A Common Fixed Point Theorem in Intuitionistic Menger Spaces

Dr. Varsha Sharma
Deptt. Of Mathematics
Institute of Engineering \& Science, IPS Academy, Indore (M. P.)
E-mail: math.varsha@gmail.com

Abstract

The aim of this paper is to consider intuitionistic Menger Spaces and prove a common fixed point theorem for six mappings using compatibility of type $\left(\mathrm{P}_{1}\right)$ and $\left(\mathrm{P}_{2}\right)$.

Keywords: Intuitionistic Menger Spaces; Common fixed point; Compatibility of type (P_{l}) and (P_{2}).
AMS Subject Classification: $54 \mathrm{H} 25,47 \mathrm{H} 10$.

I. INTRODUCTION

There have been a number of generalizations of metric spaces. One such generalization is Menger space introduced in 1942 by Menger [5] who used distribution functions instead of nonnegative real numbers as values of the metric. This space was expanded rapidly with the pioneering works of Schweizer and Sklar[8,9]. Modifying the idea of Kramosil and Michalek [3], George and Veeramani[1] introduced fuzzy metric spaces which are very similar that of Menger space. Recently Park [7] introduced the notion of intuitionistic fuzzy metric spaces as a generalization of fuzzy metric spaces.
Kutukcu et. al [4] introduced the notion of intuitionistic Menger Spaces with the help of t -norms and t -conorms as a generalization of Menger space due to menger [5]. Further they introduced the notion of Cauchy sequences and found a necessary and sufficient condition for an intuitionistic Menger Space to be complete. Sessa [10] initiated the tradition of improving coomutativity in fixed point theorems by introducing the notion of weakly commuting maps in metric spaces. Jungck [2] soon enlarged this concept to compatible maps. The notion of compatible mapping in a Menger space has been introduced by Mishra [6].

II. PRELIMINARIES

Definition 2.1. A binary operation : $[0,1][0,1][0,1]$ is a $t-$ norm if is satisfying the following conditions:

- is commutative and associative,
- is continuous,
- a $1=\mathrm{a}$,for all a $[0,1]$,
- a b c d whenever a c and b d, for all a,b,c,d $[0,1]$.

Definition 2.2. A binary operation : $[0,1][0,1][0,1]$ is a $t-$ conorm if is satisfying the following conditions:

- is commutative and associative,
- is continuous,
- a $0=\mathrm{a}$,for all a $[0,1]$,
- a b c d whenever a c and b d, for all a,b,c,d $[0,1]$.

Remark 2.3. The concept of triangular norms (t-norms) and triangular conforms (t-conorms) are known as the axiomatic skeletons that we use for characterizing fuzzy intersectiob and union respectively. These concepts were originally introduced by Menger [1] in his study of statistical metric spaces.

Definition 2.4. A distance distribution function is a function $F: \mathrm{R} \mathrm{R}^{+}$which is non-decreasing, left continous on R and $\inf \{F(\mathrm{t}): \mathrm{t} \mathrm{R}\}=0$ and $\sup \{F(\mathrm{t}): \mathrm{t} \mathrm{R}\}=1$. We will denote by D the family of all distance distribution functions while H will always denote the specific distribution function defiend by

$$
H(x)= \begin{cases}0, & x \leq 0 \\ 1, & x>0\end{cases}
$$

$H(x)= \begin{cases}0, & x \leq 0 \\ 1, & x>0 .\end{cases}$
If X is a non-empty set $, F: \mathrm{X} \times \mathrm{X} D$ is called a probabilistic distance on X and $F(\mathrm{x}, \mathrm{y})$ is usually denoted by $F_{\mathrm{x}, \mathrm{y}}$.

Definition 2.5. A non-distance distribution function is a function $L: \mathrm{R} \mathrm{R}^{+}$which is non-increasing, right continous on R and $\inf \{L(\mathrm{t}): \mathrm{t} \mathrm{R}\}=1$ and $\sup \{L(\mathrm{t}): \mathrm{t} \mathrm{R}\}=0$. We will denote by E the family of all non-distance distribution functions while G will always denote the specific distribution function defiend by

$$
\begin{array}{r}
H(x)= \begin{cases}0, & x \leq 0 \\
1, & x>0\end{cases} \\
G(t)=\left\{\begin{array}{ll}
1, & t \leq 0 \\
0, & t>0
\end{array} G(t)= \begin{cases}1, & t \leq 0 \\
0, & t>0\end{cases} \right.
\end{array}
$$

If X is a non-empty set, $L: \mathrm{X} \times \mathrm{X} E$ is called a probabilistic non-distance on X and $L(\mathrm{x}, \mathrm{y})$ is usually denoted by $L_{x, y}$.

Definition 2.6. [4] A 5-tuple (X, F, L, ,) is sais to be an intuitionistic Menger space if X is an arbitrary set, is a continuous t-norm, is continuous t-conorm, F is a probabilistic distance and L is a probabilistic non-distance
on X satisfying the following conditions: for all $\mathrm{x}, \mathrm{y}, \mathrm{zX}$ and $\mathrm{t}, \mathrm{s} 0$
(1) $F_{\mathrm{x}, \mathrm{y}}(\mathrm{t})+L_{\mathrm{x}, \mathrm{y}}(\mathrm{t}) 1$
(2) $F_{\mathrm{x}, \mathrm{y}}(0)=0$,
(3) $F_{\mathrm{x}, \mathrm{y}}(\mathrm{t})=H(\mathrm{t})$ if and only if $\mathrm{x}=\mathrm{y}$,
(4) $F_{\mathrm{x}, \mathrm{y}}(\mathrm{t})=F_{\mathrm{y}, \mathrm{x}}(\mathrm{t})$,
(5) if $F_{\mathrm{x}, \mathrm{y}}(\mathrm{t})=1$ and $F_{\mathrm{y}, \mathrm{z}}(\mathrm{s})=1$, then $F_{\mathrm{x}, \mathrm{z}}(\mathrm{t}+\mathrm{s})=1$,
(6) $F_{\mathrm{x}, \mathrm{z}}(\mathrm{t}+\mathrm{s}) F_{\mathrm{x}, \mathrm{y}}(\mathrm{t}) F_{\mathrm{y}, \mathrm{z}}(\mathrm{s})$,
(7) $L_{\mathrm{x}, \mathrm{y}}(0)=1$,
(8) $L_{x, y}(\mathrm{t})=G(\mathrm{t})$ if and only if $\mathrm{x}=\mathrm{y}$,
(9) $L_{\mathrm{x}, \mathrm{y}}(\mathrm{t})=L_{\mathrm{y}, \mathrm{x}}(\mathrm{t})$,
(10) if $L_{\mathrm{x}, \mathrm{y}}(\mathrm{t})=0$ and $L_{\mathrm{y}, \mathrm{z}}(\mathrm{s})=0$, then $L_{\mathrm{x}, \mathrm{z}}(\mathrm{t}+\mathrm{s})=0$,
(11) $L_{\mathrm{x}, \mathrm{z}}(\mathrm{t}+\mathrm{s}) L_{\mathrm{x}, \mathrm{y}}(\mathrm{t}) L_{\mathrm{y}, \mathrm{z}}(\mathrm{s})$.

The function $F_{\mathrm{x}, \mathrm{y}}(\mathrm{t})$ and $L_{\mathrm{x}, \mathrm{y}}(\mathrm{t})$ denote the degree of nearness and degree of non-nearness between x and y with respect to t, respectively.

