A Common Fixed Point Theorem in Intuitionistic Menger Spaces

Dr. Varsha Sharma

Deptt. Of Mathematics Institute of Engineering & Science, IPS Academy, Indore (M. P.) *E-mail: math.varsha@gmail.com*

Abstract: The aim of this paper is to consider intuitionistic Menger Spaces and prove a common fixed point theorem for six mappings using compatibility of type (P_1) and (P_2) .

Keywords: Intuitionistic Menger Spaces; Common fixed point; Compatibility of type (P_1) and (P_2) .

AMS Subject Classification: 54H25, 47H10.

I. INTRODUCTION

There have been a number of generalizations of metric spaces. One such generalization is Menger space introduced in 1942 by Menger [5] who used distribution functions instead of nonnegative real numbers as values of the metric. This space was expanded rapidly with the pioneering works of Schweizer and Sklar[8,9]. Modifying the idea of Kramosil and Michalek [3], George and Veeramani[1] introduced fuzzy metric spaces which are very similar that of Menger space. Recently Park [7] introduced the notion of intuitionistic fuzzy metric spaces as a generalization of fuzzy metric spaces.

Kutukcu et. al [4] introduced the notion of intuitionistic Menger Spaces with the help of t-norms and t-conorms as a generalization of Menger space due to menger [5]. Further they introduced the notion of Cauchy sequences and found a necessary and sufficient condition for an intuitionistic Menger Space to be complete. Sessa [10] initiated the tradition of improving coomutativity in fixed point theorems by introducing the notion of weakly commuting maps in metric spaces. Jungck [2] soon enlarged this concept to compatible maps. The notion of compatible mapping in a Menger space has been introduced by Mishra [6].

II. PRELIMINARIES

Definition 2.1. A binary operation : [0,1] [0,1] [0,1] is a t-norm if is satisfying the following conditions:

- is commutative and associative,
- is continuous,
- a 1 = a ,for all a [0,1],
- a b c d whenever a c and b d, for all a,b,c,d [0,1].

Definition 2.2. A binary operation : [0,1] [0,1] [0,1] is a t-conorm if is satisfying the following conditions:

- is commutative and associative,
- is continuous,
- $a \ 0 = a$, for all a [0,1],
- a b c d whenever a c and b d, for all a,b,c,d [0,1].

Remark 2.3. The concept of triangular norms (t-norms) and triangular conforms (t-conorms) are known as the axiomatic skeletons that we use for characterizing fuzzy intersectiob and union respectively. These concepts were originally introduced by Menger [1] in his study of statistical metric spaces.

Definition 2.4. A distance distribution function is a function $F : \mathbb{R} \ \mathbb{R}^+$ which is non-decreasing, left continuous on \mathbb{R} and inf $\{F(t) : t \ \mathbb{R}\} = 0$ and sup $\{F(t) : t \ \mathbb{R}\} = 1$. We will denote by *D* the family of all distance distribution functions while *H* will always denote the specific distribution function defiend by

$$H(x) = \begin{cases} 0, & x \le 0\\ 1, & x > 0. \end{cases}$$
$$H(x) = \begin{cases} 0, & x \le 0\\ 1, & x > 0. \end{cases}$$

If X is a non-empty set , $F : X \times X D$ is called a probabilistic distance on X and F(x,y) is usually denoted by $F_{x,y}$.

Definition 2.5. A non-distance distribution function is a function $L : \mathbb{R} \times \mathbb{R}^+$ which is non-increasing, right continous on \mathbb{R} and inf $\{L(t) : t \times \mathbb{R}\} = 1$ and sup $\{L(t) : t \times \mathbb{R}\} = 0$. We will denote by *E* the family of all non-distance distribution functions while *G* will always denote the specific distribution function defined by

$$H(x) = \begin{cases} 0, & x \le 0\\ 1, & x > 0. \end{cases}$$
$$G(t) = \begin{cases} 1, & t \le 0\\ 0, & t > 0. \end{cases} G(t) = \begin{cases} 1, & t \le 0\\ 0, & t > 0. \end{cases}$$

If X is a non-empty set , $L : X \times X E$ is called a probabilistic non-distance on X and L(x,y) is usually denoted by $L_{x,y}$.

