
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 4 517 - 521

__

517

IJRITCC | April 2016, Available @ http://www.ijritcc.org

Optimum Use of Handheld Device Using Monolithic Kernel Architecture for

Security Purpose

Nilesh Dhale

CT Department

YCCE

Nagpur, India

neil.dhale@gmail.com

Prof. Shrikant B. Ardhapurkar

CT Department

YCCE

Nagpur, India

shrikant.999@gmail.com

Abstract— Recompile the kernel to customize as per user need so that unnecessary running application will not be available. This

will secure the machine for specific purpose only since we optimize the system and make it reliable. We made camera application

and specific module only sustainable in order to achieve our objective security by optimizing the system. Trusted computing

based work has been proposed for the system which is necessity of modular monolithic kernel architecture.

Keywords- Device optimization, kernel opimization, Raspberry Pi

__*****___

I. INTRODUCTION

Monolithic Kernel provides the largest possible number of

feature as well as maximum number of device driver. In order

to cover broadest scale of hardware configuration used. This is

why we prefer to compile the kernel in order to only include

what they specifically need.[1]

 The reason is it may optimize the several things such

as ring 0 space complexity as well as optimize the memory

consumption since the kernel model. If it is never used and the

locally compiled kernel can also limit the security risk problem

due to fraction of code is compiled and run.[2].

Fig 1. Kernel Ring Architecture

The kernel ring architecture descript that is has 4 ring which

limit the security risk i.e. Ring 0 to ring 3.The ring 0 is most

kernel level privilege which is only allowed to system call.

Ring 1 and ring 2 contains the device driver for hardware

enable. Outer most ring is application ring this is also called as

user mode. User requested through the applications to the

system kernel through the system call. This application could

be untrusted and attacker could use this to craft an application

that exposed the sensitive information[3]. So the attacker could

focus on the any number of the subsystems. Minimizing

software access to kernel mode reduces security risks. With

less trusted software there is a reduced likelihood of system

destabilization. A system of flags is used to associate

permission level with specific memory segments. A ring

feature enforces these permissions. In order to cross between

rings, a context switch occurs. A common design goal is to

minimize the number of context switches a subsystem must

make in order to perform a common task. Correctly gating

access prevents programs with reduced privileges from

misusing resources that belong to trusted rings. Security rings

correspond with CPU modes in some systems. This provides

added hardware protection. The dependability of module must

be identified to ignore the untrusted things and recompile these

module in the system. Here we are discussing about the

raspberry pi camera application so our work is specifically to

camera application module. For example, spyware running as a

user program in Ring 3 should be prevented from turning on a

web camera without informing the user, since hardware access

should be a Ring 1 function reserved for device drivers.

Programs such as web browsers running in higher numbered

rings must request access to the network, a resource restricted

to a lower numbered ring [3].

 As explaining about the customization of Kernel as

per user need we required tiny computer which enable the

various sensor. This sensor could be used for various purpose.

If we talking about the camera application, this sensor

application could be used to take photos of remote areas

securely. This device implementation could only know maker

so intrusion could not exploit it. This tiny device is Raspberry

pi (using B model).

A .Need of the Recompilation of the Kernel

Users want to recompile their kernel, or compile a

customized kernel. This might be for several reasons:

 We can install bug-fixes, security updates, or new

functionality by rebuilding the kernel from updated

sources.

 By removing unused device drivers and kernel sub-

systems from your con- figuration, you can

dramatically reduce kernel size and, therefore,

memory usage.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 4 517 - 521

__

518

IJRITCC | April 2016, Available @ http://www.ijritcc.org

 By enabling optimizations more specific to your

hardware, or tuning the system to match your specific

sizing and workload, you can improve performance.

 We can access additional features by enabling kernel

options or sub-systems, some of which are

experimental or disabled by default.

 We can solve problems of detection/conflicts of

peripherals. We can customize some options for

example keyboard layout, BIOS clock set. We can get

a deeper knowledge of the system.

B .Device Specifiaction :

 The Raspberry Pi Model B is the second generation

Raspberry Pi[4] credit card size. Device having A 900MHz

quad-core ARM Cortex-A7 CPU, 512 MB to 1GB RAM, 4

USB ports,34 to 40 GPIO pins, Full HDMI port, Ethernet port,

Combined 3.5mm audio jack and composite video, Camera

interface (CSI), Display interface (DSI), Micro SD card slot,

VideoCore IV 3D graphics core, camera interface.

 As the device provided the CSI the Camera Board is a

small PCB that connects to the CSI camera port on the

Raspberry Pi using a short ribbon cable. It provides

connectivity for a camera capable of capturing still images or

video recordings. The camera connects to the Image System

Pipeline (ISP) in the Raspberry Pi’s SoC, where the incoming

camera data is processed and eventually converted to an image

or video on the SD card (or other storage).

 The above device configuration shows the capability

of the system for modern application as usefulness. Although

we never used the device capability as whole, something is left

out unused. This device is cheaper and having great flexibility

capable. Operating system is used Raspbian along with Linux

kernel 4.x version.

