
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 5 192 - 194

192

IJRITCC | May 2016, Available @ http://www.ijritcc.org

__

Enhancement of Writeback Caching by changes in flush and its parameters

Chandan J
M. Tech in Software Engineering

Dept of ISE, RV College of Engineering

Bengaluru, India

chandanjayaram182@gmail.com

Kavitha S N
Assistant Professor

Dept of ISE, RV College of Engineering

Bengaluru, India

kavithasn@rvce.edu.in

Abstract— Achievement of high performance in computing or accessing of data is the aim of any system. Reduction of access time to a

particular data which is present in the device is very important for the enhancement in the performance. Caching is implemented to do the same.

The group of cache device and the virtual device is made as a cache group to enhance the performance of the system. The system may not be on

the same condition different instances of time. There will always be a variation in io rates of the application, which is not utilized for the full

extent. These differences in the io rates can be utilized effectively for the enhancement of the performance of the system. When the system is

idle of with less io then the system will force the flush so that the inconsistency of data is reduced. When the system is being bombarded with io

then less threads are given for the flush io. These variations in the threads assigned for the implementation of flush io will enhance the overall

performance of the system.

Keywords— CG-Cache group, CD-cache device, VD-virtual drive, Dirty data, Valid data, cache hit, cache miss.

__*****___

I. INTRODUCTION

In any high end system on which there are lots and lots of io

which is executed per second. These ios has to be executed

efficiently and the same has to be acknowledged back to the

application which has initiated the io. The caching is very

important for any high end system. When the application is

write intensive then the write back method of caching is

used. The major drawback of this method is the

inconsistency of data in the system at certain times. Since a

cache device has to have a less access time, SSDs are used

for CD. Rotational media can be used for VD. The

combination of VD and CD is a CG on which the ios has to

be triggered. Frequently accessed data is stored in the cache

device. This data is detected by hot detection algorithm. Any

chunk of data which is requested by the application more

than 3 times is popped on to the CD. Then after some time

depending on the system the data is flushed to maintain the

data consistency.

II. OVERVIEW

A. Reasearch gap

In the previous implementation of write back caching

solution there was a single caching algorithm which was

running in background. The problem with this method was

the threads which are utilized for the flush io use to be idle

when no data was dirty and the same were overloaded when

there used to be too much of dirty data to be flushed on to

the virtual device.

The problem of with this method was leading the system

to achieve less performance. This can be eliminated by

variation of flush parameters according to the variations in

flush.

B. Methodlogy

The solution is designed such that the flush parameters will

vary according to the variations in the application’s io. The

solution has been designed to have 3 variations in the flush

io.

 Idle flush

 Periodic flush

 Forced flush

Idle flush is triggered when there are less or non io on the

CG. Periodic flush is a middle layer flush which is triggered

on the device when the dirty data count exceeds 45% of the

total cache size and works till it reaches 60%. When the

cache device is filled with more than 60% of dirty data then

the forced flush is triggered which will allocate maximum

allowable threads for flush io.

III. IMPLEMENTATION LOGIC

The idea which is briefly said in the previous section is

explained in the implementation logic. Here the minute

details of design and the requirements are stated so that the

idea is well established and understood.

Dirty data are the data present in the CD which is not

sent to the VD through flush. Valid data is the super set of

dirty data but also include those chunks of data which are

sent to VD also. Cache hit refers to the situation in the data

needed by the io is present in the cache device. Cache miss

is the negative case of cache hit, where the requested data is

not present in the CD. Partial hit refers to the situation in

which the data chunks needed are partially present in the

device. These terminologies are repeatedly used.

A. Assumptions

The CD is divided logically into blocks of 64KB size

called as cache block. Each cache block is internally divided

into cache line of 4K. So each cache block is having 16

cache lines. There will be a dirty bit for each cache line.

Each 4K io is marked for dirty bit after the write is

performed on the same. The metadata is present in the CD

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 5 192 - 194

193

IJRITCC | May 2016, Available @ http://www.ijritcc.org

__

and in VD also. Configuration details are in CD which is

considered primarily. In any situation of inconsistence state

of system the system is brought back to the working state

using the configuration details present in the CD.

Sequential ios are not serviced by the solution. The

speed of the device’s spindle is utilized for these sequential

ios.

Ios which are greater than the size 32K are also bypassed

by the solution. If there is any overlap in the ios greater than

the size of 32K then the ios are serviced by the solution.