Definition 2.6. [4] A 5-tuple (X, F, L, ,) is sais to be an intuitionistic Menger space if X is an arbitrary set, is a continuous t-norm, is continuous t-conorm, F is a probabilistic distance and L is a probabilistic non-distance

on X satisfying the following conditions: for all x, y,z X and t, s 0 (1) $F_{x,y}(t) + L_{x,y}(t)$ 1 , (2) $F_{x,y}(0) = 0$, (3) $F_{x,y}(t) = H(t)$ if and only if x = y, (4) $F_{x,y}(t) = F_{y,x}(t)$, (5) if $F_{x,y}(t) = 1$ and $F_{y,z}(s) = 1$, then $F_{x,z}(t+s) = 1$, (6) $F_{x,z}(t+s) \ F_{x,y}(t) \ F_{y,z}(s)$, (7) $L_{x,y}(0) = 1$, (8) $L_{x,y}(t) = G(t)$ if and only if x = y, (9) $L_{x,y}(t) = L_{y,x}(t)$, (10) if $L_{x,y}(t) = 0$ and $L_{y,z}(s) = 0$, then $L_{x,z}(t+s) = 0$, (11) $L_{x,z}(t+s) \ L_{x,y}(t) \ L_{y,z}(s)$.

The function $F_{x,y}(t)$ and $L_{x,y}(t)$ denote the degree of nearness and degree of non-nearness between x and y with respect to t, respectively.

Remark 2.7. Every Menger space (X, F,) is intuitionistic Menger space of the form

(X, F, 1 - F, ,) such that t-norm and t-conorm are associated, that is x y = 1 - (1-x) (1-y) for any x, y X.

Example 2.8. Let (X,d) be a matric space. Then the metric d induces a distance distribution function *F* defined by $F_{x,y}(t) = H(t - d(x,y))$ and a non-distace function *L* defined by $L_{x,y}(t) = G(t - d(x,y))$ for all x,yX and $t \ge 0$. Then (X,*F*,*L*) is an intuitionistic probabilistic metric space. We call this instutionistic probabilistic metric space induced by a metric d the induced intuitionistic probabilistic metric space. If t-norm is a $b = min\{a,b\}$ and t-conorm is a $b = min\{1,a + b\}$ for all a, b [0,1] then (X,*F*,*L*, ,) is an intuitionistic Menger space.

Remark 2.9. Note that the above example holds even with the t-norm $ab = min\{a,b\}$ and t-conorm $ab = max\{a,b\}$ and hence (X,F,L, ,) is an intuitionistic Menger space with respect to any t-norm and t-conorm. Also note t-norm and t-conorm are not associated.

Definition 2.10. [4] Let (X, F, L, .) be an intuitionistic Menger space with t $t \ge t$ and (1 - t) $(1 - t) \le (1 - t)$. Then:

- A sequence $\{x_n\}$ in X is said to be convergent to x in X if, for every > 0 and (0,1), there exists positive integer N such that $F_{xn,x}$ () > 1 - and $L_{xn,x}$ () < whenever $n \ge N$.
- A sequence {x_n} in X is called Cauchy sequence if, for every > 0 and (0,1), there exists positive interger N such that F_{xn,xm} () > 1- and L_{xn,xm} () < whenever n,m ≥ N.
- An intuitionistic Menger space (X,*F*,*L*, ,) is said to be complete if and only if every Cauchy sequence in X is convergent to a point in X.

The proof of the following lemmas is on the lines of Mishra [6].

Lemma 2.11. Let (X,F,L, ,) be an intuitionistic Menger space with $tt \ge t$ and (1 - t) $(1 - t) \le (1 - t)$ and $\{y_n\}$ be a sequence in X. If there exists a number k (0, 1) such that:

•
$$F_{y_{n+2},y_{n+1}}(kt) \ge F_{y_{n+1},y_n}(t),$$

• $L_{yn+2,yn+1}$ (kt) $\leq L_{yn+1,yn}$ (t) for all t > 0 and n =1,2,3,4,... Then{y_n} is a Cauchy sequence inX.

Proof. By simple induction with the condition (1), we have for all t > 0 and n = 1, 2, 3, ...,

$$F_{yn+1,yn+2}(t) \ge F_{y1,y2}(t/k^n)$$
, $L_{yn+1,yn+2}(t) \le L_{y1,y2}(t/k^n)$.

