
International Journal on Recent and Innovation Trends in Computing and Communication                                 ISSN: 2321-8169 

Volume: 4 Issue: 5                                                                                                                                                   378 - 381 

______________________________________________________________________________________ 

378 

IJRITCC | May 2016, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

Mining of Frequent Item with BSW Chunking 

Pratik S. Chopade 

ME Scholar 

Department of Computer Engineering 

G.S.M.C.O.E Balewadi, Pune. 

 e-mail: Pratik.chopade87@gmail.com 

Prof. Priyanka More 

Assistant Professor 

Department of Computer Engineering 

G.S.M.C.O.E Balewadi, Pune. 

 
Abstract— Apriori is an algorithm for finding the frequent patterns in transactional databases is considered as one of the most important data 

mining problems. Apriori algorithm is a masterpiece algorithm of association rule mining. This algorithm somehow has constraint and thus, 

giving the opportunity to do this research. Increased availability of the Multicore processors is forcing us to re-design algorithms and 

applications so as to accomplishment the computational power from multiple cores finding frequent item sets is more expensive in terms of 

computing resources utilization and CPU power. Thus superiority of parallel apriori algorithms effect on parallelizing the process of frequent 

item set find. The parallel frequent item sets mining algorithms gives the direction to solve the issue of distributing the candidates among 

processors. Efficient algorithm to discover frequent patterns is important in data mining research Lots of algorithms for mining association rules 

and their mutations are proposed on basis of Apriori algorithm, but traditional algorithms are not efficient. The objective of the Apriori 

Algorithm is to find associations between different sets of data. It is occasionally referred to as "Market Basket Analysis". Every several set of 

data has a number of items and is called a transaction. The achievement of Apriori is sets of rules that tell us how often items are contained in 

sets of data. In order to find more valuable rules, our basic aim is to implement apriori algorithm using multithreading approach which can 

utilization our system hardware power to improved algorithm is reasonable and effective, can extract more value information.  

Keywords- Apriori algorithm, Association rules, data mining, parallel apriori algorithm, parallel implementation. 

__________________________________________________*****_________________________________________________ 

I.  INTRODUCTION  

The transactions carried out in retail sector have the huge 

amount of data. This data require data mining tool to extract 

hidden patterns which may organization to predict future 

trends and behaviors. Data Mining or Knowledge Discovery in 

Databases is an advanced approach which refers to the 

extraction of previously unknown and useful information from 

large databases. Aggregation of big data from different origin 

of the society but a little knowledge situation has led to 

knowledge find from databases which is called data mining. 

The data sources can consist of data warehouses, databases, 

and other information repositories that are rushed into the 

system dynamically [1].  

Association Rule Mining is a significant technique of data 

mining. This technique has more attention on finding 

interesting relationships. For understanding these 

relationships, a technique called Market Basket Analysis has 

been popularized in Data Mining. This helps in understanding 

the business organizations. This paper shows that how addition 

of new parameters improves the efficiency of Apriori 

algorithm by comparing the results of improved algorithm 

with the results of serially implemented algorithm. The 

improved algorithm will utilize the multiple core of processor 

for finding the association among the item sets. 

II. LITERATURE SURVEY 

The conventional methods spend lot of time to resolve the 

problems or decision making for profitable business. Data 

mining formulate databases for finding hidden patterns, 

finding anticipating information that experts may miss.  

Hence, this paper reviews the various trends of data mining 

and its relative applications from past to present and discusses 

how adequately can be used for targeting profitable customers 

in campaigns and utilize the multiple cores of the processor for 

faster execution [4]. 

A. Usage of Apriori Algorithm in retail sector 

This paper proposes the role of Apriori Algorithm for Finding 

the Association Rules in Data Mining. Association rule mining 

is interested in finding frequent rules that describe association 

between unrelated frequent items in databases, and it has two 

main measurements: support and confidence values. The 

frequent item sets is defined as the item set that have support 

value greater than or equal to a minimum threshold support 

value, and frequent rules as the rules that have confidence 

value greater than or equal to minimum threshold confidence 

value. These threshold values are generally assumed to be 

feasible for mining frequent item sets [1]. Association Rule 

Mining is all about finding all rules whose support and 

confidence outstrip the threshold, minimum support and 

minimum confidence values. Association rule mining advance 

on two main steps. The first step is to find all item sets with 

adequate supports and the second step is to generate 

association rules by combining these frequent or large item-

sets. 