Fig 2. Raspberry Pi Device

II. RELATED WORK :

Dr. Jordan Shropshire[2], analyzed improved hypervisor

kernel isolation but increased the vulnerability of subsystem

which had migrated out of the hypervisor. This paper explains

that Minimizing software access to kernel mode reduces

security risks.

JuanMariano de Goyeneche and Elena Apolinario

Fernandez de Sousa,1999,This paper gives concept of the

flexibility and efficient way to update the kernel and load

required module.

Andrew S. Tanenbaum, Jorrit N. Herder, and Herbert

Bos[5], Microkernel’s long discarded as unacceptable because

of their lower performance compared with monolithic kernel

might be making a comeback in operating systems due to their

potentially higher reliability, which many researchers now

regard as more important than performance.

Susmit Bagchi[7], The monolithic kernel based design of

distributed IPC architecture can offer high performance and

low latency. IPC used as middleware which easy portability

kernel-level subsystems offer improved performance and

system security.

Kimmo E.E. Raatikainen[10], In order to support

reconfigurability, the operating system research must solve

several research issues related to self awareness, detection and

notifications, system integrity, and power management.

Bo Qu ,Zhaozhi Wu[1], The experiment consists five part:

booting, interrupt and exception handling, process schedule,

memory management, and signal processing. Studied the

kernel duties.

III. IMPLEMENTATION

A. Work flow of the Project

Fig 3. Work Flow of Project

Steps for work flow:

 List all available kernel module List out the Kernel

module by using ”lsmod” command in the terminal.

This command gives the all kernel module.

 Identify pair of highly coupled module After listing

the modules there is ”used by” column where count

number is there. Maximum number of count means

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 4 517 - 521

__

519

IJRITCC | April 2016, Available @ http://www.ijritcc.org

the highly coupled module. This count defines the

dependency of each module.

 Required module The highly coupled module and all

other dependent module is required to the system.

This dependent module extracted for the

recompilation.

 Eliminate Unnecessary module If the count is zero in

”used by” column while listing means this module

cannot be used by any application and this is unused

or unnecessary module. Elimination can be done in

rmmod.

 Recompilation of kernel Install the packages needed

for Building the Kernel. Install utility for building

Linux kernel ,the utility which allow to install the

linux kernel module. This module can be install in

insmod only and delete the module in rmmod only.

Make the changes in kernel. Use the make

menuconfig command which is used for pop-up the

configuration option window. Clean the source tree

and reset the kernel package parameter. Then start

recompilation.

 Fig.4 Recompilation Workflow

B. Coupling of Module

The above flow show that List of available module gain

from the kernel. This module is currently live and all module.

We check the individual module’s used by count value if the

value is maximum in all module means this module is used by

other module in the kernel. Used by count is the actual number

of module which is used the module. We extract this module

then check again the module which is less coupled. We do this

until all module have only count is 0. This module is dependent

on each other which functionally related to each. If any of this

is missing in Kernel leads to unreliability in the system.

Fig 5. Coupling of Module

C. Required module :

After identifying the kernel coupling module, we

recognizing the kernel’s required module. Even if the module

used by count is 0 the kernel module could be used by the

system. If this Module is used by the system and not dependent

on the any other module may require for the device

functioning. This module could not allowed the system to be

unload from the kernel if we do then kernel may be improper

functioning. Other module having count is zero can easily

identified the unused module and making overhead to the

system. This module is allowed to be unloading from the

system.

Fig.6 Required Module Identification

All the module which is having count more than zero and

used by system even if count zero is functional dependent

module. This module is extracted for the recompilation process.

conversely we unload the un-necessary kernel module. This

works is logically true if we select all the dependent kernel

module. This may result in more reliability in the system.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 4 517 - 521

__

520

IJRITCC | April 2016, Available @ http://www.ijritcc.org

D. Extract dependent Module:

The dependency between kernel modules can be extracted

statically from the kernel image and modules. For that, we start

from the list of all available kernel modules for a given kernel.

We are interested in the relationships between modules, that is,

the function call graph that connects them. From this graph, it

is possible to identify pairs of modules that are highly coupled

and cause frequent execution domain switches when running

under module isolation environments. To properly define the

level of coupling between two modules, it is not enough to just

determine that there is a functional dependency between the

two. If a module M1 uses 10 functions from a module M2,

while a module M3 only uses 1 function from M2, M1 and M2

are more coupled than M3 and M2.

Fig.7 Extract dependent Module

E. Application Development Workflow

1. Configuration: Any computer system requires output

device to show the output on the monitor but

Raspberry pi has the HDMI port for output device. If

supposed don’t want to use the HDMI device then we

can connect Raspberry pi device to local network and

access that device remotely by means of IP Address.

Even if you are using in network require certain

software to access the graphical environment to

remote machine and connection establishment to

Raspberry pi device. This both the software very

convenient to interact with system and operate it.

Local network is created using modem device which

gives very easy to create local network. We can use

LAN cable or wifi device with Raspberry device.

Device has built-in LAN port. We can use wifi with

USB port. Here connection established with LAN

cable.

