(f). Reconstructed Output 

Image at SNR=30. 

B. Simulation result of CoSaMP with LMS tool for image data 

for different SNRs.  

 
(a)    (b) 

 
(b)                                               (d) 

 
(e)                                                  (f) 

Figure  11. (a)Reconstructed Output Image at SNR=5, (b) 

Reconstructed Output Image at SNR=10, (c). Reconstructed 

Output Image at SNR=15,(d). Reconstructed Output Image at 

SNR=20, (e). Reconstructed Output Image at SNR=25,(f). 

Reconstructed Output Image at SNR=30 

 

V. CONCLUSION 

 This paper presents the SP, OMP ,CoSaMP and DCS 

algorithms combined with  LS and LMS tools for MIMO-

OFDM channel estimation. The results shows that the DCS 

out performs the existing SP, OMP and CoSaMP algorithms 

combined with LMS tool with less complexity.  And also as 

the Sparsity level increases i.e., the number of non zero 

coefficients are more, the NMSE reduces. Further work will 

continue on application of CS theory for sparse channel 

estimation with increase in number of antennas i.e., in highly 

multipath environment. Also, less complex CS algorithms are 

to be designed for the accurate channel estimation. 
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