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Abstract—In this paper we consider a semi-linear dynamical system with fuzzy initial condition. We discuss the results regarding the 

approximate controllability of the system and existence of the controller which steers the system to the desired state. The theory is substantiated 

with an illustrative example. 
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I.  INTRODUCTION 

In this paper we propose to establish the controllability 
results for the semi-linear dynamical system. A system with the 
coefficient of the highest order derivative is free from 
dependent variable given as 

 

0

,

(0)   

dX
  AX BU  F t X

dt

X X

  

 

                        (1) 

where, 
1nX is the state vector, 

1mU 
is the control vector, 

nnA 
is 

the time invariant evolution matrix, 
n mB 

is the control matrix 

and F(t, X) is  E
n
 – valued mapping defined on    nE,0 ,   

F = (f1, f2, …fn).  

 
For the dynamical system represented by form (1) when 

there are possibilistic uncertainties or vagueness for the entries 
in the evolution matrix A, control matrix B and or in the initial 
condition X0, a suitable model will require setup involving 
fuzzy numbers.  In the most general form of the fuzzy 
dynamical system equivalent to (1) the entries of the matrix A, 
B and the initial condition X0 are represented by fuzzy numbers. 
In this article, we will consider the case where the initial 
condition is represented by fuzzy number. Such a system 
occurs as intermediate one while studying controlled diffusion 
systems, controlled prey-predator systems, more general 
controlled Lotka-Volterra models.  
 

Study of first order linear or nonlinear fuzzy dynamical 
equations (FDEs) is inevitable as they appear extensively in 
many applications. The concept of a fuzzy derivative was first 
introduced by S. L. Chang, L. A. Zadeh in [1]. It was followed 
up by D. Dubois, H. Prade in [2]. Dubey in [3] have established 
controllability for linear time invariant fuzzy systems. Lin [4] 
adopted max-product automata to model the system whereas, 
Qiu [5], Cao and Ying [6] modeled the system using max-min 
automata and for such systems they developed the supervisory 
control under full crisp observations. The controllability and 
observability criteria for fuzzy dynamical control systems were 
discussed by Ding and Kandel [7, 8]. We propose results for 
semilinear time invariant systems with fuzzy initial condition. 

 
The paper is organized in following manner; in the initial 

three sections we present the concepts and introductory tools to 

deal with fuzzy initial value problems. In the following section 
we propose the results for the controllability of the system. The 
illustrative real life example involving fuzzy initial condition is 
solved using proposed scheme. The last section concludes the 
article with remarks and observations. 

II. PRELIMINARIES 

Let  n

KP   denote the family of all nonempty compact, 

convex subsets of .n  If  ,  and  n

KPBA , , then 

     BABA   ,    AA   , AA 1  and if 

0,  , then      AAA   .  

The distance between A and B is defined as Hausdroff 
metric 

   ||||infsup||,||infsupmax,










babaBAd
AaBbBbAa

H
 

where ||.|| denotes a norm in R
n
. Then it is clear that 

(  n

KP  , Hd ) becomes a metric space refer [9]. 

 

Definition 2.1:  A fuzzy number u is completely determined 

by any pair  ul uuu ,  of functions       1,0:, ruru ul
, 

satisfying the three conditions: 

(i)  rul
 is a bounded, monotonic, non-decreasing left-

continuous function for all  1,0r . 

(ii)  ruu
 is a bounded, monotonic, non-increasing right-

continuous function for all  1,0r . 

(iii) For all  1,0r we have:    .ruru ul   

For every  ul uuu , ,  ul vvv ,  and k > 0 we define 

addition and scalar multiplication as follows: 

  ),()()( rvrurvu lll     ),()()( rvrurvu uuu                   (2) 

  ),()( rkurku ll      ),()( rkurku uu            (3) 

 
The collection of all fuzzy numbers with addition and 

multiplication as defined by equations (2), (3) is denoted by E
1
.  

 

Let  attI  00, , 00 t and a >0 and denote by 

  1,0:  nn uE  where, u satisfies the conditions given 

below: 
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(i) u is normal i.e. there exist an   100  xux n . 

(ii) u is fuzzy convex, that is for 10   , 

       2121 ,min1 xuxuxxu   ; 

(iii) u is upper semi continuous 

(iv)     0|
0

 xuxclu n  is compact. 

 

For 10   denote     
 xuxu n | . Then 

from (i)-(iv), it follows that the  - level set    nPu 


 for 

all 10  . Especially for addition and scalar multiplication, 

we have        ,


vuvu      
ukku  .  For the results 

wherever fuzzy number is considered we will assume the 
triangular fuzzy number A = (a,b,c) given as  

 
 

 
 


























otherwise

cx
bc

xc

bxa
ab

ax

xA

          0           

b  )(

                      (4) 

For A such as given by (4), the  - cut for 10  is 

denoted by  

ul AA , . For  = 0
+
, We denote the level cut by 

 ul AAA ,0  = [a, c] and for  = 1, .1 bA   

If nnng : is a function, then according to 

Zadeh’s extension principle we can extend g to 
nnn EEE  defined as   

 
    xvxuzvug

yxgz

,minsup,
,

 . 

