
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 4 234 - 237

__

234

IJRITCC | April 2016, Available @ http://www.ijritcc.org

Test Case Prioritization Based on Specific Events

Ms. Snehal D. Shinde

Department of Computer Engineering

Bharati Vidyapeeth’s Deemed University College of

Engineering,Pune.

snehalmp14@gmail.com

Dr. Shashank.D. Joshi

Department of Computer Engineering

Bharati Vidyapeeth’s Deemed University College of

Engineering,Pune.

sdj@live.in

Abstract— Event-Driven Software (EDS) system changes its state according to arrival of events for example graphical user interface and web

framework. So due to there are number of events generated by users waiting in queue, this system is raise issue for testing. Until now, there are

more efforts taken for testing this issue but these efforts are not collective. In this project work, our try is to give collective solution for graphical

user interface and Web frameworks combined. We designed model to test graphical user interface and web application combined by using test

cases prioritization. Main objective is here to deploy this model to prioritize test cases based on events. Our proposed work shows that graphical

user interface and Web-based frameworks, gives same behavior even after prioritization. To test stand-alone GUI and Web-based frameworks

based on shared prioritization function, and prioritization criteria’s. This generic approach is enough to study develop and test a unified theory

for all kinds of Event Driven Software systems. This paper articulates all the details regarding our proposed system through following sections.

Keywords-Combinatorial interaction testing, covering arrays, event driven software (EDS), t-way interaction coverage, test suite prioritization,

user-session testing, web-application testing, GUI testing.

__*****___

I. INTRODUCTION

Event-driven software plays an important role in

today’s software systems. Most of customer specific software’s

has a GUI that interacts with the system user through some

events like mouse clicks or keystroke. Similarly, web

frameworks also depend on particular network protocols and

embedded software. These types of frameworks are quite

different which require qualitative testing. Many existing

techniques are trying to work on fault detection for sequential

ordering test cases. In most of the organizations for graphical

user interface and web, resource working on testing for

performance improvement is complex. These frameworks are

always communicating some important features. Regarding this

both areas when user interacts, they generate order of events,

which disturb working of system. Traditional system shows

that they have not worked yet on this method because it

involves lot of steps for incoming events so testing each event

is quite time consuming. Up to today there are many techniques

has been developed for GUI and Web frameworks testing.

Above-mentioned are common things in GUI and web

frameworks testing but problem related to both of these solved

separately because two causes. First, there are not adequate

tools and frameworks to study these problems for researchers.

Second, if single model is formed for this two applications it

will perfectly work for event driven system because it separate

attributes which are not necessary in functional test. So there is

necessary to combine this two applications as one model to test,

test suite.

 In Generalized model, we can use different no. of

criterions for both GUI applications and web-based

applications. Reminder of this paper gives brief description of

this approach with, section II gives background details, section

III gives detailed description of system section IV shows result

analysis and we summarize in section V by drawing

conclusion.

II. RELATED WORK

 This section surveys some existing methodologies

related to our topic.Arne Michael et al.[1] presented approach

for test cases methodology. This paper describes design

implemented for black box testing methodology of web

frameworks. Here to sake of web frameworks control flow

integrated with information flow. This model test strategy

provides handy test cases, which easily accommodated in

automated testing tools and test oracle by model. Case study

presented in paper to that depicts the effectiveness in a web

frameworks designing project, most importantly in

maintenance circumstances. Saswat Anand et al. [2] presented

automated testing approach. The designed app roach desired

only for smart phones. They developed methodology for input

events, to achieve this concolic testing method has been used

which gives automatic events sequentially .system is specific

for android platform and results has been presented on five real

time applications. Result analysis show that the presented

method is efficient than traditional concolic evaluation. In

similar year there are many research conducted on testing

approach. In august 2012, research presented paper on

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 4 234 - 237

__

235

IJRITCC | April 2016, Available @ http://www.ijritcc.org

performance improvement for test prioritization [3]. In this

paper, testing performance extended from single testing to

more than one test case combined in one model. After that in

December 2012 author Hong Mei et al. [4] proposed a static

approach for testing. This concept is specifically for junit test

case prioritization. This framework intended to work without

need of runtime coverage information and operate through

static analysis based on test cases graph. This approach does

not need any execution of instrument code and test cases.

Sreedevi Sampath et al. [5] proposed approach to order the tests

in a composite suite to improve its sustainability against fault.

This test suite evaluated in scenarios where constraint specific

to time. If evaluation of test cases paused at start from the

composite suite, best test case executed. J. Praveen Kumar et al

have proposed same concept to prioritize test with single model

by combining gui and web applications together. In next

research, author Om Kumar et al. proposed an approach to

prioritize number of test cases with equal priority.