Remark 2.7. Every Menger space (X, F,) is intuitionistic Menger space of the form
(X, $F, 1-F$, ,) such that t -norm and t -conorm are associated, that is $\mathrm{x} y=1-(1-x)(1-y)$ for any $\mathrm{x}, \mathrm{y} X$.
Example 2.8. Let (X, d) be a matric space. Then the metric d induces a distance distribution function F defined by $F_{\mathrm{x}, \mathrm{y}}(\mathrm{t})$ $=H(\mathrm{t}-\mathrm{d}(\mathrm{x}, \mathrm{y}))$ and a non-distace function L defined by $L_{\mathrm{x}, \mathrm{y}}$ $(\mathrm{t})=G(\mathrm{t}-\mathrm{d}(\mathrm{x}, \mathrm{y}))$ for all x, yX and $\mathrm{t} \geq 0$. Then (X, F, L) is an intuitionistic probabilistic metric space. We call this instutionistic probabilistic metric space induced by a metric d the induced intuitionistic probabilistic metric space. If t norm is $\mathrm{a} b=\min \{\mathrm{a}, \mathrm{b}\}$ and t -conorm is $\mathrm{a} \mathrm{b}=\min \{1, \mathrm{a}+$ b) for all $\mathrm{a}, \mathrm{b}[0,1]$ then (X, F, L, ,) is an intuitionistic Menger space.

Remark 2.9. Note that the above example holds even with the t -norm $\mathrm{ab}=\min \{\mathrm{a}, \mathrm{b}\}$ and t -conorm $\mathrm{a} \mathrm{b}=\max \{\mathrm{a}, \mathrm{b}\}$ and hence (X, F, L, , is an intuitionistic Menger space with respect to any t -norm and t -conorm. Also note t -norm and t conorm are not associated.

Definition 2.10. [4] Let (X, F, L, ,) be an intuitionistic Menger space with $\mathrm{t} \quad \mathrm{t} \geq \mathrm{t}$ and $(1-\mathrm{t})(1-\mathrm{t}) \leq(1-\mathrm{t})$. Then:

- A sequence $\left\{x_{n}\right\}$ in X is said to be convergent to x in X if, for every >0 and $(0,1)$, there exists positive integer N such that $F_{\mathrm{xn}, \mathrm{x}}()>1-$ and $L_{\mathrm{xn}, \mathrm{x}}$ () $<$ whenever $\mathrm{n} \geq \mathrm{N}$.
- A sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in X is called Cauchy sequence if, for every >0 and $(0,1)$, there exists positive interger N such that $F_{\mathrm{xn}, \mathrm{xm}}()>1$ - and $L_{\mathrm{xn}, \mathrm{xm}}()<$ whenever $\mathrm{n}, \mathrm{m} \geq \mathrm{N}$.
- An intuitionistic Menger space ($\mathrm{X}, F, L,$,) is said to be complete if and only if every Cauchy sequence in X is convergent to a point in X .

The proof of the following lemmas is on the lines of Mishra [6].

Lemma 2.11. Let (X, F, L, ,) be an intuitionistic Menger space with $\mathrm{tt} \geq \mathrm{t}$ and $(1-\mathrm{t})(1-\mathrm{t}) \leq(1-\mathrm{t})$ and $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ be a sequence in X . If there exists a number $\mathrm{k}(0,1)$ such that:

- $\quad F_{\mathrm{yn}+2, \mathrm{yn}+1}(\mathrm{kt}) \geq F_{\mathrm{yn}+1, \mathrm{yn}}(\mathrm{t})$,
- $L_{\mathrm{yn}+2, \mathrm{yn}+1}(\mathrm{kt}) \leq L_{\mathrm{yn}+1, \mathrm{yn}}(\mathrm{t})$ for all $\mathrm{t}>0$ and n $=1,2,3,4, \ldots$ Then $\left\{y_{n}\right\}$ is a Cauchy sequence inX.

Proof. By simple induction with the condition (1), we have for all $\mathrm{t}>0$ and $\mathrm{n}=1,2,3, \ldots$,

$$
F_{\mathrm{yn}+1, \mathrm{yn}+2}(\mathrm{t}) \geq F_{\mathrm{y} 1, \mathrm{y} 2}\left(\mathrm{t} / \mathrm{k}^{\mathrm{n}}\right) \quad, \quad L_{\mathrm{yn}+1, \mathrm{yn}+2}(\mathrm{t})
$$

$\leq L_{\mathrm{y} 1, \mathrm{y} 2}\left(\mathrm{t} / \mathrm{k}^{\mathrm{n}}\right)$.
Thus by Definition 2.6 (6) and (11), for any positive integer $\mathrm{m} \geq \mathrm{n}$ and number $\mathrm{t}>0$, we have

$$
\begin{aligned}
& F_{\mathrm{yn}, \mathrm{ym}}(\mathrm{t}) \geq F_{\mathrm{yn}, \mathrm{yn}+1}\left(\frac{t}{m-n}\right)\left(\frac{t}{m-n}\right){ }_{F_{\mathrm{yn}+1, \mathrm{yn}+2}} \\
& \left(\frac{t}{m-n}\right)\left(\frac{t}{m-n}\right) F_{\ldots \ldots F_{\mathrm{ym}-1, \mathrm{ym}}}^{\left(\frac{F_{\mathrm{ym}}(t)}{m-n}\right)\left(\frac{t}{m-n}\right)} \\
& \geq \overbrace{(1-\lambda) *(1-\lambda) * \ldots \ldots \ldots \cdot \cdots(1-\lambda)}^{m-n}>(1-\lambda), \\
& \begin{array}{l}
\text { and } L^{L_{\mathrm{yn}, \mathrm{ym}}(\mathrm{t})} \leq L_{\mathrm{yn}, \mathrm{yn}+1}\left(\frac{t}{m-n}\right)\left(\frac{t}{m-n}\right) \\
\left(\frac{t}{m-n}\right)\left(\frac{t}{m-n}\right) \\
\ldots . . L_{\mathrm{ym}-1, \mathrm{ym}}\left(\frac{t}{m-n}\right)
\end{array} \\
& \leq \overbrace{\lambda \circ \lambda \circ \ldots \ldots \ldots \cdots \circ \lambda}^{m-n}<\lambda,
\end{aligned}
$$

which implies that $\left\{y_{n}\right\}$ is a Cauchy sequence in X . This completes the proof.

Lemma 2.12. Let (X, F, L, , be an intuitionistic Menger space with $\mathrm{t} \quad \mathrm{t} \geq \mathrm{t}$ abd $(1-\mathrm{t})(1-\mathrm{t}) \leq(1-\mathrm{t})$ and for all x, y $\mathrm{X}, \mathrm{t}>0$ and if for a number $\mathrm{k}(0,1)$
$L_{x, y}(\mathrm{t})$

$$
\begin{aligned}
& F_{\mathrm{x}, \mathrm{y}}(\mathrm{kt}) \geq F_{\mathrm{x}, \mathrm{y}}(\mathrm{t}) \text { and } L_{\mathrm{x}, \mathrm{y}}(\mathrm{kt}) \leq \\
& \quad \mathrm{I})
\end{aligned}
$$

then $x=y$.
Proof. Since $\mathrm{t}>0$ abd $\mathrm{k}(0,1)$ we get $\mathrm{t}>\mathrm{kt}$. In intuitionistic Menger space (X,F,L, ,), $F_{\mathrm{x}, \mathrm{y}}$ is non decreasing and $L_{\mathrm{x}, \mathrm{y}}$ is non-increasing for all $\mathrm{x}, \mathrm{y} \mathrm{X}$, then we have

$$
F_{\mathrm{x}, \mathrm{y}}(\mathrm{t}) \geq F_{\mathrm{x}, \mathrm{y}}(\mathrm{kt}) \text { and } L_{\mathrm{x}, \mathrm{y}}(\mathrm{t}) \geq
$$

$L_{x, y}(\mathrm{kt})$.
Using (I) and the definition of intuitionistic Menger space, we have $x=y$.