It is well known that        
vugvug ,,   for all 

10  ,,  nEvu and continuous function g, refer [9].  

 

Definition 2.2: Let     

21 , uudH
be the Hausdroff distance 

between the set  1u ,  2u  of  n

KP  . Then we define 

        ,sup, 21
10

21





uuduud H


 the distance 

between 1u and 2u  in .nE  Then (
nE ,d) is a complete space, 

refer [9,10]. Some properties of the metric d are as follows 

refer [10-15]: 

   213231 ,, uuduuuud   and    1221 ,, uuduud   

   2121 ,, uuduud   , 

     233121, uuduuduud   

for all nEuuu 321 ,, and  . 

Definition 2.3: A fuzzy function 1: EIf  is called 

continuous if for t  and 0 , 0 , such that 

      00 tftfdtt . 

 

Definition 2.4: Consider nEyx , , if there exists nEz  such 

that zyx  , then z is called the H-difference of x and y and it 

is denoted by yx  . A mapping nEIF : is differentiable at 

It if there exists a   nEtF '  such that the limits 

   
h

tFhtF

h


0

lim  and    
h

htFtF

h


0

lim  exist and are equal to 

 tF ' . Here the limits are taken in the metric space  dE n , . 

 

Definition 2.5:  If nEIF :  is continuous, then it is integrable 

and 
 

b

c

c

a

b

a

FFF . The following properties of the integral are 

valid. If nEIGF :,  are integrable,  , the following 

properties hold: 

  ;   GFGF  

   ,FF  

 GFd , is integrable; 

   GFdGFd ,,   

Finally, let nEIF : be continuous. Then the integral 

  
t

a

FtG
 is differentiable and    ,' tFtG  Furthermore, 

     

t

a

tFaFtF ' . Refer Kaleva [12,13],  Nieto [11], 

Lakshmikantham [10] for details. 
 

Definition 2.6: The nonlinear function 

  nn EEF ,0: is a continuous function and satisfies the 

Lipschitz condition 

               
 yxdhytFxtFd , ,,,  

for all     nEyx  , , h is a positive constant. 

 

Definition 2.7: A dynamical system is said to be completely 

controllable, if for any initial and final states 
0X  and 

TX  in 

the state space X, there exist control U that will steer the 

system from  0 0X t X  to   TX T X . 

 

Definition 2.8: A dynamical system is said to be 

approximately controllable, if for any initial and final states 

0X  and 
TX  in the state space X, there exist control U that will 

steer the system from  0 0X t X  to   TX T X . 

 

Definition 2.9:  Consider a linear time invariant system in   

 

, 

 
 

A necessary and sufficient condition for the pair (A,B) to be 
controllable is  
 

rank(W) = rank(B | AB | A
2
B |…| A

n-1
B ) = n. 

 

here,  is called Kalman’s controllability matrix. 

 

III. CONTROLLABILITY OF CRISP SEMI-LINEAR SYSTEM 

The crisp or ordinary time invariant semi-linear system 
given by   
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0 0

( , )

( )   

dX
  AX  BU F X t

dt

X t X

  



                            (5) 

where, 

;  
2

1





















nx

x

x

X


 
1

2
;

m

u

u
U

u

 
 
 
 
 
 


;  

211

22221

11211





















nnn

n

n

aaa

aaa

aaa

A






 

11 12 1

21 22 2

1 21

 = ;

m

m

n nm

b b b

b b b
B

b b b

 
 
 
 
 
 





 
 

 

 

 

;  
2

1





















Xf

Xf

Xf

XF

n



 

 

where, A is nonsingular and the nonlinearity in the system (5) 

is bounded or Lipschitz. 

 

Linearization of system (5) about the equilibrium state, 
eX  

gives the system 

0 0( )   

L L

dX
  A X  B U

dt

X t X

 



                              (6) 

where, 

  ;

e

i

L ij

j X X

f
A a

x


  
    

    

  = ;

e

i

L ij

j X X

f
B b

u


  
   

    

 

 
For system (6) if the controllability condition is satisfied 

then the minimum norm steering controller can be defined as, 
 

     (7) 

 

, in equation (7) is called controllability grammian 

given by  

 
The controller given by (7) steers the system from the initial 

state to the desired final state, and the state trajectory at time t 
is given by, 

          (8) 
Now we state our results for system (1) for which the initial 

condition is represented by fuzzy number.  

IV. MAIN RESULT 

We come back to our system   

00

~
   )(

),(

XtX

tX FBU AX  
dt

dX



                        (9) 

The only difference between system (5) and (9) is that in 

system (9) the initial condition is represented by fuzzy 

number. 