Support and Confidence: Any given association rule has a 

support level and a confidence level. Support is the percentage 

of the population which fascinates the rule or in the other 

words the support for a rule R is the ratio of the number of 

occurrence of R, given all occurrences of all rules [5]. The 

support of an association pattern is the percentage of task- 

relevant data transactions for which the pattern is true. 

 

If the percentage of the population in which the antecedent is 

satisfied is s, then the confidence is that percentage in which 

the consequent is also satisfied. The confidence of a rule 

A→B, is the ratio of the number of occurrences of B given A, 

among all other occurrences given A. Confidence is defined as 

the measure of certainty or trustworthiness associated with 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                                 ISSN: 2321-8169 

Volume: 4 Issue: 5                                                                                                                                                   378 - 381 

______________________________________________________________________________________ 

379 

IJRITCC | May 2016, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

each discovered pattern A →B. Confidence (A →B) = P (B|A) 

means the probability of B that all know A. 

 

 

B. Multithreading in java  

The Java run-time system [2] depends on threads for many 

things, and all the class libraries are designed with 

multithreading in mind. In fact, Java adopts threads to enable 

the entire environment to be nonsynchronous. This helps to 

lower inefficiency by preventing the waste of CPU cycles. 

Java’s multithreading system is assembled upon the Thread 

class, its methods, and its companion interface Runnable. The 

Thread class specifies several methods that help on operate 

threads. After a computational job is designed and realized as 

set of tasks, an optimal assignment of these tasks to the 

processing elements in a given architecture needs to be 

determined. This problem is called the scheduling problem [6] 

and is known to be one of the most challenging problems in 

parallel and distributed computing. a Please do not revise any 

of the current designations. Java support flexible and easy use 

of threads; yet, java does not contain methods for thread 

affinity to the processors. Setting an affinity thread to 

multiprocessor is not new to research, since it was already 

sustained by other multiprogramming languages for example 

C in UNIX platform and C# in Windows platform. 

III. METHODOLOGY USED FOR IMPLEMENTATION 

A. Multi core 

Multi core indicate two or more processors. But they differ 

from separate parallel processors as they are combined on the 

same chip circuit. A multi core processor developed message 

passing or shared memory inter core communication methods 

for multiprocessing. If the number of threads are less than or 

equal to the number of cores, separate core is allot to each 

thread and threads run independently on multiple cores. 

(Figure 2) If the number of threads is more than the number of 

cores, the cores are shared among the threads.  

 
The idea of multiple cores may seem trivial at first instance. 

First of all we need to recognize whether the processor should 

be homogeneous or expose some heterogeneity. Most current 

general-purpose multi-core processors are homogeneous both 

in instruction set architecture and performance. This means 

Multi-core and Many-core Processor Architectures that the 

cores can execute the same binaries and that it does not really 

matter, from functional point of view, on which core a 

program runs. Recent multi-core architectures, allow the 

system software to regulate the clock frequency for each core 

individually in order to either save power or to temporarily 

boost single-thread performance. Most of these homogeneous 

architectures also create a shared global address space with 

full cache coherency, so that from a software perspective, one 

cannot distinguish one core from the other even if the process 

(or thread) migrates during run-time. By contrast, a 

heterogeneous architecture features at least two different kinds 

of cores that may differ in both the instruction set architecture 

(ISA) and functionality and performance. The most 

widespread example of a heterogeneous multi-core 

architecture is the Cell BE architecture, jointly developed by 

IBM, Sony and Toshiba [2] and used in areas such as gaming 

devices and computers targeting high performance computing. 

B. Multithreaded Java Applications on Manycore Systems 

Developers of Java applications take up multithreading to 

carry out higher performance by utilizing multiple processing 

cores. This performance gain continues to occur until the time 

spent on subsequent portion of the program outweighs the 

enhancement conclude through parallelism. Because Java is a 

supervise programming language, the administration of a Java 

application is resolve by two work factors: the time used in 

application execution (mutator time) and the time used in 

execution of runtime systems such as garbage collection (GC 

time). These two aspects can also disturb the scalability of a 

Java application. 