Definition 2.13. The self-maps A and B of an intuitionistic Menger space (X, F, L, ,) are said to be compatible if for all t >0,
 whenever $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} \lim _{n \rightarrow \infty} \mathrm{Ax}_{\mathrm{n}}$ $\lim \lim$
$={ }^{n \rightarrow \infty} n \rightarrow \infty \mathrm{Bx}_{\mathrm{n}}=\mathrm{z}$ for some z X .
Definition 2.14. Two self-maps A and B of an intuitionistic Menger space (X, F, L, ,) are said to be weakly compatible if they commute at their coincidence points, that is if $\mathrm{Ax}=\mathrm{Bx}$ for some xX then $\mathrm{ABx}=\mathrm{BAx}$.

Remark 2.15. If self-maps A and B of an intuitionistic Menger space (X, F, L, ,) are compatible then they are weakly compatible.

Definition 2.16. [4] Two self mappings A and B of an intuitionistic Menger space (X,F,L, ,) are said to be
(i) Compatible of type (P) if

$$
F_{\mathrm{ABxn}, \mathrm{BBxn}}(\mathrm{t}) \rightarrow 1 \text { and } F_{\mathrm{BAxn}, \mathrm{AAxn}}(\mathrm{t}) \rightarrow 1 \text { for all } \mathrm{t}
$$ >0

where $\left\{x_{n}\right\}$ is a sequence in X such that $A x_{n}, B x_{n} \rightarrow z$ for some z in X as $\mathrm{n} \rightarrow \infty$.
(ii) Compatible of type $\left(\mathrm{P}_{1}\right)$ if

$$
F_{\mathrm{ABxn}, \mathrm{BBxn}}(\mathrm{t}) \rightarrow 1 \text { for all } \mathrm{t}>0 .
$$

where $\left\{x_{n}\right\}$ is a sequence in X such that $A x_{n}, B x_{n} \rightarrow z$ for some z in X as $\mathrm{n} \rightarrow \infty$.
(iii) Compatible for type $\left(\mathrm{P}_{2}\right)$ if

$$
F_{\mathrm{BAxn}, \mathrm{AAxn}}(\mathrm{t}) \rightarrow 1 \text { for all } \mathrm{t}>0
$$

where $\left\{x_{n}\right\}$ is a sequence in X such that $A x_{n}, B x_{n} \rightarrow z$ for some z in X as $\mathrm{n} \rightarrow \infty$.

III. MAIN RESULTS

Theorem 3.1. Let (X, F, L, ,) be a complete intuitionistic Menger space with tt t and (1-t) (1-t) (1-t) and let A, B, S, T, P and Q be selfmappings of X such that the following conditions are satisfied :

- $\mathrm{A}(\mathrm{X}) \mathrm{ST}(\mathrm{X}), \mathrm{B}(\mathrm{X}) \mathrm{PQ}(\mathrm{X})$,
- There exists $k(0,1)$ such that for every x, y X and t >0,

$$
\begin{aligned}
& F_{\mathrm{Ax}, \mathrm{By}}(\mathrm{kt})\left\{F_{\mathrm{PQx}, \mathrm{STy}}(\mathrm{t}) F_{\mathrm{Ax}, \mathrm{PQx}}(\mathrm{t}) F_{\mathrm{By}, \mathrm{STy}}(\mathrm{t})\right. \\
& \left.F_{\mathrm{Ax}, \mathrm{STy}}(\mathrm{t})\right\}
\end{aligned}
$$

and $\quad L_{\mathrm{Ax}, \mathrm{By}}(\mathrm{kt})\left\{L_{\mathrm{PQx}, S T y}(\mathrm{t}) L_{\mathrm{Ax}, \mathrm{PQx}}(\mathrm{t}) L_{\mathrm{By}, \mathrm{STy}}(\mathrm{t})\right.$
$\left.L_{\mathrm{Ax}, \mathrm{STy}}(\mathrm{t})\right\}$,

- Either A or PQ is continuous,
- The pair $\{\mathrm{A}, \mathrm{PQ}\}$ and $\{\mathrm{B}, \mathrm{ST}\}$ are both compatible of type $\left(\mathrm{P}_{1}\right)$ or type $\left(\mathrm{P}_{2}\right)$,
- $\mathrm{PQ}=\mathrm{QP}, \mathrm{ST}=\mathrm{TS}, \mathrm{AQ}=\mathrm{QA}, \mathrm{BT}=\mathrm{TB}$.

Then $\mathrm{A}, \mathrm{B}, \mathrm{S}, \mathrm{T}, \mathrm{P}$ and Q have a unique common fixed point in X .

Proof. By (1) since $A(X) S T(X)$ for any point $x_{0} X$, there exists a point x_{1} in X such that $\mathrm{Ax}_{0}=\operatorname{STx}_{1}$. Since $B(X)$ $P Q(X)$, for this point x_{1} we can choose a point x_{2} in X such that $\mathrm{Bx}_{1}=\mathrm{PQx} \mathrm{x}_{2}$ and so on. Inductively, we can define a sequence $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ in X such that for $\mathrm{n}=0,1,2,3, \ldots$
$y_{2 n}=A x_{2 n}=S T x_{2 n+1}$ and $y_{2 n+1}=\operatorname{Bx}_{2 n+1}=P Q x_{2 n+2}$.
By (2), for all $t>0$, we have

$$
\begin{aligned}
& F_{\mathrm{y} 2 \mathrm{n}, \mathrm{y} 2 \mathrm{n}+1}(\mathrm{kt})= F_{\mathrm{Ax} 2 \mathrm{n}, \mathrm{Bx} 2 \mathrm{n}+1}(\mathrm{kt}) \\
&\left\{F_{\mathrm{PQx2n,ST} \times 2 \mathrm{n}+1}(\mathrm{t}) F_{\mathrm{Ax} 2 \mathrm{n}, \mathrm{PQ} \times 2 \mathrm{n}}(\mathrm{t}) F_{\mathrm{B} \times 2 \mathrm{n}+1, \mathrm{ST}}\right. \\
& \mathrm{x} 2 \mathrm{n}+1 \\
&\left.(\mathrm{t}) F_{\mathrm{A} \times 2 \mathrm{n}, \mathrm{ST} \times 2 \mathrm{n}+1}(\mathrm{t})\right\} \\
&=\left\{F_{\mathrm{y} 2 \mathrm{n}-1, \mathrm{y} 2 \mathrm{n}}(\mathrm{t}) F_{\mathrm{y} 2 \mathrm{n}, \mathrm{y} 2 \mathrm{n}-1}(\mathrm{t}) F_{\mathrm{y} 2 \mathrm{n}+1, \mathrm{y} 2 \mathrm{n}}(\mathrm{t})\right. \\
&\left.F_{\mathrm{y} 2 \mathrm{n}, \mathrm{y} 2 \mathrm{n}}(\mathrm{t})\right\} \quad
\end{aligned}
$$

and

$$
\begin{aligned}
& L_{\mathrm{y} 2 \mathrm{n}, \mathrm{y} 2 \mathrm{n}+1}(\mathrm{kt})= L_{\mathrm{Ax} 2 \mathrm{n}, \mathrm{Bx} 2 \mathrm{n}+1}(\mathrm{kt}) \\
&\left\{L_{\mathrm{PQx} 2 \mathrm{n}, \mathrm{ST} \times 2 \mathrm{n}+1}(\mathrm{t}) L_{\mathrm{A} \times 2 \mathrm{n}, \mathrm{PQ} \times 2 \mathrm{n}}(\mathrm{t}) L_{\mathrm{B} \times 2 \mathrm{n}+1, \mathrm{ST}}\right. \\
& \mathrm{x} 2 \mathrm{n}+1 \\
&\left.\mathrm{t}) L_{\mathrm{Ax} 2 \mathrm{n}, \mathrm{ST} \times 2 \mathrm{n}+1}(\mathrm{t})\right\} \\
&=\left\{L_{\mathrm{y} 2 \mathrm{n}-1, \mathrm{y} 2 \mathrm{n}}(\mathrm{t}) L_{\mathrm{y} 2 \mathrm{n}, \mathrm{y} 2 \mathrm{n}-1}(\mathrm{t}) L_{\mathrm{y} 2 \mathrm{n}+1, \mathrm{y} 2 \mathrm{n}}(\mathrm{t})\right. \\
&\left.L_{\mathrm{y} 2 \mathrm{n}, \mathrm{y} 2 \mathrm{n}}(\mathrm{t})\right\} \quad
\end{aligned}
$$

