
International Journal on Recent and Innovation Trends in Computing and Communication                                ISSN: 2321-8169 

Volume: 4 Issue: 4                                                                                                     319 - 326 

_______________________________________________________________________________________ 

319 

IJRITCC | April 2016, Available @ http://www.ijritcc.org  
____________________________________________________________________________________________________________________ 

JSP Custom Tag Library for In-Place Editing in Disconnected Architecture – A 

Case Study 

Dr.Poornima G. Naik 

Department of Computer Studies 

CSIBER 

Kolhapur, India 

pgnaik@siberindia.edu.in 

Dr. K.S.Oza 

Department of Computer Science 

Shivaji University 

Kolhapur, India 

 

 
Abstract— Even a trivial web application involves some sort of database functionality with few basic operations. However, such applications 

reveal a lot of code repetition. To avoid such a scenario, various techniques have been proposed in literature for reusability of code. One such 

technique is implementing custom tag library. Many frameworks rely on their own proprietary tag libraries for compacting the code. For 

example, struts framework abundantly uses HTML tag library, Beans tag library and Logic Tag library. JSF frame work utilizes core tag library. 

Connected architecture suffers from severe limitations and has become obsolete in web applications where no. of users and hence no. of database 

connections  is not predetermined. In such a scenario connected architecture becomes predominant and scores well on its connected counterpart. 

In order to cater this need of a typical web application, in this paper, authors have presented JSP tag libraries for in-place editing in disconnected 

architecture. The tag currently works with MS-Access, MySQL and Oracle and can easily be extended to incorporate other back ends. Current 

work reveals encapsulation basics targeting the elimination of boilerplate code where lot of repeated code is hidden behind custom tags. Such a 

mechanism boils down to the entire database operations to one liner when tag attributes conceal the plethora of information involved in 

implementation of functionality. This paper emphasizes on development of a generic tag for disparate back ends. The database extensions are 

properly taken care of. The proper data type casting is performed by pulling out database schema information from the underlying DBMS. The 

communication between Tag Handler class and JSP page is established through PageContext class. The name of JSP page becomes available to 

the Tag Handler class through PageContext class which can also be used for retrieving query string parameters in a Tag Handler class. 

Keywords-Disconnected Architecture, JDOM Parser, PageContext Class, Tag Handler Class, TagLib Directive, XML. 

 

__________________________________________________*****_________________________________________________  

I.  INTRODUCTION  

A lot of boilerplate code is seen when using JDBC. Often 
the small bit of code that is specific to the table operations such 
as, inserting a record, deleting or updating a record is concealed 
in a heap of other JDBC code. Most of the code is a boilerplate 
code required towards code management and handle 
exceptions. Such a boilerplate code makes the application hard 
to maintain, as the same code is repeated at many places to 
accomplish common, otherwise simple tasks which makes the 
application potentially buggy. There are many alternatives to 
overcome this issue. Spring‟s JDBC template is one such 
solution which potentially eliminates such boilerplate code by 
encapsulating it in various templates.  

JSP section incorporates a section entitled Tag Extensions 
describing a mechanism for creating new actions which can be 
embedded in a JSP page. There are several design goals for tag 
construction focusing on the simplicity of tag usage by the non-
programmers and the usability of tags in any JSP-Compliant 
container. 

JSP action tags encapsulate a huge amount of code inside a 
tag library and provide a convenient platform for an end user 
for rapid development of web applications. One of the authors 
has demonstrated the flavor of JSP custom tag for displaying 
table data for disparate back ends, performing various DML 
operations, displaying master-details relationships and 
performing table joins, which conceal lot of boilerplate code. 
JSP custom tags have the strength of reducing complex 
operations involving huge code to one liners [1-3]. 

. 
There are three main steps involved in writing a custom tag. 
 

