
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 5 333 - 336

333

IJRITCC | May 2016, Available @ http://www.ijritcc.org

__

Enhancement of DNVME device driver

Sucheta Shivakalimath

M. Tech in Software Engineering

Dept. of ISE,

R. V. College of Engineering

Bengaluru, India

sucheta032@gmail.com

Dr. Ramakanth Kumar P.
Professor and Dean Academics

Dept. of ISE,

R. V. College of Engineering

Bengaluru, India

ramakanthkp@rvce.edu.in

Abstract- The device driver is the interface between hardware and software applications. It includes all the functionality for handling the devices

connected to it. The drivers are device-specific. The storage devices like SSD and HDD use dNVMe driver for handling them. This driver can be

enhanced for supporting various features. The enhancement helps in development of storage devices. The main areas for modification includes

enhancing IOCTL calls, allowing register level changes and allowance for negative testing. These features will enrich the storage devices for all

the qualifications.

Keywords: Device Drivers, Non-Volatile Memory express (NVMe, Submission Queue (SQ), Completion Queue (CQ), Interrupts.

__*****___

I. INTRODUCTION
One of the numerousbenefits of free operating systems,

as characterized by Linux, is that their internals are exposed

for everyone to view. Earlier the code of operating system

was not given for user access. But now it is freely available

to understand and also for modification.Linux has helped to

democratize operating systems. The Linux kernel is a large

withcomplex body of code. But it is prone to hacking. The

kernel hackers find and access pointfrom where they can

contact all the code. The device drivers act as gateway for

such situations [1].

Device drivers are special portion in the Linux kernel

[2]. These are separate black boxes which make specific part

of hardware retort to a well-defined internal programming

interface; they conceal entirely the details regarding how the

device works. A set of standardized calls are used to

accomplish user activities. These calls are self-governing of

specific driver. The device driver then has the role of

mapping these calls to device-specific operations which

perform on real hardware. The modularity that makes the

Linux drivers easy to write is that the programming interface

for drivers can be developed independent from the rest of

the kernel. There are more than hundreds of them

obtainable.

dNVMe is the kernel component of the NVMe

Compliance Test Suite [3][4]. The user space application

tNVMe wires up components within dNVMe to create

various compliance test cases.dNVMe is not the NVMe

driver embedded within the Linux kernel. These 2 separate

code bases target different audiences and greatly differ in

the support they offer to a user space application. Some of

the major differences can be summarized as follows:

1. dNVMe driver allows sending illegal commands

and allows creating illegal states to verify proper

hardware error code generation whereas NVMe

driver prevents from sending illegal commands.

2. dNVMe supports every feature of the NVMe

specification.

a. Meta data support

b. All Admin and NVM command set

commands

c. Allows using MSI, MSI-X, and polling for

reaping CE's from IOCQ's.

3. dNVMe driver Opens kernel level resources like

queues and memory facilitating maximum visibility

for debugging support whereas NVMe driver

purposely hides kernel level constructs.

4. dNVMe driver doesn't do anything automatically,

must be specifically instructed by a user space

application. NVMe driver automates sending

commands on behalf of user space applications.

5. NVMe driver safeguards any application but

dNVMe driver allows situations which could crash

the kernel, an undesirable side effect as a result of

allowing maximum interaction with user space

applications.

dNVMe logic is platform specific and targets Linux

kernel versions based on 2.6.35. It has been developed on

Ubuntu distributions only. However, the driver design is

generic and should support other Linux kernel versions by

changes in the required kernel API's. Additionally, tNVMe

could be used without modifications on other platforms if

one were to implement the IOCTL's within dNVMe on

those other platforms.

dNVMe is a test driver with a goal to verify hardware

compliance against a written set of specifications.

Functionality, not speed, was the main target for the driver.

It was seen that satisfying both speed and functionality

could not be addressed simultaneously in all aspects of this

design. Thus when a decision had to be made as to which

one to choose, functionality always won. As a result we

ended up making dNVMe driver a character driver rather

than a block driver with an advanced range of IOCTL's to

improve user space control required for testing.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 5 333 - 336

334

IJRITCC | May 2016, Available @ http://www.ijritcc.org

__

II. EXISTING SYSTEM
The existing dNVMe driver provides various well-

known functionalities for handling devices appropriately.