Similarly, we also have
$F_{\mathrm{y} 2 \mathrm{n}+1, \mathrm{y} 2 \mathrm{n}+2}(\mathrm{kt}) \quad F_{\mathrm{y} 2 \mathrm{n}, \mathrm{y} 2 \mathrm{n}+1}(\mathrm{t}) F_{\mathrm{y} 2 \mathrm{n}+2, \mathrm{y} 2 \mathrm{n}+1}(\mathrm{t})$,
and
$L_{\mathrm{y} 2 \mathrm{n}+1, \mathrm{y} 2 \mathrm{n}+2}(\mathrm{kt}) \quad L_{\mathrm{y} 2 \mathrm{n}, \mathrm{y} 2 \mathrm{n}+1}(\mathrm{t}) L_{\mathrm{y} 2 \mathrm{n}+2, \mathrm{y} 2 \mathrm{n}+1}(\mathrm{t})$.
Thus it follows that for $\mathrm{m}=1,2,3, \ldots$
$F_{\mathrm{ym}+1, \mathrm{ym}+2}(\mathrm{kt}) \quad F_{\mathrm{ym}, \mathrm{ym}+1}(\mathrm{t}) F_{\mathrm{ym}+1, \mathrm{ym}+2}(\mathrm{t})$,
and
$L_{\mathrm{ym}+1, \mathrm{ym}+2}(\mathrm{kt}) \quad L_{\mathrm{ym}, \mathrm{ym}+1}(\mathrm{t}) L_{\mathrm{ymm}+1, \mathrm{ym}+2}(\mathrm{t})$.
Consequently, it follows that for $\mathrm{m}=1,2,3, \ldots, \mathrm{p}=1,2,3, \ldots$
$F_{\mathrm{ym}+1, \mathrm{ym}+2}(\mathrm{kt}) \quad F_{\mathrm{ym}, \mathrm{ym}+1}(\mathrm{t}) F_{\mathrm{ym}+1, \mathrm{ym}+2}\left(\mathrm{t} / \mathrm{k}^{\mathrm{p}}\right)$,
and
$L_{\mathrm{ym}+1, \mathrm{ym}+2}(\mathrm{kt}) \quad L_{\mathrm{ym}, \mathrm{ym}+1}(\mathrm{t}) L_{\mathrm{ym}+1, \mathrm{ym}+2}\left(\mathrm{t} / \mathrm{k}^{\mathrm{p}}\right)$.

By noting that $F_{\mathrm{ymm}+1, \mathrm{ym}+2}\left(\mathrm{t} / \mathrm{k}^{\mathrm{p}}\right) 1$ and $L_{\mathrm{ym}+1, \mathrm{ym}+2}\left(\mathrm{t} / \mathrm{k}^{\mathrm{p}}\right) 0$, as p , we have for $\mathrm{m}=1,2,3, \ldots$
$F_{\mathrm{ym}+1, \mathrm{ym}+2}(\mathrm{kt}) \quad F_{\mathrm{ym}, \mathrm{ym}+1}(\mathrm{t})$
and
$L_{\mathrm{ym}+1, \mathrm{ym}+2}(\mathrm{kt}) \quad L_{\mathrm{ym}, \mathrm{ym}+1}(\mathrm{t})$.
Hence by Lemma 2.11, $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ is a Cauchy sequence in X . Since X is complete, the sequence $\left\{y_{n}\right\}$ converges to a point z in X . Also its subsequences
$\left\{\mathrm{Ax}_{2 n}\right\} \mathrm{z},\left\{\operatorname{PQx}_{2 n}\right\} \mathrm{z},\left\{\mathrm{Bx}_{2 \mathrm{n}+1}\right\} \mathrm{z}$ and $\left\{\operatorname{STx}_{2 \mathrm{n}+1}\right\} \mathrm{z}$
Case (i): PQ is continuous, the pair $\{\mathrm{A}, \mathrm{PQ}\}$ and $\{\mathrm{B}, \mathrm{ST}\}$ are both compatible of type $\left(\mathrm{P}_{2}\right)$,
$\mathrm{PQPQx}_{2 \mathrm{n}} \mathrm{PQz} \quad, \quad \mathrm{PQAx}_{2 \mathrm{n}} \mathrm{PQz}$
(since PQ is continuous)
$\mathrm{AAx}_{2 \mathrm{n}} \mathrm{PQz}$
(since
$\{\mathrm{A}, \mathrm{PQ}\}$ is compatible of type $\left(\mathrm{P}_{2}\right)$)
By taking $\mathrm{x}=\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{y}=\mathrm{x}_{2 \mathrm{n}+1}$ in (2), we get
$F_{\mathrm{AA} \times 2 \mathrm{n}, \mathrm{B} \times 2 \mathrm{n}+1}(\mathrm{kt})\left\{F_{\mathrm{PQAx} 2 \mathrm{n}, \mathrm{ST} \times 2 \mathrm{n}+1}(\mathrm{t}) F_{\mathrm{AA} \times 2 \mathrm{n}, \mathrm{PQ} \mathrm{Ax} 2 \mathrm{n}}(\mathrm{t}) F_{\mathrm{B}}\right.$ $\left.{ }_{x 2 n+1, S T \times 2 \mathrm{n}+1}(\mathrm{t}) F_{\mathrm{AA} \times 2 \mathrm{n}, \mathrm{ST} \times 2 \mathrm{n}+1}(\mathrm{t})\right\}$
$F_{\mathrm{PQZ}, \mathrm{z}}(\mathrm{kt})\left\{F_{\mathrm{PQ} z, \mathrm{z}}(\mathrm{t}) F_{\mathrm{PQz}, \mathrm{PQz}}(\mathrm{t}) F_{\mathrm{z}, \mathrm{z}}(\mathrm{t}) F_{\mathrm{PQ} z, \mathrm{z}}(\mathrm{t})\right\}$
$F_{\mathrm{PQZ}_{\mathrm{z}}, \mathrm{Z}}(\mathrm{kt}) F_{\mathrm{PQZ}, \mathrm{Z}}(\mathrm{t})$
and
$L_{\text {AAx2n,B x2n+1 }}(k t)\left\{L_{\text {PQAx2n,ST x2n+1 }}(\mathrm{t}) L_{\mathrm{AA} \times 2 \mathrm{n}, \mathrm{PQ}} \mathrm{Ax} 2 \mathrm{n}(\mathrm{t}) L_{\mathrm{B} \times 2 \mathrm{n}+1}\right.$ $\left.{ }_{\text {,ST } \times 2 \mathrm{n}+1}(\mathrm{t}) L_{\mathrm{AA} \times 2 \mathrm{n}, \mathrm{ST} \times 2 \mathrm{n}+1}(\mathrm{t})\right\}$
$L_{\mathrm{PQz}_{\mathrm{z}}}(\mathrm{kt})\left\{L_{\mathrm{PQz}, \mathrm{z}}(\mathrm{t}) L_{\mathrm{PQz}, \mathrm{PQz}}(\mathrm{t}) L_{\mathrm{z}, \mathrm{z}}(\mathrm{t}) L_{\mathrm{PQz}, \mathrm{z}}(\mathrm{t})\right\}$
$L_{\mathrm{PQ}_{z}, \mathrm{z}}(\mathrm{kt}) L_{\mathrm{PQ}_{z, z}}(\mathrm{t})$
Therefore by lemma 2.12, we have $\mathrm{PQz}=\mathrm{z}$. Similarly by taking $\mathrm{x}=\mathrm{z}, \mathrm{y}=\mathrm{x}_{2 \mathrm{n}+1}$ in (2), we get
$F_{\mathrm{Az}, \mathrm{B} \times 2 \mathrm{n}+1}(\mathrm{kt})\left\{F_{\mathrm{PQZ}, \mathrm{ST} \times 2 \mathrm{n}+1}(\mathrm{t}) F_{\mathrm{Az}, \mathrm{PQ} \mathrm{z}}(\mathrm{t}) F_{\mathrm{B} \times 2 \mathrm{n}+1, \mathrm{ST} \times 2 \mathrm{n}+1}(\mathrm{t})\right.$
$\left.F_{\text {Az,ST x2n+1 }}(\mathrm{t})\right\}$
$F_{\mathrm{Az}, \mathrm{z}}(\mathrm{kt})\left\{F_{\mathrm{z}, \mathrm{z}}(\mathrm{t}) F_{\mathrm{Az}, \mathrm{z}}(\mathrm{t}) F_{\mathrm{z}, \mathrm{z}}(\mathrm{t}) F_{\mathrm{Az}, \mathrm{z}}(\mathrm{t})\right\}$
$F_{\mathrm{Az}, \mathrm{z}}(\mathrm{kt}) F_{\mathrm{Az}, \mathrm{z}}(\mathrm{t})$
and
$L_{\mathrm{Az}, \mathrm{B} \times 2 \mathrm{n}+1}(\mathrm{kt})\left\{L_{\mathrm{PQ}, \mathrm{ST} \times 2 \mathrm{n}+1}(\mathrm{t}) L_{\mathrm{Az}, \mathrm{PQ} \mathrm{Z}}(\mathrm{t}) L_{\mathrm{B} \times 2 \mathrm{n}+1, \mathrm{ST} \times 2 \mathrm{n}+1}(\mathrm{t})\right.$
$\left.L_{\text {Az,ST x2n+1 }}(\mathrm{t})\right\}$
$L_{\mathrm{Az}, \mathrm{z}}(\mathrm{kt})\left\{L_{\mathrm{z}, \mathrm{Z}}(\mathrm{t}) L_{\mathrm{Az}, \mathrm{Z}}(\mathrm{t}) L_{\mathrm{z}, \mathrm{z}}(\mathrm{t}) L_{\mathrm{Az}, \mathrm{Z}}(\mathrm{t})\right\}$
$L_{\mathrm{Az}, \mathrm{Z}}(\mathrm{kt}) L_{\mathrm{Az}, \mathrm{Z}}(\mathrm{t})$
Therefore by lemma 2.12, we have $\mathrm{Az}=\mathrm{z}$.
Since $A(X) S T(X)$, there exists $w X$ such that $z=A z=S T w$