• Implementation of a tag handler class for the custom 
tag extending either javax.servlet.jsp.tagext.TagSupport or 
javax.servlet.jsp.tagext.BodyTagSupport 

• Writing a Tag Library Descriptor (TLD) document in 
XML format that describes the custom tag such as its name, 
name of the tag handler class, body content, attributes, etc 

. 
• Using the custom tag in JSP page using taglib 

directive. 
Depending on the behavior of tag, tag handler class can 

implement one of the following three interfaces: 
• Tag 
• IterationTag or 
• BodyTag 

where the inheritance relationship between the three is 
shown in Figure 1. 

 
Figure 1. Inheritance Relationship Between Tag 

Handler Interfaces 
  
In order to render the implementation of custom tag easier, 

two utility classes have been provided which include default 
implementation of the methods of these interfaces. 

• TagSupport 
• BodyTagSupport 
 

TagSupport implements both the Tag and IterationTag 
interfaces whereas BodyTagSupport class extends TagSupport 
and implements BodyTag interface as shown in Figure 2. 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                                ISSN: 2321-8169 

Volume: 4 Issue: 4                                                                                                     319 - 326 

_______________________________________________________________________________________ 

320 

IJRITCC | April 2016, Available @ http://www.ijritcc.org  
____________________________________________________________________________________________________________________ 

 
Figure 2. Inheritacne Diagram for bodyTagSupport 

Class 
 

TagSupport is normally used for empty tags whereas 
BodyTagSupport is handy for tags with some content. 

Runtime expressions render the tag more configurable at 
runtime by enabling the values to be assigned to the attributes 
dynamically at runtime depending on the end user interaction 
with the application. 

 

A. Tag Libray Descriptor Document 

The tag library descriptor file is a simple XML file which 
contains a set of custom tags. Each tag may define its own set 
of attributes identified by a unique name, among  other required 
information, attributes contain some optional information such 
as whether the  attribute is a required attribute or not, whether 
can be initialized dynamically at runtime or not etc. The 
standard format of the tab library descriptor file is shown 
below: 
 
<?xml version="1.0" ?> 

<!DOCTYPE taglib 

  PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 

1.2//EN" 

  "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd"> 

 <taglib> 

  <tlib-version>1.0</tlib-version> 

  <jsp-version>1.1</jsp-version> 

  <short-name>simpletaglib</short-name> 

  <description>My first Tag Library</description> 

<tag> 

  <name>…</name> 

   <tag-class>…</tag-class>  

   <body-content>…</body-content> 

   <attribute> 

    <name>…</name> 

     . 

     . 

   </attribute> 

    . 

   . 
</tag> 
. 
. 
<tag> 
</tag> 
</taglib> 
 
The required child elements of <tag> element are <name>, 
<tag-class> and <body-content>  and optional child element is 

<attribute>. The <attribute> child element contains the 
compulsory child element <name> and other optional child 
elements such as <rtexprvalue>, <required>, etc. 
 

Using runtime expressions in custom tag attributes simply 
boils down to adding the element 

 
              <rtexprvalue>true</rtexprvalue> 

 
to the corresponding tag in the tag library descriptor file. 
Further, any attribute can be made compulsory by adding the 
element 

             <required>true</required> 
 
to the corresponding tag in the tag library descriptor file. 
 

B. Communication Between Tag Handler class and Client 

JSP Page 

The submit button on the JSP page can cause either to the 
same page or can cause a cross page post back. During the self 
post the same page is rendered with the suitable query string 
parameters for displaying the records of the detail table.  Since 
the table is rendered by the corresponding Tag Handler class, 
the whole crux of the problem is retrieving the name of the 
client JSP page within Tag Handler class and specifying the 
type of the operation the user desires to perform at  runtime. 
Hence the main logic of the application is two-fold. 

 
• Extracting the name of the JSP page using the tag in 

the Tag Handler class at runtime. 
• Extracting request parameters from the Tag Handler 

class. 
The code employed for extracting client JSP page name 

inside a Tag Handler class is 
 

String pagename=this.pageContext.getPage().toString(); 
int to=pagename.indexOf("@"); 
int from=pagename.lastIndexOf("."); 
String page=pagename.substring(from+1, to-4)+".jsp"; 

 
The syntax used for extracting request parameters from 

within Tag Handler class is   
this.pageContext.getRequest().getParameter("ParameterN

ame"); 
Substitute the actural parameter name in the place holder 

“ParameterName”. 
 