Thus by Definition 2.6 (6) and (11), for any positive integer $m \ge n$ and number t > 0, we have

$$F_{\text{vn,ym}}(t) \geq F_{\text{yn,vn+1}} \left(\frac{t}{m-n}\right) \left(\frac{t}{m-n}\right) \\ \left(\frac{t}{m-n}\right) \left(\frac{t}{m-n}\right) \dots F_{\text{ym-1,ym}} \left(\frac{t}{m-n}\right) \left(\frac{t}{m-n}\right) \\ \geq \overbrace{(1-\lambda)*(1-\lambda)*\dots**(1-\lambda)}^{m-n} > (1-\lambda),$$

and
$$L_{\text{vn},\text{ym}}(t) \leq L_{\text{yn},\text{yn+1}} \left(\frac{t}{m-n}\right) \left(\frac{t}{m-n}\right) L_{\text{yn+1},\text{yn+2}} \left(\frac{t}{m-n}\right) \left(\frac{t}{m-n}\right) \dots L_{\text{ym-1},\text{ym}} \left(\frac{t}{m-n}\right) \left(\frac{t}{m-n}\right)$$

$$\leq \overbrace{\lambda \circ \lambda \circ \ldots \ldots \circ \lambda}^{m-n} < \lambda,$$

which implies that $\{y_n\}$ is a Cauchy sequence in X. This completes the proof.

Lemma 2.12. Let (X,F,L, ,) be an intuitionistic Menger space with t $t \ge t$ abd (1-t) $(1-t) \le (1-t)$ and for all x,y X, t > 0 and if for a number k (0,1)

$$F_{\mathbf{x},\mathbf{y}}(\mathbf{kt}) \geq F_{\mathbf{x},\mathbf{y}}(\mathbf{t}) \quad \text{and} \ L_{\mathbf{x},\mathbf{y}}(\mathbf{kt}) \leq L_{\mathbf{x},\mathbf{y}}(\mathbf{t}) \quad (\mathbf{I})$$

then $\mathbf{x} = \mathbf{y}$.

Proof. Since t > 0 abd k (0, 1) we get t > kt. In intuitionistic Menger space (X,*F*,*L*, ,), *F*_{x,y} is non decreasing and *L*_{x,y} is non-increasing for all x, y X, then we have

$$F_{x,y}(t) \geq F_{x,y}(kt)$$
 and $L_{x,y}(t) \geq$

 $L_{\rm x,v}(\rm kt).$

Using (I) and the definition of intuitionistic Menger space, we have x = y.

Definition 2.13. The self-maps A and B of an intuitionistic Menger space (X,*F*,*L*, ,) are said to be compatible if for all t > 0,

 $\lim_{n \to \infty} \lim_{n \to \infty} \lim_{n \to \infty} F_{ABxn, BAxn}(t) = 1$ and $\lim_{n \to \infty} \lim_{n \to \infty} L_{ABxn, BAxn}(t) = 0,$

whenever $\{x_n\}$ is a sequence in X such that $n \to \infty \to \infty$ Ax_n

 $\lim_{n \to \infty} \lim_{n \to \infty} Bx_n = z \text{ for some } z X.$

Definition 2.14. Two self-maps A and B of an intuitionistic Menger space (X,*F*,*L*, ,) are said to be weakly compatible if they commute at their coincidence points ,that is if Ax = Bx for some x X then ABx = BAx.

Remark 2.15. If self-maps A and B of an intuitionistic Menger space (X, F, L, .) are compatible then they are weakly compatible.

Definition 2.16. [4] Two self mappings A and B of an intuitionistic Menger space (X,F,L, .) are said to be

(i) Compatible of type (P) if

$$F_{ABxn,BBxn}(t) \rightarrow 1$$
 and $F_{BAxn,AAxn}(t) \rightarrow 1$ for all t > 0

where $\{x_n\}$ is a sequence in X such that $Ax_n, Bx_n \rightarrow z$ for some z in X as $n \rightarrow \infty$.

(ii) Compatible of type (P_1) if

 $F_{ABxn,BBxn}$ (t) $\rightarrow 1$ for all t > 0.

where $\{x_n\}$ is a sequence in X such that $Ax_n, Bx_n \rightarrow z$ for some z in X as $n \rightarrow \infty$.

(iii) Compatible for type (P_2) if

 $F_{\text{BAxn,AAxn}}(t) \rightarrow 1 \text{ for all } t > 0$

where $\{x_n\}$ is a sequence in X such that $Ax_n, Bx_n \rightarrow z$ for some z in X as $n \rightarrow \infty$.