 

Since ( , )F X t  is Lipschitz, system (9) can be linearized 

similar to (5) around the equilibrium, giving us 

00

~
   )( XtX

UBX  A 
dt

dX
LL



                           (10) 

where, 
  ;

e

i

L ij

j X X

f
A a

x


  
    

    

  = ;L ijB b  
 

For the sake of convenience the evolution and control 
matrix will be denoted by A and B respectively even for the 
linearized system. 

 

Theorem 4.1  If A is non-singular and  the transfer functions 

fi’s are Lipschitz continuous then system (9) is controllable 

form the initial condition 
0

~
   )0( XX 

 
to the final state 

TXTX
~

   )(  ,  by the controller given by 

 
 

This controller steers the system from the initial state 

0

~
   )0( XX   to the final state

TXTX
~

   )(  , giving the state 

trajectory for t > 0, as 

          (11) 

Proof: Since 
0

~
   )0( XX  , is a triangular fuzzy number, we can 

take its level cuts. For  = 0 we 

get,
00(0) (0), (0) ,X X X X X     

   
 , where, 00 ,X X  are real 

numbers and ( ) ( ), ( ) , TTX T X T X T X X     
   

 , where, , TTX X  are 

real numbers. Also taking  -cut for , we get 

  given as 

 
Comparing the lower and upper of the interval we get, 

   (12) 

   (13) 

Since  and  exists for all 0 , system (10) has at-

least weak fuzzy controller, such a weak solution would be 

strong fuzzy controller if  

(i)  for all  1,0 .  

(ii) For       1,0,  
 

The fuzzy controller can be constructed as shown in the next 

lemma. 

 
Using (12) we can compute  

       (14) 
And (13) allows us to compute 

      (15) 

Here also if  and  exists for all 0 , system (10) 

has at-least weak fuzzy state vector, and we would have strong 
fuzzy state trajectory if  

(i)  for all  1,0 . 

(ii) For       1,0,  
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The fuzzy state vector for all t can be constructed as shown 
in the next lemma. 
 

Lemma: The i
th

 component of the fuzzy state transition vector, 

of the dynamical system (9) with fuzzy initial condition
0

~
X  

can be reconstructed form the i
th

 components of 
lX  and 

uX defined in the Theorem 1. And the and i
th

 component is 

given as 

  ii xx ~  ~
1,0



  

where,   uiliiii xxxxx 
  , ~and   ~~  . 

Proof: At some time t > 0, Consider the i
th

 component ix~  of 

the fuzzy state transition vector . For each particular Ry , 

let  yxa i
~ . Then 

   

   






























































y
i

x

a

y
i

x

a

y
i

xy
i

x

~

1,

sup,~

,0

supmax                              

~

1,0

sup~  
1,0












 

For each 1] (a,  , we have    ayxi
~  and, therefore 

  0~ yxi
. On the other hand for each  a0,  , we have 

   ayxi
~ , therefore    yxi

~ . 

Hence, 

 
 

 
 yxayx ii

~  sup~  
1,01,0







 




 



                     # 

Thus each component of the state vector can be constructed 

form the corresponding  - levels obtained for of system (9). 

V. ILLUSTRATIVE EXAMPLE: 

Consider the system  
 

where, A  ,  and  

with fuzzy condition  and 

. Since f(x) is Lipschitz in [0, 1] we can 

linearize the given system. 

 
Linearizing we get,  

 
with  ,  . 

Therefore the fundamental matrix is  and 

the state transition matrix is given by , so 

 

The controllability Grammian matrix is given by  

 

                                    
                    

 

Since,   the system is controllable. 

 

Now the alpha-cut of  and 

. 

 
Now considering them we get systems to be solved as: 

System [L]: with the initial state vector  and final 

state vector , with respect to the lower cuts of 

state vector at  and . 

System [U] : with the initial state vector  and 

final state vector , with respect to the upper cuts of 

state vector at  and . 

 
We separately solve systems (L) and (U) which gives the 

lower cut and upper cut of the components of . 

 

For system [L] we can find the controller  as follows 

 

 
           

 
 

Similarly, for system [U] we can find the controller   

 

 
 

The lower cut and upper cut of components of state vector 
 for (L) and (U) can be computed as follows 

 

 
Therefore fuzzy  is  

 
 

For system [U] we can find the solution  as follows 

 
 

Therefore fuzzy  is 

 
 
Using lemma we construct back the fuzzy state vector.  
 
The transition of state for each components are shown in Fig. 1 
(a) and (b). 

VI. CONCLUSION 

We have established results for the approximate 
controllability of semilinear dynamical system with fuzzy 
initial condition. The result for the existence and computation 
for the fuzzy controller and fuzzy state transition vector is 
given. The results are substantiated by illustrative examples. 
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