In this paper, they have conducted an investigation to reveal 

factors that can affect scalability of Java applications. Our 

study considers both mutator and GC times to acknowledge 

insights on how each can share to the overall scalability of an 

application. First, we measured the application level lock 

contention with various numbers of threads. This implies that 

performance improvement achieved through parallelism in 

scalable applications outweighs the overhead due to higher 

instances of lock contention. Second, we characterized object 

lifespans and solve that higher execution parallelism can root 

the objects to live for long time. Longer object life spans 

degrade GC performance because most of the ongoing GC 

techniques, including those based on the notion of generations, 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                                 ISSN: 2321-8169 

Volume: 4 Issue: 5                                                                                                                                                   378 - 381 

______________________________________________________________________________________ 

380 

IJRITCC | May 2016, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

are most effective when objects die young. Execution 

parallelism can recover performance by having more threads 

jointly performing work. In scalable applications, workload 

can be separated evenly among threads, and therefore, it is 

important to employ more threads. However, doing so requires 

precise synchronization of proportion resources that can lead 

to more lock acquisitions and instances of contention. In 

addition, we also display that object lifetime is also distressed 

as the heap usage is an aggregation of objects needed by both 

operating and suspended threads. Based on the results 

described in this work, we make two approaches to upgrade 

scalability of Java applications by focusing on JVM and OS 

implementation.  

C. Load Balancing 

The influence of load balance in parallel systems and 

applications is extensively recognized. Contemporary 

multiprocessor operating systems, such as Windows Server, 

Solaris 10, Linux 2.6 and FreeBSD 7.2, use a two-level 

scheduling path way to enable efficient resource allocation. 

The first level uses a distributed run queue model with per 

core queues and fair scheduling policies to manage each core. 

The second level is load balancing that fix up tasks across 

cores. The first level scheduling is about time, the second 

scheduling about space. The implementations in use share a 

similar design philosophy:  

1) Threads are expected to be independent;  

2) Load is related to queue length and  

3) Locality is significant. 

The ongoing scheme of load balancing mechanisms 

incorporates expectation about the workload management. 

Interactive workloads are summarizing by independent tasks 

that are quiescent for long periods (relative to CPU-intensive 

applications) of time. Server workloads accommodate a large 

number of threads that are mostly independent and use 

synchronization for mutual exclusion on limited percentage of 

data items and not for enforcing data or control dependence 

[6]. To accommodate these workloads, the load balancing 

implementations in use do not start threads on new cores based 

on comprehensive system information. Another implicit 

expectation is that applications are either single threaded or, 

when multi-threaded, they run in a devoted environment.  

The classic characteristics of existing load balancing designs 

can be summarized as follows:  

1) They are architect to perform best in the cases where cores 

are periodically idle; and  

2) Balancing adopt a core-grained global optimality criterion 

(equal queue length using integer arithmetic).  

D. File Chunking Mechanism 

Policroniades and Pratt examined the effectiveness of variable 

size chunking and fixed size chunking using website data, 

different data profiles in academic data, source codes, 

compressed data, and packed files[1]. 

Fixed Size Chunking: There are two approaches in 

partitioning a file into chunks: fixed size chunking and 

variable size chunking. In fixed size chunking, a file is 

partitioned into fixed size units, e.g., 8 Kbyte blocks. It is 

smooth, quick, and computationally very economical. A 

number of proceeding works have adopted fixed-size chunking 

for backup applications and for large-scale file systems. 

However, when a small amount of content is inserted to or 

deleted from the original file, the fixed size chunking may 

generate a set of chunks that are entirely different from the 

original ones even though most of the file contents remain 

intact. 

Variable Size Chunking: Variable size chunking partitions a 

file based on the content of the file, not the offset. Variable 

size chunking is relatively prosperous against the 

insertion/deletion of the file. The Basic Sliding Window 

(BSW) algorithm is widely used in variable size chunking. 

Fig. 3 explains the BSW algorithm. The BSW algorithm 

establishes a window of byte stream starting from the 

beginning of a file. It computes a signature, which is a hash 

value of byte stream in the window region. If the signature 

matches the predefined bit pattern, the algorithm sets the 

chunk boundary at the end of the window. After each 

comparison, the window slides one byte position and 

computes hash function again. 