III. MAIN RESULTS

Theorem 3.1. Let (X, F, L, ,) be a complete intuitionistic Menger space with tt t and (1-t) (1-t) (1-t) and let A, B, S, T, P and Q be selfmappings of X such that the following conditions are satisfied :

- A(X) ST(X), B(X) PQ(X),
- There exists k (0,1) such that for every x,y X and t > 0,

 $F_{Ax,By}(kt) \{ F_{PQx,STy}(t) F_{Ax,PQx}(t) F_{By,STy}(t) F_{Ax,STy}(t) \}$

and $L_{Ax,By}(kt) \{ L_{PQx,STy}(t) \ L_{Ax,PQx}(t) \ L_{By,STy}(t) \}$,

• Either A or PQ is continuous,

• The pair {A,PQ} and {B,ST} are both compatible of type (P₁) or type (P₂),

PQ = QP, ST = TS, AQ = QA, BT = TB.

Then A, B, S,T, P and Q have a unique common fixed point in X.

Proof. By (1) since A(X) ST(X) for any point x_0X , there exists a point x_1 in X such that $Ax_0 = STx_1$. Since B(X) PQ(X), for this point x_1 we can choose a point x_2 in X such that $Bx_1 = PQx_2$ and so on. Inductively, we can define a sequence $\{y_n\}$ in X such that for n = 0, 1, 2, 3, ...

 $y_{2n} = Ax_{2n} = STx_{2n+1} \quad and \quad y_{2n+1} = Bx_{2n+1} = PQx_{2n+2}.$

By (2), for all t > 0, we have

$$F_{y2n, y2n+1}$$
 (kt) = $F_{Ax2n, Bx2n+1}$ (kt)

{ $F_{PQx2n,ST x2n+1}$ (t) $F_{Ax2n,PQx2n}$ (t) $F_{B x2n+1,ST}$ _{x2n+1} (t) $F_{Ax2n,ST x2n+1}$ (t)}

= {
$$F_{y2n-1,y2n}$$
 (t) $F_{y2n, y2n-1}$ (t) $F_{y2n+1,y2n}$ (t)

 $F_{y2n,y2n}(t)$

$$F_{y2n-1,y2n}(t) F_{y2n+1,y2n}(t),$$

and

 $L_{y2n, y2n+1}$ (kt) = $L_{Ax2n, Bx2n+1}$ (kt)

{ $L_{PQx2n,ST x2n+1}$ (t) $L_{Ax2n, PQx2n}$ (t) $L_{B x2n+1,ST}$ _{x2n+1} (t) $L_{Ax2n,ST x2n+1}$ (t)}

$$= \{ L_{y2n-1,y2n} (t) L_{y2n, y2n-1} (t) L_{y2n+1,y2n} (t) L_{y2n+1,y2n} (t) \}$$

$$L_{y2n-1,y2n}(t) L_{y2n+1,y2n}(t).$$

Similarly, we also have

$$F_{y2n+1, y2n+2}$$
 (kt) $F_{y2n,y2n+1}$ (t) $F_{y2n+2,y2n+1}$ (t),

and

 $L_{y2n+1, y2n+2}$ (kt) $L_{y2n, y2n+1}$ (t) $L_{y2n+2, y2n+1}$ (t).

Thus it follows that for m = 1, 2, 3, ...

$$F_{ym+1,ym+2}$$
 (kt) $F_{ym,ym+1}$ (t) $F_{ym+1,ym+2}$ (t),

and

 $L_{ym+1, ym+2}$ (kt) $L_{ym,ym+1}$ (t) $L_{ym+1,ym+2}$ (t).

Consequently, it follows that for m = 1, 2, 3, ..., p = 1, 2, 3, ...

 $F_{ym+1,ym+2}$ (kt) $F_{ym,ym+1}$ (t) $F_{ym+1,ym+2}$ (t / k^p),

and

 $L_{ym+1, ym+2}$ (kt) $L_{ym,ym+1}$ (t) $L_{ym+1,ym+2}$ (t / k^p).

By noting that $F_{ym+1,ym+2}$ (t / k^p) 1 and $L_{ym+1,ym+2}$ (t / k^p) 0, as p, we have for m = 1,2,3,...

$$F_{ym+1,ym+2}$$
 (kt) $F_{ym,ym+1}$ (t)

and

 $L_{ym+1, ym+2}$ (kt) $L_{ym,ym+1}$ (t).