In order to render the tag generic, various mutually exclusive 
attributes specific to the back end database management system 
being used are added to the tag definition in tag library 
descriptor file. The Table I summarizes the attributes 
meaningful to different database management systems. 

TABLE I ATTRIBUTES APPLICABLE TO DIFFERENT BACKENDS 

 

 
 
The Table II summarizes the values of the attributes 
corresponding to different database management systems 
 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                                ISSN: 2321-8169 

Volume: 4 Issue: 4                                                                                                     319 - 326 

_______________________________________________________________________________________ 

321 

IJRITCC | April 2016, Available @ http://www.ijritcc.org  
____________________________________________________________________________________________________________________ 

TABLE II. ATTRIBUTE VALUES FOR DIFFERENT BACKENDS 

 

 
 
backEnd attribute defaults to MS-Access. 

C. Disconnected Architecture 

A typical database application operates in two different 

architectures. 

• Connected Architecture 

• Disconnected Architecture. 

 

The main drawback associated with connected architecture is 

that the application remains connected to the database system 

even when it is not performing any database operations. Hence 

if the web application uses connected architecture most of the 

users trying to connect to the database server will be deprived 

of database connections as the number of connections is 

limited. The communication between web server and web 

browser is facilitated using HTTP protocol which is 

connectionless and stateless. On the same lines database 

disconnected architecture operates to facilitate resource 

sharing between multiple users and enabling connection to 

database server to multiple users.  

The languages supporting web application development 

promote a disconnected architecture in which data can be 

retrieved from the database even when the connection to the 

database is closed, providing better application scalability. In 

such an architecture, table updation information is stored 

persistently in a dataset which can also be stored on a client 

machine persistently in an XML format.  

In a disconnected architecture database operations are 

performed in three phases : 

Phase 1 : Data Retrieval Phase 

In this phase connection to the database server is established 

only to pull the required data from the server after which the 

database connection is closed. 

Phase 2 : Local Data Updation 

In this phase the data is updated and the updation information 

along with the updated data is stored locally, predominantly in 

XML format.  

Phase 3 : Remote Database Updation Process 

In this phase, database server connection is re-established, 

updation information which is stored locally is read and the 

remote database  is updated accordingly. 

 
In the current work, authors have developed a custom tag 

library for common JDBC operations. This tag library enables 
an end user to perform database operations hiding traditional 
JDBC code behind the set of tags and frees an end user from 
the intricacies involved in connection to different back ends, 
sorting, filtering, joining and developing master-detail 
relationships. The project is developed in Eclipse and tested 
with several test cases. 

II. LITERATURE REVIEW 

Custom tags play an important role in web 

applications. JSP custom tags are written to extract 

data from database using drop down menu to 

generate options dynamically [4]. A through 

investigation for categorization of requirements and 

design of tag software in web application has been 

carried out by [5]. Authors have presented a case 

study of freely available tag software. The 

development and testing of an accurate mass–time 

(AMT) tag approach for the LC/MS-based 

identification of plant natural products in complex 

extracts has been reported by [6]. Its utility is 

verified by the detection and annotation of active 

principles in different medicinal plant species with 

diverse chemical constituents. Tagging plays a vital 

role in bioinformatics also . A method to generate 

poly(A) tags libraries for high-throughput 

sequencing (PAT-seq) has been reported by [7]. 

