
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 5 373 - 377

__

373

IJRITCC | May 2016, Available @ http://www.ijritcc.org

Improving Energy Efficiency of MapReduce Framework using Dynamic

Scheduling of Work

Prashant Sugandhi
Computer Department

Dr. D Y Patil School of Engineering,

Pune, India.

prashant.sugandhi1@gmail.com

Harshit Karnewar
Computer Department

Dr. D Y Patil School of Engineering,

Pune, India.

hnk1510@gmail.com

Cheryl Joseph
Computer Department

Dr. D Y Patil School of Engineering,

Pune, India.

cj4783@gmail.com

Prof. Jayashree Chaudhari
Computer Department

Dr. D Y Patil School of Engineering,

Pune, India.

jayashree.chaudhari@dypic.in

Abstract— Most common huge volume data processing programs do counting, sorting, merging etc. Such programs require to perform first a

computation on each record that is it requires to map an operation to each record. Then combine the output of these operations in appropriate

way to get the answer that is apply a reduce operation to groups of records. MapReduce runtime environment takes care of parallelizing their

execution and coordinating their inputs/outputs. Here we are concern about energy efficiency in MapReduce framework so we are proposing

dynamic scheduling of workload which offers dynamic load balancing method. Load balancing is the methodology of distributing the load

among different node of a distributed framework to enhance both resource usage and reaction time while likewise keeping away from a

circumstance where a percentage of the node are intensely stacked while different node are sit out of gear or doing next to no work. An answer

for unbalance circumstance is to utilize parallelization approaches yet at the same time node will stay overwhelming. In this paper, we propose

an integrated. We are proposing a methodology where the MapReduce concept introduced into the MongoDB with NoSQL as a back

end to implement the MapReduce.

Keywords- MapReduce, MongoDB, NoSQL, Distributed database, Dynamic Load balancing.

__*****___

I. INTRODUCTION

Now days, distributed database is spread over the system

where application is required and one of the most challenging

issue in distributed system is unbalance nodes. To comprehend

Load scheduling, it is important to comprehend load. Load may

be characterize as number of assignments are running in line,

CPU usage, I/O use, measure of free CPU time/memory, and so

on or any mix of the above pointers. Load balancing should be

possible among interconnected workstations in a system or

among individual processors in a parallel machine. Load

balancing is only the assignment of errands or employments to

processors to expand general processor usage and throughput.

We are proposing a methodology where the MapReduce

concept introduced into the MongoDB with NoSQL as a

back end to implement the MapReduce.

MongoDB is a schema-free document-oriented database

written in C++. It is developed in an open-source project and

primarily driven by the company 10gen Inc. It also offers

professional services around MongoDB. According to its

developers the main goal of MongoDB is to close the gap

between the fast and highly scalable key-value-stores and

feature-rich traditional RDBMSs relational database

management systems. MongoDB name derived from the

adjective humongous [15] [16].

 In this paper, we proposed a robust architecture which

schedules the queries for scalability and distribution of equal

work load. Registered incoming CEP queries in system are

transferred to idle nodes or not heavily node. To improve both

resource utilization and performance scheduler is responsible to

distribute the load among various nodes and make it balance.

Queries are applied to scheduler module of system, then

scheduler schedules the query to lightly weighted node with

respect to CPU capacity, memory consumption. Incoming

queries are delivered to queue; if queue is full or reaching to

limit size in queue measure will be taken. Overload situation

can kill the nodes and results into data loss but this will be

avoided by using replication method. We proposed a system

which plans the query for scalability and conveyance of

equivalent work load. Enrolled approaching query in

framework are exchanged to node having lower load or not

vigorously node. To enhance both asset use and execution

scheduler is dependable to disperse the load among different

node and make it adjust. Query are connected to scheduler

module of framework, then scheduler plans the question to

lightly weighted queue regarding CPU limit, memory

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 5 373 - 377

__

374

IJRITCC | May 2016, Available @ http://www.ijritcc.org

utilization. Approaching inquiries are conveyed to Queue; if

queue is full or coming as far as possible size in queue measure

will be taken. Over-load circumstance can execute the nodes

and results into fault tolerance yet this will be dodged by

utilizing replication strategy. The proposed system maintain

ready queue, use it to queue incoming query when nodes are

stacked and none of node is free. At last event is generate if no

selection is conceivable. [1]

 The rest of the paper is organized as follows. Section II

discusses literature review, Section III describes the problem

statement, and Section IV discusses proposed method. We

conclude the paper in last section.