2. Software requirement : Xming : Xming is X Window

System Server for Microsoft Windows. It is fully

featured, lean, fast, simple because it is standalone

native Windows, easily made portable. Xming is

cross-compiled on Linux for Microsoft Windows.

PuTTy: PuTTY is a free and open-source terminal;

serial console and network file transfer application. It

supports several network protocol, including SCP,

SSH, Telnet and raw socket connection. It can also

connect to a serial port.

3. Sensor assembly: As objective is to make the camera

application, assemble the camera device which is

mounted on the Raspberry pi device board. CSI

camera serial interface provide to connect the camera

with Raspberry pi device.

4. Code for sensor application: sensor code is written in

python in the project where the code has been written

for camera for capture the images and collected at

selected location. This code is to auto capture image in

the interval for the monitoring the devices.

5. Test and debug: Run the module written for

application in python shell 2.7.9 which started

capturing the images automatically

Fig 5. Application Development Workflow

Fig.8 Application Development Workflow

a. Preparing the Host

Preparing the host means install the required software

Xming and PuTTy in the system. This xming software helps to

retrieve the graphical user interface of the Raspbian OS. This

host is Windows machine. Xmimg is x window system server

,Windows OS based Software. puTTy is software that establish

the connection through local network between host and

Raspberry Pi device.

b. Configuration of the system

1. On the Host Device first.

2. Power the Raspberry Pi device.

3. Connect the Raspberry Pi device to modem By LAN

cable.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 4 517 - 521

__

521

IJRITCC | April 2016, Available @ http://www.ijritcc.org

4. Connect the Host with wifi with modem.

5. Obtain the IP address of Raspberry pi device with help

of admin control panel of the modem.

6. Active the xmimg software then receive the IP address

of Raspberry pi de- vice. This IP address put up the

puTTy software the and enable the xming window by

mark check box.

7. Connection is well then automatically xming brings

the window of Raspbian OS startup.

8. Enter the user name as ’pi’ and password ’raspberry’

then device root pre- vilege granted.

9. To start graphical user Interface used command

”lxsession”.

IV. CONCLUSION

Trusted computing based research is could be used to

secure the hypervisor subsystem of the kernel which is need to

be trusted. Some crafted application could exposed the kernel

information by gaining the control over the un used kernel

module. For those limitation trusted computing based

approach is used to Recompile the kernel as per specific need

which also gives the performance improvement of the system.

As a result we could use this application for monitoring

system where the remote areas images could not possible by

individual any time. In such a way optimization of the system

could be possible for the various application need.

REFERENCES

[1] Raphael Hertzog and Roland mas,https://debian-

handbook.info/browse/stable/sect.kernelcompilation.html,

pp.1,05-Apr-16

[2] Shropshire, J., "Analysis of Monolithic and Microkernel

Architectures: Towards Secure Hypervisor Design," in

System Sciences (HICSS), 2014 47th Hawaii

International Conference on , vol., no., pp.5008-5017, 6-9

Jan. 2014 doi: 10.1109/HICSS.2014.615

[3] wikipedia,https://en.wikipedia.org/wiki/Protection_ring,p

p.1,08-Apr-16,

[4] RASPBERRYPIFOUNDATION,https://www.raspberrypi

.org/products/raspberry- pi-2-model-b

[5] JAndrew S. Tanenbaum, Jorrit N. Herder, and Herbert

Bos,“Can We Make Operating Systems Reliable and

Secure?”, IEEE Computer Society, 2006, pp. 44-51.

[6] Juan-Mariano de Goyeneche and Elena Apolinario

Fernandez de Sousa,“Loadable kernel modules” , IEEE,

1999,pp. 66-71.

[7] Susmit Bagchi, “Distributed IPC using Virtual Device

Driver in Monolithic Kernel”, International Conference on

Embedded and Real-Time Computing Systems and

Applications, 2012, pp. 51-57.

[8] Gaoshou Zhai, Yaodong Li, “Analysis and Study of

Security Mechanisms inside Linux Kernel”, International

Conference on Security Technology,2008, pp. 58- 61

[9] David Katz ,Antonio Barbalace, Saif Ansary, Akshay

Ravichandran and Binoy Ravindran,“Thread Migration in

a Replicated-kernel OS”,International Conference on

Distributed Computing Systems,2015, pp. 278-287.

[10] Kimmo E.E.Raatikainen, “Operating System Issues in

Future End-User Sys- tems”, International Symposium on

Personal, Indoor and Mobile Radio Com-

munications,2015, pp. 2794-2800.

[11] Bo Qu ,Zhaozhi Wu, “Kernel Experiment Series for

Operating System Course Teaching”, IEEE, 2011,pp.12-

16.

[12] A. Brinkmann,D. Eschweiler, “A Microdriver

Architecture for Error Correcting Codes inside the Linux

Kernel”,Nov. 14-20, 2009, Portland, Oregon, 2009, ACM.

[13] Silvana Castano,Maria Grazia, Giancario Martella,

Pierangela Samarati ,“De- sign of secure operating

system”,in DATABASE SECURITY,2nd ed,ACM Press

Books,1995,ch 3,sec 10,pp. 218-235