This method has been applied to investigate mRNA 

polyadenylation in Arabidopsis. 
Internet has become a vital source of 

information. Due to this there is need for powerful 

internet systems which can help in audiovisual 

content searching on internet. A new technique of 

searching and indexing of audio visual contents on 

the internet has been carried out by [8]. When 

developers  are working on different platforms then 

code migration is a major issue. Three methods of 

code migrations from JSP to ASP.NET Entire code 

transform migration, Reserved migration and 

Neutral migration has been proposed by [9]. In 

development of IOT based applications there is 

need for a way to connect things and services 

together and processing of data emitted by them 

using data flow paradigms. Automation of 

distribution of these data flows using appropriate 

distribution mechanism has been carried out by 

[10].  

III. DESIGN OF CUSTOM TAG 

This section presents structure of tag, the control flow diagram 

and the proposed algorithm for the implementation of  

InPlaceEditingTable tag. Figure 3(a) – 3(b) present the control 

flow diagram for database updation in different architectures 

in disconnected architecture.  

 

The structure of InPlaceEditingTable tag along with name of 

the tag handler class and attribute information is shown below: 

 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                                ISSN: 2321-8169 

Volume: 4 Issue: 4                                                                                                     319 - 326 

_______________________________________________________________________________________ 

322 

IJRITCC | April 2016, Available @ http://www.ijritcc.org  
____________________________________________________________________________________________________________________ 

A. Structure of InPlaceEditingTable Tag. 

 

<tag> 

    <name>InPlaceEditingTable</name> 

    <tag-class>csiber.InPlaceEditingTableTag</tag-class> 

    <body-content>empty</body-content> 

    <attribute> 

      <name>dsnName</name> 

    </attribute> 

    <attribute> 

      <name>tableName</name> 

    </attribute> 

    <attribute> 

      <name>databaseName</name> 

    </attribute> 

    <attribute> 

      <name>userName</name> 

    </attribute> 

    <attribute> 

      <name>password</name> 

    </attribute> 

     <attribute> 

      <name>ipAddress</name> 

    </attribute> 

   <attribute> 

      <name>hostString</name> 

    </attribute> 

    <attribute> 

      <name>backEnd</name> 

    </attribute> 

  </tag> 

</taglib> 

 

B.   Control flow Diagram 

 

 

Figure 3(a) – 3(b) Control Flow diagram for Database 

Updation in disconnected Architecture 

C. Proposed Algorithm 

The corresponding algorithm in C++ style is presented below: 

 

/*Any high level language interfacing with back end database 

management system provides high level API for primitive 

database functions such as creating a connection object and 

generating a page request by sending the necessary input 

information in a query string. Hence this algorithm assumes 

some standard functions as shown below:  

Standard Functions of language L used in the Algorithm  

loadDriver() -  is a built-in function in L which accepts the 

name of DBMS as parameter and loads  

  appropriate driver in memory. 

connectTo() -  is a built-in function in L which accepts the 

name of DBMS as parameter and establishes  

                        the connection to remote DBMS. 

getPageName() - is a built-in function in L which returns the 

name of requested web page. 

getQueryString() -  is a built-in function in L which accepts 

the name of the parameter and returns its  

  value. 

setQueryString() -   is a built-in function in L which accepts 

two parameters corresponding to name and  

  value of the parameter. 

renderLink() -  is a built-in function in L which accepts 

source and hypertext as parameters. 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                                ISSN: 2321-8169 

Volume: 4 Issue: 4                                                                                                     319 - 326 

_______________________________________________________________________________________ 

323 

IJRITCC | April 2016, Available @ http://www.ijritcc.org  
____________________________________________________________________________________________________________________ 

readPKName() –  is a built-in function in L which returns the 

name of the Primary Key column 

readPKValue() -  is a built-in function in L which returns the 

value of the Primary Key column for selected row. 

constructXQuery() – where X can be one of Insert, Delete or 

Update 

Constructs an SQL query corresponding to the operation 

specified. 

executeXQuery() – where X can be one of Insert, Delete or 

Update 

Executes the query against backend database management 

system. 