Hence by Lemma 2.11, $\{y_n\}$ is a Cauchy sequence in X. Since X is complete, the sequence $\{y_n\}$ converges to a point z in X. Also its subsequences

 $\{Ax_{2n}\}z, \{PQx_{2n}\}z, \{Bx_{2n+1}\}z \text{ and } \{STx_{2n+1}\}z$

Case (i): PQ is continuous, the pair $\{A,PQ\}$ and $\{B,ST\}$ are both compatible of type (P_2) ,

 $\begin{array}{ll} PQPQx_{2n}PQz &, & PQAx_{2n}PQz \\ (since PQ is continuous) & \end{array}$

AAx_{2n}PQz {A,PQ} is compatible of type (P₂)) (since

By taking $x = Ax_{2n}$, $y = x_{2n+1}$ in (2), we get

 $F_{AAx2n,B x2n+1}$ (kt) { $F_{PQAx2n,ST x2n+1}$ (t) $F_{AAx2n,PQ Ax2n}$ (t) $F_{B x2n+1,ST x2n+1}$ (t) $F_{AAx2n,ST x2n+1}$ (t)}

 $F_{PQz,z}$ (kt) { $F_{PQz,z}$ (t) $F_{PQz,PQz}$ (t) $F_{z,z}$ (t) $F_{PQz,z}$ (t)}

 $F_{PQz,z}$ (kt) $F_{PQz,z}$ (t)

and

 $\begin{array}{l} L_{AAx2n,B\ x2n+1} \ (\text{kt}) \ \{L_{PQAx2n,ST\ x2n+1} \ (\text{t}) \ L_{AAx2n,PQ\ Ax2n} \ (\text{t}) \ L_{B\ x2n+1} \\ _{,ST\ x2n+1} \ (\text{t}) \ L_{AAx2n,ST\ x2n+1} \ (\text{t}) \} \end{array}$

 $L_{PQz,z}$ (kt) { $L_{PQz,z}$ (t) $L_{PQz,PQz}$ (t) $L_{z,z}$ (t) $L_{PQz,z}$ (t)}

 $L_{PQz,z}$ (kt) $L_{PQz,z}$ (t)

Therefore by lemma 2.12, we have PQz = z. Similarly by taking x = z, $y = x_{2n+1}$ in (2), we get

 $F_{Az,B x2n+1}$ (kt) { $F_{PQz,ST x2n+1}$ (t) $F_{Az,PQz}$ (t) $F_{B x2n+1}$,ST x2n+1 (t) $F_{Az,ST x2n+1}$ (t)}

 $F_{Az,z}$ (kt) { $F_{z,z}$ (t) $F_{Az,z}$ (t) $F_{z,z}$ (t) $F_{Az,z}$ (t) }

 $F_{\text{Az},z}$ (kt) $F_{\text{Az},z}$ (t)

and

 $L_{Az,B x2n+1}$ (kt) { $L_{PQz,ST x2n+1}$ (t) $L_{Az,PQz}$ (t) $L_{B x2n+1}$,ST x2n+1 (t) $L_{Az,ST x2n+1}$ (t)}

 $L_{Az,z}$ (kt) { $L_{z,z}$ (t) $L_{Az,z}$ (t) $L_{z,z}$ (t) $L_{Az,z}$ (t) }

 $L_{\mathrm{Az},z}$ (kt) $L_{\mathrm{Az},z}$ (t)

Therefore by lemma 2.12, we have Az = z.

Since A(X) ST(X), there exists wX such that z = Az = STw

By taking $x = x_{2n}$, y = w in (2), we get

 $F_{A x2n,Bw}(kt) \{ F_{PQ x2n,STw}(t) F_{A x2n,PQ x2n}(t) F_{Bw,STw}(t) F_{A x2n,STw}(t) \}$

 $F_{z,Bw}(kt) \{ F_{z,z}(t) F_{z,z}(t) F_{Bw,z}(t) F_{z,z}(t) \}$

 $F_{z,Bw}(kt)$ $F_{Bw,z}(t)$

and

 $L_{A x2n,Bw}(kt) \{ L_{PQ x2n,STw}(t) \ L_{A x2n,PQ x2n}(t) \ L_{Bw,STw}(t) \ L_{A x2n,STw}(t) \}$

 $L_{z,Bw}(kt) \{ L_{z,z}(t) \ L_{z,z}(t) \ L_{Bw,z}(t) \ L_{z,z}(t) \}$

 $L_{z,Bw}(kt) = L_{Bw,z}(t)$

Therefore by lemma 2.12, we have Bw = z. Hence STw = Bw = z.

