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Abstract— This paper presents the design of an H∞ (H-infinity) controller to stabilize an uncertain power system using mixed sensitivity 

approach through an iterative LMI (Linear Matrix Inequality) algorithm. Here a robust control methodology is suggested to improve the voltage 

regulation of a synchronous generator. H∞ control method is used in this control theory to synthesize controller to obtain robust performance and 

stabilization. This technique has the advantage over classical control techniques that it is readily applicable to the problems including 

multivariable systems. The proposed robust controller enhances the performance as well as minimizes the disturbances‟ effect more effectively. 

In this paper the controller is designed and simulated under MATLAB/Simulink for electric generator stabilization studies for an SMIB system. 

Keywords- static output feedback, linear matrix Inequality, H∞ robust controller, loop shaping. 
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I.  INTRODUCTION 

Power system experiences continuous deviations in 

operating conditions due to varying generation/load and other 

factors. The regulation of voltage and stability of system have 

been considered as an important problem for perfect system 

operation over the time. The AVR is installed to attain the 

required voltage regulation and performance. 

 During the past years, many studies have been done on the 

designing of an advanced AVR using domain partitioning, 

robust pole placement, adaptive control etc. Recently many 

methods have been developed coordinating the voltage 

regulation and stabilization requirements within a single 

controller. A desensitized controller designed using LQG 

approach is given in [3]. Internal Mode Control (IMC) [4]-[5] 

is also used to attain a trade-off in voltage regulation and 

stabilization. Despite all the given approaches uses linear 

control methods, because of control structure complexity, 

various unknown design aspects and neglecting real 

constraints, these approaches are not meant to meet the 

objectives of multi-machine power system. The performances 

of these methods depend on the time of switching. However, 

using multiple approaches in such highly non-linear structures 

increases the complexity of the designed controllers. 

In this paper, stabilization and voltage regulation 

considering practical constraints for feasibility are formulated 

via an H∞ static output feedback (H∞-SOF) control problem 

which can be easily solved using an iterative liner matrix 

inequality (LMI) algorithm. The designed controller ensures 

effective and direct trade-off between regulation and 

performance. The controller uses the measured signals and has 

small proportional gains; giving adequate surety for 

implementation, mainly in an SMIB system. The developed 

control methodology bridges the gap between the simplicity 

and robustness of the system, thus satisfying the constraints. In 

order to explain the effective performance of the controller, it 

is applied to an SMIB (Single Machine Infinite Bus) system. 

II. GENERALIZED H∞ MIXED SENSITIVITY 

FORMULATION 

The mixed-sensitivity formulation for the optimization of 

output control effort and disturbance rejection and is explained 

in figure 3, where, K(s) is the controller to be designed and 

G(s) is the open-loop system model. The equation S = (I-GK)
-1 

 

gives the sensitivity transfer function from measured output 

y(s) to disturbance input d(s). For reducing the effects of 

disturbance on the measured output, the minimization of S is 

necessary, i.e. ||S||∞. For optimizing the control effort of the 

controller in a limited bandwidth, the minimization of the H∞ 

norm of the transfer function from the disturbance input d(s) to 

the control input u(s) is needed. This is equivalent to 

minimizing ||KS||∞, where KS is the complementary sensitivity 

transfer function.           
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where S is set of all internally stabilizing controllers K. 

Both these functions together represent the system. But, it is 

impossible to minimize both S and KS together over all the full 

frequency spectrum. The disturbance rejection is normally 

needed at low frequencies, so the S needs to be minimized at 

low frequencies, whereas KS should be minimized at greater 

frequencies where „controlled‟ control action is required. This 

is done by using individual weighting functions W1(s) and 

W2(s) for each transfer function. The minimization problem is 

now transformed according to the transfer function S which is 

less than 

1

1

W
 and the transfer function KS is less than

2

1

W
. 

With the inclusion of weights, the problem is reformed as :  

To obtain a stabilizing controller, K, such that  
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III. PROPOSED CONTROL STRATEGY 

A.  Modelling 

The generator is represented by the classical model with all 

the resistances neglected  as shown in  figure 2 and the 

excitation system used for the generator is shown in figure 1. 

Here E is the value voltage behind reactance, X‟d. Its 

magnitude is assumed to remain to remain constant at the pre-

disturbance value. Let δ be angle by which E‟ leads the 

infinite voltage V∞. As the rotor oscillates during a 

disturbance, δ changes. Only one winding on the rotor is 

considered, ie, the field winding as given in [2]. 

From figure 2, 
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The acceleration equation is given by 
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 Linearising equation we get, 
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The electrical torque equation is 

qe EKKT '21                                             (6) 

where     K1 and  K2 are constants. 

The swing equation is given by   
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dt

d
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    .                                               (7) 

The voltage equations for this model are given by  
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d
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Taking the Laplace transform of Eq. 3.13 and rearranging, we 

get 

    dddqdFD IXXEsTE  '''1 0
. 