*/ 

/* Invoked wheh start tag is rendered */ 

function doStartTag() 

{ 

 Read backEnd; 

 if (backEnd==null) 

 { 

  backEnd=”MS-Access”; 

 } 

 /* Load appropriate database driver and construct 

database connection */ 

 

 if (backEnd==”MS-Access”) 

 { 

  loadDriver(“MS-Access”); 

  connectTo(“MS-Access”); 

 } 

 

 if (backEnd==”MySQL”) 

 { 

  loadDriver(“MySQL”); 

  connectTo(“MySQL”); 

 

 }  

 

if (backEnd==”Oracle”) 

 { 

  loadDriver(“Oracle”); 

  connectTo(“Oracle”); 

 } 

 

 /* Extract the name of the page for self postback */ 

 String page=getPageName(); 

  /* Extract Query String Parameter oper */ 

 String oper=getQueryString(“oper”); 

  

if (oper != null) 

 { 

  if (oper==”insert”) 

  { 

   displayInsertForm(); 

  } 

  else 

  { 

  

 setQueryString(“oper”,”insertrecord”); 

   renderLink(page,”Insert”); 

  } 

  if (oper==”delete”) 

  { 

   constructDeleteQuery(); 

   executeDeleteQuery(); 

  } 

 

  if (oper==”OK”) 

  { 

   constructUpdateQuery(); 

   executeUpdateQuery(); 

  } 

  if (oper==”insertrecord”) 

  { 

   constructInsertQuery(); 

   executeInsertQuery(); 

  } 

 

  if (oper==”edit”) 

  { 

   renderButton(“OK”); 

   renderButton(“Cancel”);  

  

  } 

  else 

  { 

   pColumnName=readPKName(); 

   pColumnValue=readPKValue(); 

   setQueryString(“oper”,”edit”); 

  

 setQueryString(pColumnName,pColumnValue); 

   render_link(page,”Edit”); 

  } 

 

 

 }  

} 

D. Using the code 

 

The partial code for parsing the serialized XML file using 

JDOM parser is show below: 

 

SAXBuilder builder = new SAXBuilder(); 

File xmlFile = new File(tableName+".xml");            

String cvalue=null; 

String ctype=null; 

String name=null; 

try { 

 

        Document document = (Document)  

                                builder.build(xmlFile); 

        Element rootNode = document.getRootElement(); 

        List list = rootNode.getChildren("insert");      

        for (int i = 0; i < list.size(); i++) { 

        query="INSERT INTO " + tableName + " VALUES(";  

        Element node = (Element) list.get(i); 

        List list1 = node.getChildren("column");      

        for (int j=0;j<list1.size()-1;j++){ 

              Element node1 = (Element) list1.get(j);   

 ctype=node1.getChildText("type").trim();                

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                                ISSN: 2321-8169 

Volume: 4 Issue: 4                                                                                                     319 - 326 

_______________________________________________________________________________________ 

324 

IJRITCC | April 2016, Available @ http://www.ijritcc.org  
____________________________________________________________________________________________________________________ 

              cvalue=node1.getChildText("value"); 

 if (ctype.equals("CHAR") || 

ctype.equals("VARCHAR") || ctype.equals("VARCHAR2"))                        

    cvalue="'"+cvalue+"'"; 

    query+=cvalue; 

    query+=",";              

         } 

         Element node1 = (Element) list1.get(list1.size()-1); 

         ctype=node1.getChildText("type").trim();                   

         cvalue=node1.getChildText("value"); 

         if (ctype.equals("CHAR") || ctype.equals("VARCHAR") 

|| ctype.equals("VARCHAR2"))           

              cvalue="'"+cvalue+"'"; 

              query+=cvalue;            

 query+=")"; 

 st = con.createStatement(); 

              st.executeUpdate(query); 

} 

 

IV. RESULTS AND ANALYSIS 

The algorithm presented in Section III (C) is implemented in 

Java using MS-Access, MySQL, and Oracle 10g back end 

database management systems.  

 

A. Pre-requisite components 

Figure 4. shows pre-requisite components required for the 

bug-free working of custom components.  