By taking $\mathrm{x}=\mathrm{x}_{2 \mathrm{n}}, \mathrm{y}=\mathrm{w}$ in (2), we get
$F_{\mathrm{A} \times 2 \mathrm{n}, \mathrm{Bw}}(\mathrm{kt})\left\{F_{\mathrm{PQ} \times 2 \mathrm{n}, \mathrm{STw}}(\mathrm{t}) F_{\mathrm{A} \times 2 \mathrm{n}, \mathrm{PQ} \times 2 \mathrm{n}}(\mathrm{t}) F_{\mathrm{Bw}, \mathrm{STw}}(\mathrm{t}) F_{\mathrm{A}}\right.$ x2n,STw $(\mathrm{t})\}$
$F_{\mathrm{z}, \mathrm{Bw}}(\mathrm{kt})\left\{F_{\mathrm{z}, \mathrm{z}}(\mathrm{t}) F_{\mathrm{z}, \mathrm{z}}(\mathrm{t}) F_{\mathrm{Bw}, \mathrm{z}}(\mathrm{t}) F_{\mathrm{z}, \mathrm{z}}(\mathrm{t})\right\}$
$F_{\mathrm{z}, \mathrm{Bw}}(\mathrm{kt}) \quad F_{\mathrm{Bw}, \mathrm{z}}(\mathrm{t})$
and
$L_{\mathrm{A} \times 2 n, \mathrm{Bw}}(\mathrm{kt})\left\{L_{\mathrm{PQ} \times 2 \mathrm{n}, \mathrm{STw}}(\mathrm{t}) L_{\mathrm{A} \times 2 n, \mathrm{PQ} \times 2 \mathrm{n}}(\mathrm{t}) L_{\mathrm{Bw}, \mathrm{STw}}(\mathrm{t}) L_{\mathrm{A}}\right.$ x2n,STw $(\mathrm{t})\}$
$L_{\mathrm{z}, \mathrm{Bw}}(\mathrm{kt}) \quad\left\{L_{\mathrm{z}, \mathrm{z}}(\mathrm{t}) L_{\mathrm{z}, \mathrm{Z}}(\mathrm{t}) L_{\mathrm{Bw}, \mathrm{Z}}(\mathrm{t}) L_{\mathrm{z}, \mathrm{z}}(\mathrm{t})\right\}$
$L_{\mathrm{z}, \mathrm{Bw}}(\mathrm{kt}) \quad L_{\mathrm{Bw}, \mathrm{z}}(\mathrm{t})$
Therefore by lemma 2.12, we have $\mathrm{Bw}=\mathrm{z}$. Hence $\mathrm{STw}=$ $\mathrm{Bw}=\mathrm{z}$.

Since $(\mathrm{B}, \mathrm{ST})$ is compatible of type $\left(\mathrm{P}_{2}\right)$, we have $\mathrm{STB} w=$ BBw , Therefore $\mathrm{STz}=\mathrm{Bz}$.