II. BACKGROUND AND MOTIVATION

Objective of load balancing is as per the following [5]

 Even appropriation of load to every asset.

 Minimization of handling time for every work

 Maximum utilization of each resource.

 Energy consumption minimization

 There are numerous methodologies taken inside the writing

for learning load balancing. In appropriated systems adjusting

the node in a versatile way enhances the system execution

impressively

Fig 1- Taxonomy of Load Balancing Scheme

 Load balancing is a system to upgrade assets, using

parallelism, misusing throughput impromptu creation, and to

decrease reaction time through a proper dispersion of the

application [4]. Parallelization methodologies are utilized for

load balancing as a part of which load is parallelize through

numerous machines or centers. Indeed with parallelization

approach still database questions are calm overwhelming

obligation forms [4]. The essential things to consider while

growing such calculation are : estimation of load, examination

of load, soundness of diverse framework, execution of

framework, cooperation between the nodes, way of work to be

exchanged, selecting of node and numerous different ones. This

node considered can be regarding CPU load, measure of

memory utilized, postpone or Network load.

III. PROBLEM DEFINITION

In previous load balancing studies, a typical approach is to

use a straightforward model of the distributed system with

assumptions like large communication bandwidth measure,

negligible load balancing overheads, homogenous workload,

and to go looking for complex load balancing algorithms

whose viability is questionable. Proposed System will balance

Workload by queuing the queries based on capacity of Node

also Enhancing Scalability and throughput in dynamic

environment by scheduling the load, control the load, to attain

optimum scalability even in heavy queries without loss of data

even in system crash, and alert system and automatic transfer of

queries to node with available capacity with lowest turnaround

time. Proposed System aims to achieve scalability and

efficiency through architecture for load balancing and query

processing in Distributed Database schema.

IV. PROPOSED SYSTEM

Our system tend to style it to efficiently method streams of

data queries and stream-DB workloads, using any hardware

and stream package. As a demonstration and test scenario take

into account a student database with student detail-records

(SDR) and at an equivalent time massive databases holding

past data and services outline records. Figure 1, shows process

to design Dynamic Load balancing algorithm to attain

scalability even in heavy queries, avoid fault tolerance when

system crash, event generation and handling, job submission

control, Overload control The system is comprised by:

 Detection of Overload

 Scheduling of Query

 Load Shedding and Event generation

A. DETECTION OF OVERLOAD

Data distribution node distributes incoming CEP to all

processing nodes. Each processing node has its queue with

limiting size so new data is added to it. Each node monitors its

own queue to handle overload problem when it reaches to

certain size estimated by an admin node is submitted to

scheduler and it. Replicate data to improve data availability

and query response time. Performance is improved because

replicated fragment is stored at the nodes where they are

frequently needed.

B. SCHEDULING THE QUERY

Proposed System schedules the incoming data, decision of

distribution of query are depend upon load balancing algorithm.

A number of load balancing algorithm are there like Round

Robin (RR), Least Weighted (LW) etc. Proposed system is

based on least work Least Work based on the number of

queries running (LWRn). This algorithm requires knowledge

about the number of queries running at each node, and chooses

the node with less queries at the assignment instant. Finally, the

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 5 373 - 377

__

375

IJRITCC | May 2016, Available @ http://www.ijritcc.org

Least Weight (LW) algorithm needs to measure current load in

terms of parameters such as CPU, memory and IO in order to

determine the less loaded node, then it assigns the query to the

less-loaded node.

C. OVERLOAD DETECTION

 When a new query arrives at the scheduler it is send to the

node with less load. If the queue of the processing node

reaches a limit size, then the query is removed from it, and put

to run in the ready node, ready node becomes a processing

node. Elasticity and scalability is achieved by adding new

nodes to the set of ready-nodes.