In this paper, a innovative multicore chunking algorithm, 

MUCH, this parallelizes the variable size chunking. To date, 

most of the existing works on de-duplication focus on 

expediting the redundancy detection process, while less 

attention has been paid on how to make the file chunking 

faster. We found that variable size chunking is 

computationally very expensive and is a significant bottleneck 

in the overall de-duplication process. The performance gap 

between the CPU chunking speed and the I/O bandwidth is 

expected to become wider with the recent introduction of 

faster I/O interconnections, and faster storage devices. 

Incorporating this technology improvement, i.e., increase in 

the number of CPU cores and emergence of faster storage 

devices; we developed a parallel chunking algorithm, which 

aims at making the variable chunking speed on par with the 

storage I/O bandwidths. We found that the legacy variable size 

chunking algorithm yields a different set of chunks if the 

parallelism degree changes, a phenomenon referred to as 

Multithreaded Chunking Anomaly. We propose a multicore 

chunking algorithm, MUCH, which guarantees Chunking 

Invariability [3]. 

E. Basic Sliding Window (BSW) 

Step1: 

First interpretation is to endorse quick sort, when pivot is at 

Kth position, all elements on the right side are greater than 

pivot, hence, all elements on the left side automatically 

become K smallest elements of given array.  

 

Step2:  

Put an array of K elements, Fill it with first K elements of 

given input array. 

 

Now from K+1 element, check if the present or ongoing 

element is less than the maximum element in the auxiliary 

array, if yes, add this element into array. 

 

Only complication with above description is that we need to 

keep record of maximum element still workable. How can we 

keep record of maximum element in set of integer? 

 

Step 3:  

Great! In O (1) we would get the max element among K 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                                 ISSN: 2321-8169 

Volume: 4 Issue: 5                                                                                                                                                   378 - 381 

______________________________________________________________________________________ 

381 

IJRITCC | May 2016, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

elements already chose as smallest K elements. If max in 

present set is greater than newly considered element, we need 

to wipe out max and suggest new element in set of K smallest 

element. Now we can quickly obtain K minimum elements in 

array of N. 

 

IV. PROPOSED SYSTEM 

In this paper, we have introduce the parallel implementation of 

Apriori Algorithm which can be used by the retailer to extract 

knowledge for the taking the better business decision.  

The transactional database is split into chunks depending on 

the cores present on the processor. The chunks are processed 

by the processor parallel to lower the execution time. 

 

V. CONCLUSION 

In summary, the parallel execution can raise the performance 

by having more threads. The workload is split among the 

multiple cores of the processor thus decreasing the execution 

time. 

VI. REFERNCES 

[1] JugendraDongre, S. V. Tokekar, and GendLalPrajapati. The 
Role of Apriori Algorithm for Finding the Association Rules in 
Data Mining International Conference on Issues and Challenges 
in Intelligent Computing Techniques (ICICT), 2014. 

[2] JunjieQian, Du Li, WitawasSrisa-an, Hong Jiang and Sharad 
Seth. Factors Affecting Scalability of Multithreaded Java 
Applications on Manycore Systems, School of Computer 
Science, Carnegie Mellon University, 2015.I. S. Jacobs and C. P. 
Bean, “Fine particles, thin films and exchange anisotropy,” in 
Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New York: 
Academic, 1963, pp. 271–350. 

[3] Youjip Won, Kyeongyeol Lim, and Jaehong Min. MUCH: 
Multithreaded Content-Based File Chunking, IEEE Transaction 
On Computers, VOL. 64, NO. 5, May 2015. 

[4] Agrawal R, Srikant R - Fast algorithms for mining association 
rules‖ In: Proceedings of the 1994 international conference on 
very large data bases (VLDB‟94), 1994 Santiago, Chile, and pp 
487–499 

[5] MamtaDhanda,” An Approach To Extract Efficient Frequent 
Patterns From Transactional Database”,In: International Journal 
of Engineering Science and Technology (IJEST), Vol.3 No.7 
July 2011, ISSN:0975-546. M. Young, The Technical Writer’s 
Handbook. Mill Valley, CA: University Science, 1989. 

[6] Zaki MJ (1999) Parallel and distributed association mining: a 
survey. IEEE Concurr7(4):4–25, Special issue on Parallel 
Mechanisms for Data Mining. 

 

 

 

 

http://www.ijritcc.org/