Now by taking $\mathrm{x}=\mathrm{x}_{2 \mathrm{n}}, \mathrm{y}=\mathrm{z}$ in (2), we get
$F_{\mathrm{A} \times 2 \mathrm{n}, \mathrm{Bz}}(\mathrm{kt})\left\{F_{\mathrm{PQ} \times 2 \mathrm{n}, \mathrm{STz}}(\mathrm{t}) F_{\mathrm{A} \times 2 \mathrm{n}, \mathrm{PQ} \times 2 \mathrm{n}}(\mathrm{t}) F_{\mathrm{Bz}, \mathrm{STZ}}(\mathrm{t}) F_{\mathrm{A}}\right.$ x2n,STz $(\mathrm{t})\}$
$F_{\mathrm{z}, \mathrm{BZ}}(\mathrm{kt})\left\{F_{\mathrm{z}, \mathrm{z}}(\mathrm{t}) F_{\mathrm{z}, \mathrm{Z}}(\mathrm{t}) F_{\mathrm{B}, \mathrm{Z}}(\mathrm{t}) F_{\mathrm{z}, \mathrm{z}}(\mathrm{t})\right\}$
$F_{\mathrm{z}, \mathrm{Bz}}(\mathrm{kt}) \quad F_{\mathrm{Bz}, \mathrm{z}}(\mathrm{t})$
and
$L_{\mathrm{A} \times 2 \mathrm{n}, \mathrm{Bz}}(\mathrm{kt})\left\{L_{\mathrm{PQ} \times 2 \mathrm{n}, \mathrm{STz}}(\mathrm{t}) L_{\mathrm{A} \times 2 \mathrm{n}, \mathrm{PQ} \times 2 \mathrm{n}}(\mathrm{t}) L_{\mathrm{Bz}, \mathrm{STz}}(\mathrm{t}) L_{\mathrm{A}}\right.$
$x 2 n, S T z(t)\}$
$L_{z, B z}(\mathrm{kt}) \quad\left\{L_{\mathrm{z}, \mathrm{z}}(\mathrm{t}) L_{\mathrm{z}, \mathrm{Z}}(\mathrm{t}) L_{\mathrm{Br}, \mathrm{z}}(\mathrm{t}) L_{\mathrm{z}, \mathrm{z}}(\mathrm{t})\right\}$
$L_{\mathrm{z}, \mathrm{Bz}}(\mathrm{kt}) \quad L_{\mathrm{Bz}, \mathrm{z}}(\mathrm{t})$.
Therefore by lemma 2.12, we have $\mathrm{Bz}=\mathrm{z}$.
$\mathrm{Az}=\mathrm{Bz}=\mathrm{PQz}=\mathrm{STz}=\mathrm{z}$.
i.e. z is a common fixed point for $\mathrm{A}, \mathrm{B}, \mathrm{PQ}$ and ST .

Case (ii): A is continuous, the pair $\{\mathrm{A}, \mathrm{PQ}\}$ and $\{\mathrm{B}, \mathrm{ST}\}$ are both compatible of type $\left(\mathrm{P}_{2}\right)$,
$\mathrm{AAx}_{2 \mathrm{n}} \mathrm{Az} \quad, \quad \mathrm{APQx}{ }_{2 n} \mathrm{Az}$
(since A is continuous)
$\mathrm{PQAx}_{2 \mathrm{n}} \mathrm{Az}$
(since
$\{\mathrm{A}, \mathrm{PQ}\}$ is compatible of type $\left(\mathrm{P}_{2}\right)$)
By taking $\mathrm{x}=\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{y}=\mathrm{x}_{2 \mathrm{n}+1}$ in (2) and letting n , we get $F_{\mathrm{Az}, \mathrm{z}}(\mathrm{kt}) F_{\mathrm{Az}, \mathrm{Z}}(\mathrm{t})$ and $L_{\mathrm{Az}, \mathrm{z}}(\mathrm{kt}) L_{\mathrm{Az}, \mathrm{Z}}(\mathrm{t})$ Therefore by lemma 2.12, we have $A z=z$. Since $A(X) S T(X)$, there exists $w X$ such that $z=A z=S T w$. By taking $x=x_{2 n}, y=$ w in (2), we get $S T w=B w=z$. Since $(B, S T)$ is compatible of type $\left(\mathrm{P}_{2}\right)$, we have $\mathrm{STB}=\mathrm{BBw}$, therefore $\mathrm{STz}=\mathrm{Bz}$. Now by taking $\mathrm{x}=\mathrm{x}_{2 \mathrm{n}}, \mathrm{y}=\mathrm{z}$ in (2), we get $\mathrm{z}=$
$B z=S T z$. Since $B(X) P Q(X)$, there exists $u X$ such that $z=$ $\mathrm{Bz}=\mathrm{PQu}$. By taking $\mathrm{x}=\mathrm{u}, \mathrm{y}=\mathrm{x}_{2 \mathrm{n}+1}$ in (2) and letting n , we get $F_{\mathrm{Au}, \mathrm{z}}(\mathrm{kt}) F_{\mathrm{Au}, \mathrm{z}}(\mathrm{t})$ and $L_{\mathrm{Au}, \mathrm{z}}(\mathrm{kt}) L_{\mathrm{Au}, \mathrm{z}}(\mathrm{t})$ Therefore by lemma 2.12, we have $\mathrm{Au}=\mathrm{z}$. Since $\mathrm{z}=\mathrm{Bz}=\mathrm{PQu}$, hence $\mathrm{Au}=\mathrm{PQu}$. Since $(\mathrm{A}, \mathrm{PQ})$ is compatible of type $\left(\mathrm{P}_{2}\right)$, we have $\mathrm{PQAu}=\mathrm{AAu} \mathrm{PQz}=\mathrm{Az}$.
$\mathrm{Az}=\mathrm{Bz}=\mathrm{PQz}=\mathrm{STz}=\mathrm{z}$.
i.e. z is a common fixed point for $\mathrm{A}, \mathrm{B}, \mathrm{PQ}$ and ST .

Now $\mathrm{PQz}=\mathrm{z}$
$\mathrm{Q}(\mathrm{PQz})=\mathrm{Qz} \quad \mathrm{QPQz}=\mathrm{Qz} P Q Q z=\mathrm{Qz}$ i.e. Qz is a fixed point for $P Q$.

Since $S T z=z T S T z=T z S T T z=T z$ i.e. $T z$ is a fixed point for ST.

Similarly, $\mathrm{STz}=\mathrm{z} \mathrm{SSTz}=\mathrm{Sz} \mathrm{STSz}=\mathrm{Sz}$
Sz is a fixed point for ST . Hence Sz and Tz are fixed point for ST.

Now $\mathrm{Az}=\mathrm{z} \quad \mathrm{QAz}=\mathrm{Qz} \mathrm{AQz}=\mathrm{Qz}$ i.e. Qz is a fixed point for A.

Since $\mathrm{Bz}=\mathrm{z} \mathrm{TBz}=\mathrm{Tz} \mathrm{BTz}=\mathrm{Tz}$. i.e. Tz is a fixed point for B.

Now we prove that $\mathrm{Tz}=\mathrm{Qz}$. By taking $\mathrm{x}=\mathrm{Qz}, \mathrm{y}=\mathrm{Tz}$ in (2), we get
$F_{\mathrm{AQz}, \mathrm{BTz}(\mathrm{kt})\left\{F_{\mathrm{PQQz}, \mathrm{STTz}}(\mathrm{t}) F_{\mathrm{AQz}, \mathrm{PQQz}}(\mathrm{t}) F_{\mathrm{BTz}, \mathrm{STTz}}(\mathrm{t})\right.}$
$\left.F_{\mathrm{AQz}, \mathrm{STTz}}(\mathrm{t})\right\}$
$F_{\mathrm{Qz}, \mathrm{Tz}}(\mathrm{kt})\left\{F_{\mathrm{Qz}, \mathrm{Tz}}(\mathrm{t}) \quad F_{\mathrm{Qz}, \mathrm{Qz}^{2}}(\mathrm{t}) F_{\mathrm{T}, T \mathrm{Tz}}(\mathrm{t}) F_{\mathrm{Qz}, \mathrm{Tz}}(\mathrm{t})\right\}$
$F_{\mathrm{Qz}, \mathrm{Tz}}(\mathrm{kt}) \quad F_{\mathrm{Qz}, \mathrm{Tz}}(\mathrm{t})$
and
$L_{\mathrm{AQz}, \mathrm{BTz}}(\mathrm{kt})\left\{L_{\mathrm{PQQz}, \mathrm{STTz}}(\mathrm{t}) L_{\mathrm{AQz}, \mathrm{PQQz}}(\mathrm{t}) L_{\mathrm{BTz}_{2}, \mathrm{STTz}}(\mathrm{t})\right.$
$\left.L_{\mathrm{AQz}, \mathrm{STTz}}(\mathrm{t})\right\}$
$L_{\mathrm{Qz}, \mathrm{Tz}}(\mathrm{kt}) \quad\left\{L_{\mathrm{Qz}, \mathrm{Tz}}(\mathrm{t}) L_{\mathrm{Qz}, \mathrm{Qz}^{2}}(\mathrm{t}) L_{\mathrm{Tz}, \mathrm{Tz}}(\mathrm{t}) L_{\mathrm{Qz}, \mathrm{Tz}}(\mathrm{t})\right\}$
$L_{\mathrm{Qz}, \mathrm{Tz}}(\mathrm{kt}) \quad L_{\mathrm{Qz}, \mathrm{Tz}}(\mathrm{t})$
Therefore by lemma 2.12, we have $\mathrm{Qz}=\mathrm{Tz} . \mathrm{Qz}$ is a common fixed point for A, B, PQ and ST.