The different functions are listed with the various tasks that

they perform.

1. Commands:This function takes care of all the

commands to be sent to device and receive from

the device. The commands are sent through SQ

from host to device and received through CQ from

device to host. The tasks handled are:

a. Processes all the commands to be sent

from SQ to CQ.

b. Manages storage of commands.

2. Data structure:This function is to create a data

structure and manage it. It takes care of all the

memory related operations. The tasks are:

a. Allocate memory for user space and data

in kernel space

b. Copy userspace buffer to kernel memory

c. Logging metadata and IRQ nodes into

user space file

3. IOCTL: The I/O control (IOCTL) is the system call

for particular I/O operations. The calls that are not

done by regular calls are carried out by IOCTL

calls. The tasks are:

a. Checks the status of device

b. Performs driver generic read and write

c. Creates driver admin SQ and CQ and

allocates kernel space

d. Initializes driver IOCTL calls

e. Creates and deletesmetabuffers with

freeing memory after deletion of

metabuffer

f. Acquire queue metrics from global data

structure

4. IRQ: The interrupt is a signal for intervening the

running operation and perform interrupted event.

The various operations are:

a. Set new IRQ scheme, initialize the IRQ

list before any scheme runs and releases

IRQ list after any scheme runs

b. Disables pin to read the command register

in PCI space

c. Validates IRQ inputs for MSI&MSI-X,

and also takes care of masking &

unmasking interrupts

d. Allocates and deallocatesIRQ and

interrupt CQ nodeand frees memory.

5. Queue: The queue is important part. It is used

mainly for sending and receiving of commands and

messages. There are different tasks taken care by

this function. They are:

a. Checks if the controller has transitioned its

state after controller reset and

enables/disables controller

b. Clean existing driver data structure

c. Creation of SQ, CQ and I/O SQ

d. Deallocation of memory after CQ and SQ

is deleted

e. Inquire the number of commands in

CQthat are waiting to be reaped

f. Finds SQ, CQ, command, metadata node

and removes command node, SQ node,

CQ node

g. Copyingof CQ data to user buffer for

elements reaped and moves the CQ head

pointer to point to location of the elements

that is to be reaped

h. Reap the number of elements specified for

the given CQ id and send the reaped

elements back.

6. Register: This function takes care of all the

operations related to registers. The task performed

is,

a. Reads and writes the controller registers

located in the PCI BAR 0 and 1 that are

mapped to memory area which supports

in-order access.

7. Status check: This is the function for checking the

status of device with the power management. The

tasks are as follows.

a. Checks PCI device status and controller

status

b. Checks if the NVME device supports

NEXT capability item in the linked list

c. Performs PCI power management control

and status

d. Checks the MSI and MSI-X control and

status

e. Checks the PCIe capable status register of

advanced error reporting capability of PCI

express device.

8. dNVMe system: The main function which handles

all the above mentioned functions is dNVMe

system. The tasks are as given.

a. Enter and initialize the dNVMe driver

b. Exit the dNVMe driver probe

c. Examine and remove the dNVMe driver

d. Get the device list with their metrics and

unlock the device

e. Opens and releases the dNVMe driver

f. Mapping of the contiguous device mapped

area to user space

g. Take care of IOCTL calls

III. PROPOSED SYSTEM
The existing dNVMe driver provides all the basic

functionality to be performed with the device. But it lacks

few main areas like IOCTL calls for CQ, providing security,

and getting address information from kernel. These new

features can be developed and put into the existing system.

IV. IMPLEMENTATION LOGIC
The enhancement for dNVMe device driver can be

given by supporting the mentioned three features. An

approach is given for implementing these new features.