Taking the Laplace transform of the expression for ∆Id and 

substituting it in the above equation, we get after 

simplification, 
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where   K5 and  K6 are constants. 

The constants K1 to K6 given in the block diagram in figure 3 

represents parameters such as impedance, demagnetizing 

effect etc. The constants K3 and K4 are usually positive. 

Dimensionally K3 is an impedance. It takes into account the 

loading effect of external impedance. K4 is a measure of the 

demagnetizing effect due to a change in the rotor angle.  

From (6), we get  
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Substituting for ∆VT in the differential equation for the voltage 

transducer block becomes 

 

 
Figure 1: Block diagram of the excitation system 

        
Figure 2: SMIB system 

1

651 1
'

)(
X

T
E

T

K

T

K

dt

Xd

R

q

RR




 .             (11) 

The above state variable equations are represented in state 

canonical form as  
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IV. OVERALL CONTROL FRAMEWORK 

The mixed-sensitivity methodology, explained before, is 

solved here as a generalized H∞ problem.  The first step is to 

form a generalized regulator P as per the the mixed sensitivity 

formulation taking the assumption D = 0. The state-space 

formation of the generalized regulator P is given by:                                                             
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(12) 

where        x: state variable vector of the system, 

                  y: measured output, 

                  z1,z2: regulated output. 

                  w: disturbance input, 

                  u: control input, 

A, B, C, D: state space matrices. 

The developed controller is found out from LTI control 

law u = K(s)*y for an H∞ performance index γ > 0, such that: 

||Twz||∞ < γ where, Twz(s) gives the closed-loop transfer function 

from w to z. The state-space equation of controller is given by:   

yDxCu

yBxAx

kkk

kkkk



                                          (13) 

where Ak, Bk, Ck, Dk are the state space matrices of the 

controller. 

The transfer function Twz(s) between w and z is derived as 
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  Twz(s) = Dcl + Ccl (sI – Acl )- Bcl              

where,  
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Figure 3: Simplified block diagram of the augmented     

               plant including controller 
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V. LINEAR MATRIX INEQUALITY FORMULATION 

The bounded real lemma and the Schur's formula for the 

determinant of a partitioned matrix is equivalent to the 

existence of a solution X∞ = X∞
T
 > 0 to the following matrix 

inequality as in [15]. 
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The design specifications hold for positive semi-definite 

matrices X∞ for better feasibility. The controller parameters in 

the matrix make closed loop matrices non-linear. The 

controller variables are linearized in terms of an unknown 

matrix  
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Pre- and post-multiplying the inequality by the linearized 

matrices 
T
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and 2
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The new controller variables are defined as: 

Â =NAk M
T 

+ NBkC2R + SB2Ck M
T 

+ S(A+B2DkC2)R 

B̂ =Nk + SB2Dk 

Ĉ =CkM
T 

+ DkC2R 

D̂ =Dk                                                                              (17)  

VI. APPLICATION IN SMIB SYSTEM 

To demonstrate the performance of the developed 

controller, an SMIB system is taken as the test study system 

which is given in figure 2. The generator is having excitation 

system as shown in figure 1. For simulation 100 MVA is 

considered as the system base MVA. 

A synchronous generator is connected to bus 1 and bus 2 

is taken as the infinite bus. The objective is to design a robust 

controller for the synchronous generator. First of all, a full 

order robust dynamic controller with the structure given in 

equation (2.2) is designed. 

Then applying the proposed H∞-SOF control method, 

optimal gain of the controller is obtained through an iterative 

LMI approach. The standard practice in H-infinity mixed-

sensitivity design is choosing the weight W1(s) for rejection  of 

output disturbance and W2(s) for reducing the control effort in 

the high frequency ranges. In view of that, the weights were 

chosen as constant weights with a value 2. 

VII. SIMULATION RESULTS 

 To explain the performance of the developed  method, 

simulations were carried out. The robustness of the system 

with H∞ SOF controller is tested for voltage deviation and 

system disturbance. The analysis of the damping ratios of 

corresponding eigen values is given as plots in table 1.Eigen 

values represent the state of stability of a system. Table 1 

gives the details of eigen values of plant before and after 

applying the controller. The eigen values were more stabilized 

with the implementation of the developed controller by 

making them more closer towards the negative infinity portion 

of the complex s-plane. The damping ratios were  minimized 

due to the application of the controller thereby enhancing the 

robustness of the system as shown in  table 2.  