 When a node has a small minimum number of queries and

minimum load, the resource is de-provisioned. The node tries

to free resources by submitting the queries to the scheduler. If it

gets free, the node will be set on standby as a ready-node.

D. EVENT HANDLING AND ALERT

Every time a P/C queue reaches the maximum size

(configurable parameter), queries removal or load shedding

decisions need to be made. If all the previews options are

exhausted and the system is still overloaded it will alert the

administrator, indicating the node and queries in overload

condition. The administrator can decide to add more ready-

nodes, remove more queries.

V. ALGORITHM

In this section we describe the algorithm used in system.

Workload refers to database sub queries. In section IV-A, we

describe Scheduling algorithm and in Section IV- B we

describe load shedding algorithm.

A. Scheduling Algorithm

The following is scheduling algorithm. The variables Times

means how many times query was reschedule if it is zero

scheduler will schedule it to best node.

Step1: Start

Step2: Accept Query as QUERY

Step3:3.1Check the number of times QUERY has been

relocated

 3.2 If Relocation Times

 Go to step 4

 Else if Relocation Times = 1

 Go to step 5

 Else if Relocation Times = 2

 Go to step 6

Step 4: 4.1 Node= the least utilized node from the pool of

nodes

 4.2 Send QUERY to Node

 4.3 Update the Relocation Times of QUERY = 2

4.4 Update the Relocation Times of previous

QUERY=1

 4.5 Go to step 7

Step 5:5.1 Send QUERY to Node

 5.2 Update the Relocation Times of QUERY = 1

 5.3 Go to step 7

Step 6: 6.1 Count the number of Ready Nodes available in the

Ready Node Pool

 6.2 If Ready node is not available

 Go to step 7

 Else

 Send query to any one of the available Ready

Node

 Go to step 7

Step 7: Stop

B. Load Shedding Algorithm

In this section we design algorithm for handling the overload

condition, when overload detected in many node or one node

but query location is unable to solve the problem. Algorithm

has following steps

Step 1: Start

Step 2: if size of P/C Queue > Assigned maximum size

 Go to step 3

 Else

 Go to step 9

Step 3: Get the target load shedding value

Step 4: If current load shedding val < target load shedding val

 Go to step 5

 Else

 Go to step 6

Step 5: 5.1 Set current load shedding value = minimum of

(target load shedding value current load shedding value + 5%

of current load shedding value)

 5.2 Go to step 9

Step 6: 6.1 Check status of Query to check whether Query

dropping is enabled

 6.2 If Query drop enabled

 Go to step 7

 Else

 Go to step 8

Step 7: 7.1 Remove Query

 7.2 Set current load shedding value = 0

 7.3 Go to step 9

Step 8: 8.1 Alert Administrator about failure in load shedding

 8.2Go to step 9

Step 9: Stop

VI. EXPERIMENTS

 In this Section we describe experimental setup, result and

analysis of the system doesn’t require any specific hardware to

run, and any standard machine is capable of running the

application. Different hardware and software tools employed

in developing decision making system is

1. Hardware Environment

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 5 373 - 377

__

376

IJRITCC | May 2016, Available @ http://www.ijritcc.org

 Processor – Intel Core or higher version

 RAM – 1 GB or more

 Hard Disk – 100 GB or more

2. Software environment

 Operating System – Linux

 Technology - Java and J2EE

 IDE - Eclipse

 Database – NoSQL

VII. EXPERIMENTAL RESULT

Graph 4.1 Time required to process query

Graph 4.2 Time required to process query

Graph 4.1 shows the time required to process the queries with 5

nodes and single node

Graph 4.2 shows the Energy required to process the query

IEEMFDSW consumes less energy than EASMJBA. Total

battery power is 19V. And energy consumed for processing

query is 0.007A.

Energy in Watt = 19V x 0.007A which is 0.133W.

Energy in joules = 0.133W x 4.221 Sec (time required to

execute query) which is 0.561393 j.