By taking $\mathrm{x}=\mathrm{Qz}$ and $\mathrm{y}=\mathrm{z}$ in (2), we get
$F_{\mathrm{AQz}, \mathrm{Bz}}(\mathrm{kt})\left\{F_{\mathrm{PQQz}, \mathrm{STz}}(\mathrm{t}) F_{\left.\mathrm{AQz}, \mathrm{PQQz}(\mathrm{t}) \quad F_{\mathrm{Bz}, \mathrm{STz}}(\mathrm{t}) F_{\mathrm{AQz}, \mathrm{STz}}(\mathrm{t})\right\}}\right.$
$F_{\mathrm{Qz}, \mathrm{z}}(\mathrm{kt})\left\{F_{\mathrm{Qz}, \mathrm{z}}(\mathrm{t}) F_{\mathrm{Q} z, \mathrm{Qz}}(\mathrm{t}) F_{\mathrm{z}, \mathrm{z}}(\mathrm{t}) F_{\mathrm{Qz}, \mathrm{z}}(\mathrm{t})\right\} \quad($ since $\mathrm{z}=\mathrm{Bz}=$ STz)
$F_{\mathrm{Qz}, \mathrm{z}}(\mathrm{kt}) \quad F_{\mathrm{Qz}, \mathrm{z}}(\mathrm{t})$
and
$L_{\mathrm{AQz}, \mathrm{Bz}}(\mathrm{kt})\left\{L_{\mathrm{PQQz}, \mathrm{STz}}(\mathrm{t}) L_{\mathrm{AQz}, \mathrm{PQQz}}(\mathrm{t}) L_{\mathrm{Bz}, \mathrm{STz}}(\mathrm{t}) L_{\mathrm{AQz}, \mathrm{STz}}(\mathrm{t})\right\}$
$L_{\mathrm{Qz}, \mathrm{z}}(\mathrm{kt}) \quad\left\{L_{\mathrm{Qz}, \mathrm{z}}(\mathrm{t}) \quad L_{\mathrm{Qz}, \mathrm{Qz}}(\mathrm{t}) L_{\mathrm{z}, \mathrm{z}}(\mathrm{t}) L_{\mathrm{Qz}, \mathrm{z}}(\mathrm{t})\right\}$
$L_{\mathrm{Qz}, \mathrm{z}}(\mathrm{kt}) \quad L_{\mathrm{Q} z, \mathrm{z}}(\mathrm{t})$
Therefore by lemma 2.12, we have $\mathrm{Qz}=\mathrm{z}$. Therefore $\mathrm{z}=\mathrm{Qz}$ $=\mathrm{Tz}$ is a common fixed point for A, B, PQ and ST.Since $\mathrm{STz}=\mathrm{z} \mathrm{Sz}=\mathrm{z}$ and $\mathrm{PQz}=\mathrm{z} \quad \mathrm{Pz}=\mathrm{z}$
z is a common fixed point for $\mathrm{A}, \mathrm{B}, \mathrm{S}, \mathrm{T}, \mathrm{P}$ and Q .
For uniqueness, let v be a common fixed point for $\mathrm{A}, \mathrm{B}, \mathrm{S}, \mathrm{T}, \mathrm{P}$ andQ.By taking $x=z, y=v$ in (2), we get
$F_{\mathrm{Az}, \mathrm{Bv}}(\mathrm{kt})\left\{F_{\mathrm{PQ} z, \mathrm{STv}}(\mathrm{t}) F_{\mathrm{Az}, \mathrm{PQ} \mathrm{Z}}(\mathrm{t}) F_{\mathrm{Bv}, \mathrm{STv}}(\mathrm{t}) F_{\mathrm{Az}, \mathrm{STv}}(\mathrm{t})\right\}$
$F_{\mathrm{z}, \mathrm{v}}(\mathrm{kt})\left\{F_{\mathrm{z}, \mathrm{v}}(\mathrm{t}) F_{\mathrm{z}, \mathrm{z}}(\mathrm{t}) F_{\mathrm{v}, \mathrm{v}}(\mathrm{t}) F_{\mathrm{z}, \mathrm{v}}(\mathrm{t})\right\}$
$F_{\mathrm{z}, \mathrm{v}}(\mathrm{kt}) \quad F_{\mathrm{z}, \mathrm{v}}(\mathrm{t})$
and
$L_{\mathrm{Az}, \mathrm{Bv}}(\mathrm{kt})\left\{L_{\mathrm{PQz}, \mathrm{STv}}(\mathrm{t}) L_{\mathrm{Az}, \mathrm{PQ} z}(\mathrm{t}) L_{\mathrm{Bv}, \mathrm{STv}}(\mathrm{t}) L_{\mathrm{Az}, \mathrm{STv}}(\mathrm{t})\right\}$
$L_{\mathrm{z}, \mathrm{v}}(\mathrm{kt})\left\{L_{\mathrm{z}, \mathrm{v}}(\mathrm{t}) L_{\mathrm{z}, \mathrm{z}}(\mathrm{t}) L_{\mathrm{r}, \mathrm{v}}(\mathrm{t}) L_{\mathrm{z}, \mathrm{v}}(\mathrm{t})\right\}$
$L_{z, \mathrm{v}}(\mathrm{kt}) \quad L_{\mathrm{z}, \mathrm{v}}(\mathrm{t})$
Therefore by lemma 2.12, we have $\mathrm{z}=\mathrm{v}$.
z is a unique common fixed point for A, B, S, T, P and Q.

If we put $A=B$ in theorem 3.1, we have the following result:

Corollary 3.2. Let (X, F, L, ,) be a complete intuitionistic Menger space with tt t and (1-t) (1-t) (1-t) and let A, S, T, P and Q be selfmappings of X such that the following conditions are satisfied :

- $\mathrm{A}(\mathrm{X}) \mathrm{ST}(\mathrm{X}), \mathrm{A}(\mathrm{X}) \mathrm{PQ}(\mathrm{X})$,
- There exists $k(0,1)$ such that for every x, y X and t >0,

$$
\begin{aligned}
& F_{\mathrm{Ax}, \mathrm{Ay}}(\mathrm{kt})\left\{F_{\mathrm{PQx}, \mathrm{STy}}(\mathrm{t}) F_{\mathrm{Ax}, \mathrm{PQx}}(\mathrm{t}) F_{\mathrm{Ay}, \mathrm{STy}}(\mathrm{t})\right. \\
& \left.F_{\mathrm{Ax}, \mathrm{STy}}(\mathrm{t})\right\}
\end{aligned}
$$

and $\quad L_{\mathrm{Ax}, \mathrm{Ay}}(\mathrm{kt})\left\{L_{\mathrm{PQx}, \mathrm{STy}}(\mathrm{t}) L_{\mathrm{Ax}, \mathrm{PQx}}(\mathrm{t}) L_{\mathrm{Ay}, \mathrm{STy}}(\mathrm{t})\right.$
$\left.L_{\text {Ax }, S T y}(t)\right\}$,

- Either A or PQ is continuous,
- The pair $\{\mathrm{A}, \mathrm{PQ}\}$ and $\{\mathrm{A}, \mathrm{ST}\}$ are both compatible of type $\left(\mathrm{P}_{1}\right)$ or type $\left(\mathrm{P}_{2}\right)$,
- $\mathrm{PQ}=\mathrm{QP}, \mathrm{ST}=\mathrm{TS}, \mathrm{AQ}=\mathrm{QA}, \mathrm{AT}=\mathrm{TA}$.