A state variable is the one that describes the mathematical 

state of a system. The state of a system explains more about 

the system and to determine its future characteristics in the 

case of  absence of any external forces affecting the modelled 

system. Models which consist of first-order differential 

coupled  equations are  in state-variable form. 
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Table 1: Eigen values and damping ratios 

No 

Plant with conventional 

AVR 

Plant with robust 

AVR 

Eigen value 
Damping 

ratio 
Eigen value 

Damping 

ratio 

1 -0.0+0.0007i  0.4793 -0.093+6.54i 0.4789 

2 -0.0+0.0007i 0.4793 -0.093+6.54i 0.4789 

3 -0.003+0.001i 0.2051 -0.51 +17.43i 0.2011 

4 -0.003+0.001i 0.2051 -0.51 +17.43i 0.2011 

 

 
Figure 4: Rotor speed deviation response 

 
Figure 5: Rotor angle deviation response 

A perturbation of 0.2 percent was included  in the 

designing of the state variables (w, δ Efd, Vt).  The unforced 

response of the state-space model G, i.e nominal plant  and the 

system including the conventional AVR with the initial 

condition of the states given in vector form X0 was calculated 

from the constants of the machines. The initial state vector  X0 
 

is a [4*1] sized matrix. The response was within the specified  

limits. The system exhibited more robustness with the 

presence of the developed controller. The settling time of the 

disturbance was reduced. The amplitude of the oscillations 

was reduced by 5-6%. Also the deviation in terminal voltage 

was reduced to a near zero value compared with the case of 

the system with the conventional controller. The system 

exhibited more robustness with the inclusion of the developed 

robust H∞ controller. The initial response of the rotor speed 

and angle deviation is given in figures 4 and 5 respectively. 

The settling time of the oscillations is reduced as well by 5-6 

sec. Figures 6 and 7 gives the initial responses of deviations in 

excitation voltage and terminal voltage respectively which 

also exhibits the reduction as explained previously. 

Once the design is complete, it is required to verify the 

objective constraint. If the designed controller does not satisfy  

 

 
Figure 6 :Excitation voltage deviation response 

  
Figure 7: Terminal voltage deviation response 

the constraint, then the controller should be redesigned by 

choosing a different set of weighting functions. It is shown 

that improvement in the high speed response of the controller 

was achieved.  

The mathematical model of a control system gives an 

approximate true physical reality of  system dynamics. The 

typical generation of discrepancy includes the unmodelled 

(high frequency) dynamics, neglected non-linearities in 

modelling, effect of deliberate reduced order models. And 

system parameter variations due to changes in environmental, 

torn-and-worn factors. 

An uncertainty was inserted in the system  model to 

ascertain the robustness of the controller. The system 
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withstood the effect of disturbance effectively. The 

disturbance introduced was a parametric uncertainty in the 

state space representation of the system. The given uncertainty 

was a 50% change in the value of the state matrix elements 

{i.e.ureal('p1',a1(2,1),'pe',50)}.The system with conventional 

AVR proved to be unstable. The response of system variables 

with uncertainty including robust AVR was plotted and is 

given in figures 8 –11 which explains the initial responses of 

rotor speed and angle, excitation and terminal voltages 

respectively. The system performance was improved with the 

robust AVR. 

   
Figure 8: Rotor speed deviation response 

 
Figure 9: Rotor angle deviation response 

 

 

 
Figure 10   : Excitation voltage deviation response 

 

 
Figure 11: Terminal voltage deviation response 

The step response of a control system in its initial states 

includes the time evolution of its outputs when its inputs are 

step functions. Step response of a system which is dynamic 

gives information about its stability, and on its ability to attain 

one stationary state after starting from another. Figure 12 

shows the step response of system including the robust AVR 

along with a disturbance.  A disturbance of 20% was inserted 

in  the reference voltage at t = 80 sec and the disturbed ssignal 

was fed to controller. The controller damped the disturbance 

oscillations effectively. The iteration of the performance was 

done step by step and the best closed loop gain calculated was 

0.200909 which is within the standard limit. 
The gamma value was minimized to a value as possible 

and thus it can be concluded that the developed controller gives 
maximum performance and enhances stability. It is proved that 
the developed robust AVR improved the control over terminal 
voltage than the conventional AVR controller.  

VIII. CONCLUSION 

This paper presents an excitation control method using H∞ 
SOF method using an iterative LMI approach for enhancing the 
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robust performance of the system. The developed method was 
applied to an SMIB system, and also the results were  obtained 

 
Figure 12: Step response 

 

to be feasible. The performance of the system with robust 

AVR was found to be satisfactory over  a wide range of 

operating conditions making an appropriate and effective 

trade-off between performance and voltage regulation by not 

changing the fundamental AVR concepts. The Ease and 

flexibility of design to give a good feasible solution, are the 

main pros of the deigned method used in this paper. The 

results also proved better performance and robustness in the 

case of uncertainty (i.e. test of robustness). Therefore, it can 

be concluded that the developed method improves efficiency, 

enhance dynamic performance of  the power system and 

provides more robustness thus increasing  its stability limit. 
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APPENDIX 

   
 

parameters Value 

basemva 
588 MVA 

 

Vinf 1.0 pu 

freq 50 Hz 

H 3.07 pu 

Xq 2.15 pu 

Xd 2.35 pu 

Tdo 6.0 pu 

X‟d 0.253 pu 

Ra 0.0023  pu 

Tr 0.02  pu 

ka 200 

kd 4 

re 0.1 pu 

Xe 0.65 pu 
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