VIII. CONCLUSION

MapReduce concept to get the approximate results using

the MongoDB NoSQL. In the proposed methodology, a large

set of data given to the MongoDB. The MapReduce model is

simple to use. It allows scaling of applications across

massive clusters of machines comprising thousands of

nodes, with fault-tolerance inbuilt for ultra-fast performance.

 A solution for any loaded system, is to parallelize the load

though many machines or cores, however nodes can still

overload. Hence an integrated approach is proposed to increase

scalability of query processing with robust architecture for

overload mitigation, scalability, various researchers has put

forward mechanism for load balancing in networking and cloud

environment but this approach provides unique and integrated

approach and considers many factors in unison to provide best

possible results. In future it is possible to contribute this work

to dataware houses.

REFERENCES

[1] Pedro Martins, Maryam Abbasi, Pedro Furtado , “AuDy:

Automatic Dynamic Least-Weight Balancing for Stream

Workloads Scalability”, 2014 IEEE International

Congress on Big Data.

[2] Report on An Evaluation of Load Balancing Algorithms

for Distributed Systems” by Kouider Benmohammed-

Mahieddine.

[3] L. F. Cabrera, "The Influence of Workload on Load

Balancing Strategies," Proc. of the 1986 Summer

USENIX Conference, pp. 446-458 (June 1986).

[4] Yunhua Deng, Rynson W.H. Lau, “Heat diffusion based

dynamic load balancing for distributed virtual

environments”, in: Proceedings of the17th ACM

Symposium on Virtual Reality Software and Technology,

ACM, 2010.

[5] Bin Dong, Xiuqiao Li, Qimeng Wu, Limin Xiao, Li Ruan,

“A dynamic and adaptive load balancing strategy for

parallel file system with large-scale I/O servers”, J.

Parallel Distribution Computing,2012.

[6] Raj, G. Punjab Tech. Univ., Jalandhar, India Singh, D.

Bansal, A. "Load balancing for resource provisioning

using Batch Mode Heuristic Priority in Round Robin

(PBRR) Scheduling" IEEE Confluence 2013: The Next

Generation Information Technology Summit (4th

International Conference).

[7] Suchi Johari, Arvind Kumar, “Algorithmic Approach for

Applying Load Balancing During Task Migration in

Multi-core System”, IEEE 2012.

[8] Parveen Jain, Daya Gupta, “ An Algorithm for Dynamic

Load Balancing in Distributed Systems with Multiple

Supporting Nodes by Exploiting the Interrupt Service”

,IJRTE may 2009.

[9] Nithya Kuriakose, Ms. Shinu Acca Mani “Survey on Load

Rebalancing For Distributed File Systems in Clouds,

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 5 373 - 377

__

377

IJRITCC | May 2016, Available @ http://www.ijritcc.org

IOSR p- ISSN: 2278-8727Volume 16, Issue 2, Ver. III

(Mar-Apr. 2014), PP 81-86.

[10] Suriya Mary, Guru Rani.“Survey on Novel Load

Rebalancing for Distributed File Systems” , International

Journal of Computer Science and Mobile Computing,

December 2013.

[11] Suriya Mary , Vairachilai “Dynamic Load Rebalancing by

Monitoring the Elastic Map Reduce Service in Cloud”,

International Journal of Innovative Research in Science,

Engineering and Technology, may 2014

[12] Smita Salunkhe, S. S. Sannakki “Load Rebalancing for

Distributed File Systems in Clouds” International Journal

of Advance Foundation and Research in Computer

(IJAFRC) Volume 2,Special Issue (NCRTIT 2015),

January 2015. ISSN 2348 – 4853.

[13] Article by Mayanka Katyal, Atul Mishra, “A Comparative

Study of Load Balancing Algorithms in Cloud Computing

Environment” Article can be accessed online at

http://www.publishingindia.com.

[14] Article by Anisn Nasir on “Load Balancing in Stream

Processing Engines”

[15] 10gen, Inc: mongoDB. 2010. Available

http://www.mongodb.org.

[16] Online Aggregation Using MapReduce in MongoDB B

RamaMohan A Govardhan Dept. of CSE, JNTUH College of

Engineering Hyd Professor, School of Information Technology

JNT University Hyderabad, India JNT University Hyderabad,

India