III. PROPOSED WORK

Figure 1: Architecture Flow

In this system, our motive is to design a test

prioritization framework for event driven system where we can

perform on different test cases in single model. To achieve our

goal we have used some criteria’s as Prioritization, frequency

based, parameter values and count based. By selecting existing

among GUI or web frameworks components, we can apply any

one criterion on that to perform testing. When particular criteria

has executed, the appeared window will show sequence of

prioritized test cases. All this depicted in next section.

IV. RESULT ANALYSIS

In this project, our approach has been base on GUI

and Web frameworks test suite according that we have set

some events criteria. Event criteria used to perform testing on

test cases specific to GUI or web application.

For result analysis, we have used two existing test suit

GUI and web based framework. When home page appears or

we enter in to system, we need to select required framework

first. Based on selected framework some events will occur,

these events will prioritize test cases according its type.

Reminder of this section showing details of system view one by

one.

1. GUI based

This is home page where among list select test of web

application and GUI, GUI testing has been selected.

a. Parameter value

One way: The 1-way criterion selects a next test to maximize

the number of parameter-values that do not appear in

previously selected tests.

Two way: The 2-way criterion selects a next test to maximize

the number of 2-way parameter-value interactions between

windows.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 4 234 - 237

__

236

IJRITCC | April 2016, Available @ http://www.ijritcc.org

b. Count based

Unique Window: In this criterion, we prioritize tests by giving

preference to test cases that cover the most unique windows

that previous tests have not covered.

Action count based: an action is a sequence that sets one or

more parameter-values in a single window. The prioritization

includes selecting the test cases with preference given to those

that include the most number of actions.

Action-StoL gives priority to test cases with the smallest

number of actions.

Action-LtoS gives priority to test cases with the largest number

of actions.

 Frequency Based

Most-frequently present sequence of windows(MFPS): It

identify the most frequently present sequence of windows, in

the test suite and order test cases in decreasing order of the

number of times that window appears in the test case.

APS: the frequency of occurrence of all sequences is used to

order the test suite. For each sequence, si, in the application,

beginning with the most frequently present sequence, test cases

that have maximum occurrences of these sequences are

selected for execution before other test cases in the test suite.

Weight Frequency: the weight of a sequence of windows is

measured by the number of times the sequence appears in the

suite.

This all results showing test prioritization regarding GUI.

2. Web Frameworks based

a. Parameter value

b. Count based

c. Frequency based

Web based criteria is same as GUI based application.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 4 234 - 237

__

237

IJRITCC | April 2016, Available @ http://www.ijritcc.org

All this result shows web frameworks specific test

case. This results shows that there is difference between

sequences of test cases for both testing approach. In GUI,

testing parameter value gives priority to T4 where in web

application T3 have priority. Therefore, we can see we both

approaches working perfectly in combine as model.

V. CONCLUSION

In this paper, we discussed an approach to test stand-alone GUI

and Web-based applications based on shared prioritization

function, and prioritization criteria’s. Our design is generic

enough to study develop and test a unified theory for all kinds

of Event Driven Software. Result analysis show that according

to selected events test cases are shuffled specific (GUI or Web)

for test suite.

REFERENCES

[1] Arne-Michael Torsel, Fachhochschule Stralsund, Zur

Schwedenschanze, “Automated Test Case Generation for

Web Applications from a Domain Specific Model”, 2011

35th IEEE Annual Computer Software and Applications

Conference Workshops, pp. 137-142

[2] Saswat Anand, Mayur Naik, Hongseok Yang, Mary Jean

Harrold, “Automated Concolic Testing of Smartphone

Apps”, 2012, pp.1-15

[3] Polani Sri Gnana Kiran1, M.R.Rajaramesh, “Improving the

Performance of a Single Model and Test Prioritization

Strategy for Event Driven Software ”, International Journal

of Advanced Research in Computer Engineering &

Technology Volume 1, Issue 6, August 2012 ,pp. 40-44

[4] Hong Mei, Dan Hao, Lingming Zhang, Lu Zhang, Ji Zhou,

and Gregg Rothermel “A Static Approach to Prioritizing

JUnit Test Cases”, IEEE Computer Society Transactions On

Software Engineering, Vol. 38, No. 6, November/December

2012, pp. 1258-1275.

[5] Sreedevi Sampath, Renee C. Bryce b, “Improving the

effectiveness of test suite reduction for user-session-based

testing of web applications”, Elsevier, Information and

Software Technology 54 (2012), pp.724–738

[6] J. Praveen Kumar, Manas Kumar Yogi, “ A Survey on

Models and Test strategies for Event-Driven Software”,

International Journal Of Computational Engineering

Research (ijceronline.com) Vol. 2 Issue. 4 , august 2012, pp

1087-1091

[7] Om Kumar C.U., P. Bhargavi, Vinod Kumar. K, “A Single

Model for Event-Driven Software”, ISSN (Print) : 2319 –

2526, Volume-2, Issue-2, 2013, pp.31-36