  

databaseoperations.tld jdom-2.0.5.jar mysql-connector-java-5.1.15-bin.jar

ojdbc14.jar
 

Figure 4. Components Required for Working of a Custom 

Tag 

In order to access and display MS-Access table you just need 

to create a 32-bit DSN on windows and for displaying MySQL 

and Oracle tables you can download  appropriate JDBC 

drivers and place them in WEB-INF/lib folder of your context 

root. For parsing XML file using JDOM parser jdom-2.0.5.jar 

file is required in WEB-INF/lib folder. 

 

B. JSP Client for MS-Access 

<%@ taglib uri="/WEB-INF/lib/databaseoperations.tld" 

prefix="Database" %> 

<html> 

  <head> 

    <title>Custom Tags for Database Operations</title> 

  </head> 

  <body> 

    <h3>In Place Editing</h3>  

    <Database:InPlaceEditingTable dsnName="clibrary" 

tableName="book"/><br>       

    </body> 

</html> 

JSP Client for My-SQL 

<%@ taglib uri="/WEB-INF/lib/databaseoperations.tld" 

prefix="Database" %> 

<html> 

  <head> 

    <title>Custom Tags for Database Operations</title> 

  </head> 

  <body> 

    <h3>In Place Editing</h3>  

    <Database:InPlaceEditingTable databaseName="library" 

tableName="book" backEnd="MySQL" userName="root" 

password="mca" /><br>       

    </body> 

</html> 

 

JSP Client for Oracle 

<%@ taglib uri="/WEB-INF/lib/databaseoperations.tld" 

prefix="Database" %> 

<html> 

  <head> 

    <title>Custom Tags for Database Operations</title> 

  </head> 

  <body> 

    <h3>In Place Editing</h3>  

    <Database:InPlaceEditingTable tableName="book" 

backEnd="Oracle" userName="system" password="siber" 

ipAddress="192.168.30.94" /><br>       

    </body> 

</html> 

C. Structure of XML File Generated 

XML file is generated and stored locally when the serilizable 

attribute is set to true which contains updation information. 

The structure of the XML file is shown below: 

<operations> 

  <insert> 

     <column> 

       <name>bookId</name> 

       <type>INT     </type> 

       <value>1     </value> 

     </column> 

 

     <column> 

       <name>bookName</name> 

       <type>CHAR     </type> 

       <value>vvv     </value> 

     </column> 

 

     <column> 

       <name>bookPrice</name> 

       <type>FLOAT     </type> 

       <value>1     </value> 

     </column> 

  </insert> 

  <insert> 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                                ISSN: 2321-8169 

Volume: 4 Issue: 4                                                                                                     319 - 326 

_______________________________________________________________________________________ 

325 

IJRITCC | April 2016, Available @ http://www.ijritcc.org  
____________________________________________________________________________________________________________________ 

     <column> 

       <name>bookId</name> 

       <type>INT     </type> 

       <value>2     </value> 

     </column> 

 

     <column> 

       <name>bookName</name> 

       <type>CHAR     </type> 

       <value>ddd     </value> 

     </column> 

 

     <column> 

       <name>bookPrice</name> 

       <type>FLOAT     </type> 

       <value>2     </value> 

     </column> 

</insert> 

</operations> 

 

On the contrary, if the serializable attribute is set to false, all 

the database operations are immediately committed on the 

same database connection instead of storing them persistently. 

 

The Graphical User Interface (GUI) dynamically generated by 

the custom tag is shown in Figure 5(a). „Apply changes‟ link is 

dynamically rendered, if the serializable attribute is set to true.  

On clicking „Apply changes‟ link, the XML file is parsed 

using JDOM parser and updation information is committed to 

the remote database. Figure 5(b) and 5(c) show GUI on 

clicking Insert link and Edit link, respectively.   

 

 
 

 
 

 
 

Table III depicts the various actions performed on clicking a 

button/link on user interface, actions performed, query string 

information, if any, passed to the target page and action 

outcome in each case.  