Since (B,ST) is compatible of type (P_2), we have STBw = BBw , Therefore STz = Bz.

Now by taking $x = x_{2n}$, y = z in (2), we get

 $F_{A x2n,Bz}(kt) \{ F_{PQ x2n,STz}(t) F_{A x2n,PQ x2n}(t) F_{Bz,STz}(t) F_{A x2n,STz}(t) \}$

 $F_{z,Bz}(kt) \{ F_{z,z}(t) F_{z,z}(t) F_{Bz,z}(t) F_{z,z}(t) \}$

 $F_{z,Bz}(kt)$ $F_{Bz,z}(t)$

and

 $L_{A x 2n, Bz}(kt) \{L_{PQx 2n, STz}(t) \ L_{A x 2n, PQ x 2n}(t) \ L_{Bz, STz}(t) \ L_{A x 2n, STz}(t) \}$

 $L_{z,Bz}(kt) \{ L_{z,z}(t) \ L_{z,z}(t) \ L_{Bz,z}(t) \ L_{z,z}(t) \}$

 $L_{z,Bz}(kt) \quad L_{Bz,z}(t)$.

Therefore by lemma 2.12, we have Bz = z.

Az = Bz = PQz = STz = z.

i.e. z is a common fixed point for A, B, PQ and ST.

Case (ii): A is continuous, the pair $\{A,PQ\}$ and $\{B,ST\}$ are both compatible of type (P_2) ,

PQAx_{2n}Az {A,PQ} is compatible of type (P₂))

By taking $x = Ax_{2n}$, $y = x_{2n+1}$ in (2) and letting n, we get $F_{Az,z}$ (kt) $F_{Az,z}$ (t) and $L_{Az,z}$ (kt) $L_{Az,z}$ (t) Therefore by lemma 2.12, we have Az = z. Since A(X) ST(X), there exists wX such that z = Az = STw. By taking $x = x_{2n}$, y = w in (2), we get STw = Bw = z. Since (B,ST) is compatible of type (P₂), we have STBw = BBw, therefore STz = Bz. Now by taking $x = x_{2n}$, y = z in (2), we get z = 539

(since

Bz = STz. Since B(X) PQ(X), there exists uX such that z = Bz = PQu. By taking x = u, $y = x_{2n+1}$ in (2) and letting n, we get $F_{Au, z}$ (kt) $F_{Au, z}$ (t) and $L_{Au, z}$ (kt) $L_{Au, z}$ (t) Therefore by lemma 2.12, we have Au = z. Since z = Bz = PQu, hence Au = PQu. Since (A,PQ) is compatible of type (P₂), we have PQAu = AAu PQz = Az.

Az = Bz = PQz = STz = z.

i.e. z is a common fixed point for A, B, PQ and ST.

Now PQz = z

 $Q(PQz) = Qz \quad QPQz = Qz PQQz = Qz$ i.e. Qz is a fixed point for PQ.

Since STz = z TSTz = Tz STTz = Tz i.e. Tz is a fixed point for ST.

Similarly, STz = z SSTz = Sz STSz = Sz

Sz is a fixed point for ST. Hence Sz and Tz are fixed point for ST.

Now Az = z QAz = Qz AQz = Qz i.e. Qz is a fixed point for A.

Since Bz = z TBz = Tz BTz = Tz. i.e. Tz is a fixed point for B.

Now we prove that Tz = Qz. By taking x = Qz, y = Tz in (2), we get

 $\begin{array}{l} F_{AQz,BTz}(kt) \ \{ \ F_{PQQz,STTz}(t) \ \ F_{AQz,PQQz}(t) \ \ F_{BTz,STTz}(t) \\ F_{AQz,STTz}(t) \end{array}$

 $F_{Qz,Tz}(kt) \{ F_{Qz,Tz}(t) F_{Qz,Qz}(t) F_{Tz,Tz}(t) F_{Qz,Tz}(t) \}$

 $F_{Qz,Tz}(kt)$ $F_{Qz,Tz}(t)$

and

 $\begin{array}{l} L_{AQz,BTz}(kt) \ \left\{ \ L_{PQQz,STTz}(t) \ \ L_{AQz,PQQz}(t) \ \ L_{BTz,STTz}(t) \\ L_{AQz,STTz}(t) \right\} \end{array}$