A. IOCTL calls for CQ

First, the initialization is done. The memory has to

be allocated for user structure in kernel space. Then the SQ

is acquired. The command size is known and memory is

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 5 333 - 336

335

IJRITCC | May 2016, Available @ http://www.ijritcc.org

__

allocated for command in kernel space. Second, the driver

rings SQ doorbell. Retrieve the queue from the linked list,

copy the tail pointer with virtual pointer and write the tail

pointer value to SQ tail doorbell. Third, reap the CQ. Check

for number of unreaped elements in CQ. If this CQ is an

IOCQ, not ACQ, then lookup the component entry size. Get

the required base address and copy the number of

component entry’s that should be able to reap. Fourth, free

the command identifier node from the command track list.

Fifth, process the queues. Get the persistence queue

identifier, unique command identifier and allocate memory

to copy user data. Sixth, process the admin commands.

Perform deletion of IOSQ, creation of IOSQ, deletion of

IOCQ and creation of IOCQ. Seventh, process the reaped

algorithms. Find the SQ node for given SQ identifier and

find the command in SQ node. Eighth, copy the CQ data to

user buffer for the elements reaped. Lastly, move the CQ

head pointer to point to location of the elements that is to be

reaped.

B. Providing locks

There are four layers of locking in dNVMe.

a. The device list read/write lock: The device list lock

protects the list of devices that dNVMe maintains.

b. The device lock: It protects the CQ list, the device,

the meta, and the IRQ process, as well as the IRQ

track node list in the IRQ process structure.

c. The IRQ Lock: protects IRQ track structure

d. The CQ Lock: The CQ Lock protects the CQ

structure, and all SQ structures in its list

First, find the SQ node in the given device element

node and given SQ identifier. If SQ node is found, it locks

the associated CQ and return pointer to the SQ node in the

SQ linked list. Then locking on the dNVMe driver is

performed. Second, unlock the CQ from SQ. Third, lock the

CQ. Find CQ node in the given device element node and

given CQ id. If found, returns the pointer to the CQ node in

the CQ linked list.

C. Address information

Get addresses from operating system about the

PCIe device such as module layout, character device

allocation, PCI bus read configuration byte, kernel stack,

PCI reset slot, PCI disable device, PCI disable MSI-X, PCI

enable MSI-X, PCI enable MSI, and PCI disable MSI.

V. INFERENCE

With these new features, the facts that are observed are

given below,

 The enhanced driver can give better performance

when compared with existing driver.

 The address information feature helps in

performing any register level changes.

 The locking of queues is advantageous for security

purposes.

Figure 1 shows the time breakdown. The native driver

is compared with the enhanced driver on storage device.

Figure 1: Time spent in different parts of I/O stack

The time spent by devices in driver is important factor to be

considered. The device in native driver spends 1.5% of

overall time while in the modified driver it spends half the

time of native driver.

0%

1%

2%

3%

4%

5%

6%

7%

8%

NVMe Device with native driver NVMe Device with modified driver

NVMe Driver

Kernel other

Application

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 5 333 - 336

336

IJRITCC | May 2016, Available @ http://www.ijritcc.org

__

VI. CONCLUSION

The attention for developing Linux device drivers

gradually upsurges as the admiring of Linux system endures

to grow. Many users are unaware of issues regarding

hardware, and majority of Linux is autonomous of the

hardware it runs on. However, the driver exists without

which there is no functioning system. The enhancement of

device drivers provides various advantages with new

features. These help in development of storage devices with

even more less time and efforts.

ACKNOWLEDGEMENT

Any achievement, be it scholastic or otherwise does not

depend solely on the individual efforts but on the guidance,

encouragement and cooperation of intellectuals, elders and

friends. We thank Department of Information Science and

Engineering, RVCE for their constant support and

encouragement.

REFERENCES

[1] “Linux device drivers”, A. Rubini and J. Corbet,

Sebastopol: O'Reilly & Associates, 2001.

[2] A. Kadav and M. Swift, “Understanding modern device

drivers”, ACM SIGARH Computer Architecture News,

vol. 40, no. 1, 2012, p. 87.

[3] “NVM Express Specification, Revision 1.1a,” NVMHCI

Workgroup, Tech. Rep., September 23, 2013.

[4] Sivashankar and S. Ramasamy, "Design and

implementation of non-volatile memory express," Recent

Trends in Information Technology (ICRTIT), 2014

International Conference on, Chennai, 2014, pp. 1-6.

http://www.ijritcc.org/