TABLE III ACTIONS PERFORMED AND ACTION OUTCOMES 

 

 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                                ISSN: 2321-8169 

Volume: 4 Issue: 4                                                                                                     319 - 326 

_______________________________________________________________________________________ 

326 

IJRITCC | April 2016, Available @ http://www.ijritcc.org  
____________________________________________________________________________________________________________________ 

V. CONCLUSION 

In this paper, the authors have provided the design and 

implementation of a custom tag which operates in a 

disconnected architecture rendering it suitable for web 

applications where no. of database connections is not known 

before hand. Two options are presented to an end user, 

immediately committing the database operations to a remote 

database server   or store all of them locally in an XML file 

format and commit all of them at some time in future as a 

single logical transaction when the load on the server is light. 

For parsing XML file JDOM parser which offers object-

oriented interface is adopted. 

REFERENCES 

[1] Dr. Poornima G. Naik, JSP Custom Tag Library for 

Implementing JDBC Functionality, 

http://www.codeproject.com/Articles/1084607/JSP-Custom-

Tag-Library-for-Implementing-JDBC-Funct, 11th March 2016. 

[2] Dr. Poornima G. Naik, JSP Custom Tag Library (Version 2) for 

DML Operations, 

http://www.codeproject.com/Articles/1085185/JSP-Custom-

Tag-Library-Version-for-DML-Operations, 14th March, 2016 

[3] Dr. Poornima G. Naik, JSP Custom Tag Library for Table Joins 

and Master Detail Relationships,  

http://www.codeproject.com/Articles/1086716/JSP-Custom-

Tag-Library-for-Table-Joins-and-Master, 19th March, 2016. 

[4] Xiong, Yingyidu. "The design of automatically generating drop-

down a menu on JSP." Computer Science and Information 

Processing (CSIP), 2012 International Conference on. IEEE, 

2012. 

[5] Gupta, Karan, and Anita Goel. "Requirement Estimation and 

Design of Tag software in Web Application." International 

Journal of Information Technology and Web Engineering 

(IJITWE) 9.2 (2014): 1-19. 

[6] Cuthbertson, Daniel J., et al. "Accurate mass–time tag library for 

LC/MS based metabolite profiling of medicinal 

plants." Phytochemistry 91 (2013): 187-197. 

[7] Liu, Man, Xiaohui Wu, and Qingshun Quinn Li. "DNA/RNA 

Hybrid Primer Mediated Poly (A) Tag Library Construction for 

Illumina Sequencing."Polyadenylation in Plants: Methods and 

Protocols (2015): 175-184. 

[8] Kamal, Arif. "Tag Based Audiovisual Content Indexing.", 

MASTER'S THESIS, Master of Science, Computer Science and 

Engineering,Luleå University of Technology, Department of 

Computer science, Electrical and Space engineering, 2016 

[9] Xu, Ming, et al. "Research on the Method of Code Migration 

from JSP to ASP. NETMing." Advanced materials research. 

Vol. 756. 2013. 

[10] Nam Ky Giang, Michael Blackstock, Rodger Lea, Victor C.M. 

Leung , Developing IoT Applications in the Fog: a Distributed 

Dataflow Approach. Procs. of the Internet of Things (IOT), 2015 

International Conference on the, Seoul, Korea, Oct 26-28, 2015 

 

 

 

 

http://www.ijritcc.org/
http://www.codeproject.com/Articles/1084607/JSP-Custom-Tag-Library-for-Implementing-JDBC-Funct
http://www.codeproject.com/Articles/1084607/JSP-Custom-Tag-Library-for-Implementing-JDBC-Funct
http://www.codeproject.com/Articles/1085185/JSP-Custom-Tag-Library-Version-for-DML-Operations
http://www.codeproject.com/Articles/1085185/JSP-Custom-Tag-Library-Version-for-DML-Operations
http://www.codeproject.com/Articles/1086716/JSP-Custom-Tag-Library-for-Table-Joins-and-Master
http://www.codeproject.com/Articles/1086716/JSP-Custom-Tag-Library-for-Table-Joins-and-Master