B. Io work path

When a io is encountered by the device, its first mapped

to the solution’s driver, where the parameters of the io are

recognized. if the size of io is greater than bypass size then

the virtual windows are assigned to the io. Else physical

window is assigned to the io in the cache device. Then the

ios are mapped to the respective LBA in the respective

devices

The diagram above describes the overall working of the

io in the system. Any io which is coming to the system and

how it is executed in the system. The device mapper will get

all the io and decide where it has to be mapped. The filter

driver will check for the device has to go through the CD or

VD depending on the bypass size defined. Hot data

detection algorithm will serve to recognize the frequently

accessed by the application. Machine region locking is done

for maintaining the data integrity. Io routing is done in the

back end to the exact location of the device and interacts

with the device manager of the drive. Depending on the

device the abstractions are done. Flush manager will kicks

in when there are less ios or the conditions for the flush is

met. Metadata management is very important for

maintaining the configuration both CD and VD. The copy of

metadata is maintained both in CD and VD. Multiple copies

are maintained for the consistency of the configuration even

when there is any inconsistency in the system. Error

handling is done so that the some inherent errors in the

commands are managed.

C. CD flush

The CD flush is for a particular CD specified by its SCSI

id. Caching is disabled when the CD flush is issued. Dirty

tree is always maintained for a particular VD. In a loop each

VD in the CG is verified for the dirty data of that CD is

flushed. Dirty tree is an AVL tree after each deletion of the

node its balanced. CD flush is a trouble process. During the

cache disable any partial or full hit on the CD is come across

then its serviced.

D. VD flush

VD is flush is simple to implement. In any CG the data

pertaining to the VD specified by its SCSI id is flushed.

There will be no cache disable during the VD flush. The

dirty tree as a whole is flushed to the device. Its better to

stop the io on the VD before the VD flush, else from one

end the device will be clearing the dirty tree and from the

other side it will be building.

E. Flush parameters

Flush io is characterized by 3 parameters.

 Rate of flush

 Time interval between flush

 Size of flush

These 3 parameters can be varied even by the user but only

during the period of 45% to 60% of the total cache size. The

parameters for the remaining types of flush are fixed.

ACKNOWLEDGMENT

Any accomplishment is not possible without the help of

people who supported the endeavor in all sorts and

encouraged the work which was carried out. The department

of ISE, RVCE for all their support in all the facilities and the

encouragement provided in carrying the work. Thanking

friends and family is very important in this course of work

without which it would be impossible even in carrying the

work finishing it in due time.

REFERENCES
[1] N. P. Jouppi, ―Improving Direct-Mapped Cache Performance

by the Addition of a Small Fully-Associative Cache and

Prefetch Buffers,‖ in Proc. Int. Symp. on Computer

Architecture, 1990, pp. 364–373.

[2] ——, ―Cache Write Policies and Performance,‖ in Proc. Int.

Symp. on Computer Architecture, 1993, pp. 191–201.

[3] P. P. Chu and R. Gottipati, ―Write Buffer Design for On-Chip

Cache,‖ in Proc. IEEE Int. Conf. on Computer Design, 1994,

pp. 311–316.

[4] H.-H. S. Lee, G. S. Tyson, and M. K. Farrens, ―Eager

Writeback - A Technique for Improving Bandwidth

Utilization,‖ in Proc. ACM/IEEE Int. Symp. on

Microarchitecture, 2000, pp. 11–21.

[5] S. P. E. Corporation, http://www.spec.org/.

[6] T. Austin et al., ―Simplescalar 3.0,‖

http://www.simplescalar.com/.

[7] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A

fast file system for unix. ACM Trans. Comput. Syst.,

2(3):181–197, Aug. 1984.

[8] N. Megiddo and D. Modha. ARC: A self-tuning, low

overhead replacement cache. In Proc. of USENIX FAST,

pages 115–130, 2003.

[9] D. Narayanan, A. Donnelly, and A. Rowstron. Write Off-

Loading: Practical Power Management for Enterprise Storage.

In Proc. of USENIX FAST, 2008.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 5 192 - 194

194

IJRITCC | May 2016, Available @ http://www.ijritcc.org

__

[10] C. Ruemmler and J. Wilkes. An Introduction to Disk Drive

Modeling. Computer, 2:17–28, 1994.

[11] R. Koller and R. Rangaswami. I/O Deduplication: Utilizing

Content Similarity to Improve I/O Perfor-mance. In Proc. of

USENIX FAST, pages 211–224, February 2010.

[12] N. Megiddo and D. Modha. ARC: A self-tuning, low

overhead replacement cache. In Proc. of USENIX FAST,

pages 115–130, 2003

[13] M. K. Qureshi, M. M. Franceschini, and L. A. Lastras-

montao. Improving read performance of phase change mem-

ories via write cancellation and write pausing. In Pro-ceedings

of the 2010 IEEE 13th International Symposium on High

Performance Computer Architecture, pages 1–11, 2010

[14] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.

Owens. Memory access scheduling. In Proceedings of the

27th annual international symposium on Computer architec-

ture, ISCA ’00, pages 128–138, New York, NY, USA, 2000.

ACM

[15] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feed-back

directed prefetching: Improving the performance and

bandwidth-efficiency of hardware prefetchers. In High Per-

formance Computer Architecture (HPCA), 2010 IEEE 16th

International Symposium on, pages 63–74, 2007.

http://www.ijritcc.org/