 $L_{Qz,Tz}(kt) \{ L_{Qz,Tz}(t) \ L_{Qz,Qz}(t) \ L_{Tz,Tz}(t) \ L_{Qz,Tz}(t) \}$

 $L_{Qz,Tz}(kt) = L_{Qz,Tz}(t)$

Therefore by lemma 2.12, we have Qz = Tz. Qz is a common fixed point for A, B, PQ and ST.

By taking x = Qz and y = z in (2), we get

 $F_{AQz,Bz}(kt) \{ F_{PQQz,STz}(t) \ F_{AQz,PQQz}(t) \ F_{Bz,STz}(t) \ F_{AQz,STz}(t) \}$

 $F_{Qz,z}(kt) \{ F_{Qz,z}(t) \ F_{Qz,Qz}(t) \ F_{z,z}(t) \ F_{Qz,z}(t) \}$ (since z = Bz = STz)

 $F_{Qz,z}(kt)$ $F_{Qz,z}(t)$

and

 $L_{AQz,Bz}(kt) \{ L_{PQQz,STz}(t) \ L_{AQz,PQQz}(t) \ L_{Bz,STz}(t) \ L_{AQz,STz}(t) \}$

 $L_{Qz,z}(kt) \{ L_{Qz,z}(t) \ L_{Qz,Qz}(t) \ L_{z,z}(t) \ L_{Qz,z}(t) \}$

 $L_{\text{Oz.z}}(\text{kt})$ $L_{\text{Oz.z}}(\text{t})$

Therefore by lemma 2.12, we have Qz = z. Therefore z = Qz= Tz is a common fixed point for A, B, PQ and ST.Since STz = z Sz = z and PQz = z Pz = z

z is a common fixed point for A, B, S, T, P and Q.

For uniqueness, let v be a common fixed point for A,B,S,T,P andQ.By taking x=z, y=v in (2),we get

 $F_{Az,Bv}(kt) \{ F_{PQz,STv}(t) F_{Az,PQz}(t) F_{Bv,STv}(t) F_{Az,STv}(t) \}$

 $F_{z,v}(kt) \{ F_{z,v}(t) \ F_{z,z}(t) \ F_{v,v}(t) \ F_{z,v}(t) \}$

 $F_{z,v}(kt)$ $F_{z,v}(t)$

and

 $L_{Az,Bv}(kt) \{ L_{PQz,STv}(t) \ L_{Az,PQz}(t) \ L_{Bv,STv}(t) \ L_{Az,STv}(t) \}$

 $L_{z,v}(kt) \{ L_{z,v}(t) \ L_{z,z}(t) \ L_{v,v}(t) \ L_{z,v}(t) \}$

 $L_{z,v}(kt)$ $L_{z,v}(t)$

Therefore by lemma 2.12, we have z = v.

z is a unique common fixed point for A, B, S, T, P and Q.

If we put A = B in theorem 3.1, we have the following result:

Corollary 3.2. Let (X, F, L, ,) be a complete intuitionistic Menger space with tt t and (1-t) (1-t) (1-t) and let A, S, T, P and Q be selfmappings of X such that the following conditions are satisfied :

- A(X) ST(X) , A(X) PQ(X) ,
- There exists k (0,1) such that for every x,y X and t > 0,

 $F_{Ax,Ay}(kt) \{ F_{PQx,STy}(t) F_{Ax,PQx}(t) F_{Ay,STy}(t) F_{Ax,STy}(t) \}$

and $L_{Ax,Ay}(kt) \{ L_{PQx,STy}(t) \ L_{Ax,PQx}(t) \ L_{Ay,STy}(t) \}$,

- Either A or PQ is continuous,
- The pair {A,PQ} and {A,ST} are both compatible of type (P₁) or type (P₂),
- PQ = QP, ST = TS, AQ = QA, AT = TA.

Then A, S,T, P and Q have a unique common fixed point in X.