Then A, S, T, P and Q have a unique common fixed point in X.

If we put $\mathrm{T}=\mathrm{Q}=\mathrm{Ix}$ (The identity map on X) in theorem 3.1, we have the following:

Corollary 3.3. Let (X, F, L, ,) be a complete intuitionistic Menger space with tt t and (1-t) (1-t) (1-t) and let A, B, S and P be selfmappings of X such that the following conditions are satisfied :

- $\mathrm{A}(\mathrm{X}) \mathrm{S}(\mathrm{X}), \mathrm{B}(\mathrm{X}) \mathrm{P}(\mathrm{X})$,
- There exists $k(0,1)$ such that for every $x, y \quad X$ and t >0,

$$
F_{\mathrm{Ax}, \mathrm{By}}(\mathrm{kt})\left\{F_{\mathrm{Px}, \mathrm{Sy}}(\mathrm{t}) F_{\mathrm{Ax}, \mathrm{Px}}(\mathrm{t}) F_{\mathrm{By}, \mathrm{Sy}}(\mathrm{t}) F_{\mathrm{Ax}, \mathrm{Sy}}(\mathrm{t})\right\}
$$

and

$$
L_{\mathrm{Ax}, \mathrm{By}}(\mathrm{kt})\left\{L_{\mathrm{Px}, \mathrm{Sy}}(\mathrm{t}) L_{\mathrm{Ax}, \mathrm{Px}}(\mathrm{t}) L_{\mathrm{By}, \mathrm{Sy}}(\mathrm{t}) L_{\mathrm{Ax}, \mathrm{Sy}}(\mathrm{t})\right\},
$$

- Either A or P is continuous,
- The pair $\{\mathrm{A}, \mathrm{P}\}$ and $\{\mathrm{B}, \mathrm{S}\}$ are both compatible of type $\left(\mathrm{P}_{1}\right)$ or type $\left(\mathrm{P}_{2}\right)$,

Then $\mathrm{A}, \mathrm{B}, \mathrm{S}$ and P have a unique common fixed point in X .
If we put $\mathrm{S}=\mathrm{T}=\mathrm{P}=\mathrm{Q}=\mathrm{Ix}$ (the identity map on X) in corollary 3.2, we have the following:

Corollary 3.4. Let (X, F, L, ,) be a complete intuitionistic Menger space with tt t and (1-t) (1-t) (1-t) and let A be a continuous mapping from X into itself .There exists $\mathrm{k}(0,1)$ such that for every $\mathrm{x}, \mathrm{y} \mathrm{X}$ and $\mathrm{t}>0$,
$F_{\mathrm{Ax}, \mathrm{Ay}}(\mathrm{kt})\left\{F_{\mathrm{x}, \mathrm{y}}(\mathrm{t}) F_{\mathrm{Ax}, \mathrm{x}}(\mathrm{t}) F_{\mathrm{Ay}, \mathrm{y}}(\mathrm{t}) F_{\mathrm{Ax}, \mathrm{y}}(\mathrm{t})\right\}$
and $L_{\mathrm{Ax}, \mathrm{Ay}}(\mathrm{kt})\left\{L_{\mathrm{x}, \mathrm{y}}(\mathrm{t}) L_{\mathrm{Ax}, \mathrm{x}}(\mathrm{t}) L_{\mathrm{A} y, y}(\mathrm{t}) L_{\mathrm{Ax}, \mathrm{y}}(\mathrm{t})\right\}$, then A has a unique fixed point in X .

Now, we give an example to illustrate Corollary 3.3
Example 3.5. Let $\mathrm{X}=[0,1]$ with the metric d defined by $d(\mathrm{x}, \mathrm{y})=\mathrm{x}-\mathrm{y}$ and for each $\mathrm{t}[0,1]$ define
$\begin{cases}\frac{t}{t+|x-y|}, \text { if } t>0 \\ 0, & \text { if } t=0\end{cases}$
$\begin{cases}F_{\mathrm{x}, \mathrm{y}}(\mathrm{t})=\left\{\begin{array}{l}t \\ t+|\mathrm{x}-\mathrm{y}|\end{array}, \text { if } t>0\right. \\ 0, & \text { if } t=0 \quad \text { and } \quad L_{\mathrm{x}, \mathrm{y}}(\mathrm{t})\end{cases}$
$\begin{cases}\frac{t}{t+|\mathrm{x}-\mathrm{y}|} & , \text { if } t>0 \\ 0 \quad & \text { if } t=0\end{cases}$
$\begin{cases}\frac{t}{t+|x-y|}, & \text { if } t>0 \\ 0, & \text { if } t=0 \\ \begin{cases}\frac{|x-y|}{t+|x-y|} & , \text { if } t>0 \\ 1, & \text { if } t=0\end{cases} \\ \begin{cases}\frac{|x-y|}{t+|x-y|} & , \text { if } t>0 \\ 1 & \text { if } t=0\end{cases} \end{cases}$
for all $\mathrm{x}, \mathrm{y} \mathrm{X}$. Clearly (X, F, L, , is a complete intuitionistic Menger space where is defined by $\mathrm{tt} t$ and is defined by (1-t) (1-t) (1-t). Define A, P, B and S : X X by
$\mathrm{Ax}=\frac{\frac{x x}{44}}{44}, \mathrm{Sx}=^{\frac{x x}{22}}, \mathrm{Bx}=^{\frac{x x}{88}}, \mathrm{Px}=\mathrm{x}$ respectively.
Then A, P, B and S satisfy all the conditions of Corollary
3.3 with $\mathrm{k}\left[{ }^{\frac{11}{22}}, 1\right.$) and have a unique common fixed point 0 X.

REFERENCES

[1] A. George and P. Veeramani, On some results in Fuzzy metric spaces, Fuzzy sets and systems, 64 (1994), 395399.
[2] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Sci. (1986) 771-779.
[3] O. Kramosil and J. Michalek, Fuzzy metric and statistical spaces,Kybernetica, 11(1975),326-334.
[4] S. Kutukcu, A. Tuna,and A. T.Yakut, Generalized contraction mapping principal in Intuitionistic menger spaces and application to diiferential equations, Appl. Math. And Mech., 28 (2007)799-809.
[5] K. Menger, Statistical metric, Proc. Nat, Acad. Sci. U. S. A, 28 (1942), 535-537.
[6] S. N. Mishra, Common fixed points of compatible mappings in PM-spaces, Math. Japon. 36 (1991) 283289.
J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitions and Fractals, 22 (2004)1039-1046
[8] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. , 10 (1960), 313-334.
[9] B. Schweizer and A. Sklar, Probabilistic metric spaces, Elsevier,North-Holland, NewYork,1983.
[10] S. Sessa, On a weak commutative condition in fixed point consideration, Publ. Inst. Math. (Beograd) 32 (1982) 146-153.