If we put T = Q = Ix (The identity map on X) in theorem 3.1, we have the following:

Corollary 3.3. Let (X, F, L, ,) be a complete intuitionistic Menger space with tt t and (1-t) (1-t) (1-t) and let A, B, S and P be selfmappings of X such that the following conditions are satisfied :

- A(X) S(X) , B(X) P(X) ,
- There exists k (0,1) such that for every x,y X and t > 0,

 $F_{Ax,By}(kt) \{ F_{Px,Sy}(t) F_{Ax,Px}(t) F_{By,Sy}(t) F_{Ax,Sy}(t) \}$

- and $L_{Ax,By}(kt) \{ L_{Px,Sy}(t) \ L_{Ax,Px}(t) \ L_{By,Sy}(t) \ L_{Ax,Sy}(t) \}$,
 - Either A or P is continuous,
 - The pair {A,P} and {B,S} are both compatible of type (P₁) or type (P₂),

Then A, B, S and P have a unique common fixed point in X.

If we put S = T = P = Q = Ix (the identity map on X) in corollary 3.2, we have the following:

Corollary 3.4. Let (X, F, L, ,) be a complete intuitionistic Menger space with tt and (1-t) (1-t) (1-t) and let A be a continuous mapping from X into itself. There exists k (0,1) such that for every x,y X and t > 0,

 $F_{Ax,Ay}(kt) \{ F_{x,y}(t) F_{Ax,x}(t) F_{Ay,y}(t) F_{Ax,y}(t) \}$

and $L_{Ax,Ay}(kt) \{ L_{x,y}(t) \ L_{Ax,x}(t) \ L_{Ay,y}(t) \ L_{Ax,y}(t) \}$, then A has a unique fixed point in X.

Now, we give an example to illustrate Corollary 3.3

Example 3.5. Let X = [0,1] with the metric *d* defined by d(x,y) = x - y and for each t [0, 1] define

$$\frac{t}{t+|x-y|} , if t > 0$$

$$F_{x,v}(t) = \begin{pmatrix} 0 & , if t = 0 \\ \frac{t}{t+|x-y|} & , if t > 0 \end{pmatrix}$$

 $\begin{pmatrix} 0 & , if t = 0 \\ \frac{t}{2} & , if t > 0 \end{pmatrix}$ and $L_{x,y}(t)$

$$t+|x-y|$$
 , $t = 0$

$$0 , if t = 0$$

$$\begin{cases} \frac{t}{t+|x-y|} , & if \ t > 0 \\ 0 , & if \ t = 0 \\ \frac{|x-y|}{t+|x-y|} , & if \ t > 0 \\ 1 , & if \ t = 0 \\ \frac{|x-y|}{t+|x-y|} , & if \ t > 0 \\ 1 , & if \ t = 0 \\ 1 , & if \ t = 0 \\ 1 , & if \ t = 0 \end{cases}$$

for all x,y X. Clearly (X, F, L, ,) is a complete intuitionistic Menger space where is defined by tt t and is defined by (1-t) (1-t) (1-t). Define A, P, B and S : X X by

Ax =
$$\frac{xx}{44}$$
, Sx = $\frac{xx}{22}$, Bx = $\frac{xx}{88}$, Px = x respectively.
Then A, P, B and S satisfy all the conditions of Corollary
 $\underline{11}$

3.3 with k[22 ,1) and have a unique common fixed point 0 X.

REFERENCES

- A. George and P. Veeramani, On some results in Fuzzy metric spaces, Fuzzy sets and systems, 64 (1994), 395-399.
- [2] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Sci. (1986) 771-779.
- [3] O. Kramosil and J. Michalek, Fuzzy metric and statistical spaces, Kybernetica, 11(1975), 326-334.
- [4] S. Kutukcu, A. Tuna,and A. T.Yakut, Generalized contraction mapping principal in Intuitionistic menger spaces and application to diiferential equations, Appl. Math. And Mech., 28 (2007)799-809.
- [5] K. Menger, Statistical metric, Proc. Nat, Acad. Sci. U. S. A, 28 (1942), 535-537.
- [6] S. N. Mishra, Common fixed points of compatible mappings in PM-spaces, Math. Japon.36 (1991) 283-289.
- [7] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitions and Fractals, 22 (2004)1039-1046
- [8] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 313-334.
- [9] B. Schweizer and A. Sklar, Probabilistic metric spaces, Elsevier,North-Holland, NewYork,1983.
- [10] S. Sessa, On a weak commutative condition in fixed point consideration, Publ. Inst. Math. (Beograd) 32 (1982) 146-153.