
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 4 76 - 81

76

IJRITCC | April 2016, Available @ http://www.ijritcc.org

__

Breadth-First Search on a MapReduce One-Chip System

Voichita Dragomir

Electronic Devices, Circuits and Architectures

Politehnica University of Bucharest

Bucharest, Romania

voichita.dragomir@upb.ro

Abstract— An implementation of a newly developed parallel graph traversal algorithm on a new one-chip many-core structure with a

MapReduce architecture is presented. The generic structure's main features and performances are described. The developed algorithm uses the

representation of the graph as a matrix and the new MapReduce structure performs best on matrix-vector operations so, the algorithm considers

both, dense and sparse matrix cases. A Verilog based simulator is used for evaluation. The main outcome of the presented research is that our

MapReduce architecture (with P execution units and the size in O(P)) has the same theoretical time performance: O(NlogN) for P = N = |V | =

number of vertices in the graph, as the hypercube architecture (having P processors and the size in O(PlogP)). Also, the actual energy

performance of our architecture is 7 pJ for 32-bit integer operation, compared with the ~150pJ per operation of the current many-cores.

Keywords- parallel computing; mapReduce; many core; graph traversal; breadth first search; parallel algorithm

__*****___

I. INTRODUCTION (HEADING 1)

Nowadays, there is a growing need for more divers and
complex functions, resulting in the need for faster and bigger
computer and communication networks. Parallelism and how to
do thing faster, cheaper and more efficient are on every
engineer's mind.

 One of the needed function is the ability to operate
with complex representations. The most complex
representation is the graph representation and that is why we
chose to focus on graphs, meaning graph algorithms and
parallel accelerators.

Why are graphs important? Because many real life
problems, like computer networks, navigation systems, social
networks and functions, etc., can be expressed in terms of
graphs and can be solved using standard graph algorithms.
There is a constant growth of applications like this nowadays,
resulting in the growing need for processing larger and larger
graphs with more complex functions, hence the need for
developing new parallel algorithms and structures that can
handle all this.

So graph traversal/ searching algorithms can be applied to
solve a multitude of real life problems: Computer Networks:
peer to peer applications need to locate files requested by users.
This is achieved by applying breadth-first search algorithm -
BFS- on one's computer network. GPS Navigation systems:
navigation systems use shortest path algorithms. They take
your location as the source node and your destination as the
destination node on the graph. (A city can be represented as a
graph by taking landmarks as nodes and the roads as edges.)
Using these algorithms, the shortest route is generated, to give
directions for real time navigation. Social networks: treat each
user as a node on the graph and two nodes are connected if they
are each other's friends.

The Breadth-First-Search (BFS) and Depth-First-Search
(DFS) algorithm are fundamentally the same and consist of
visiting all the vertices and edges in a graph in a particular
manner, updating and checking their values along the way
(BFS works with queue and DFS with stack), each with it's
own optimal application.

For example, BFS is very good for finding the shortest path
in a graph, while DFS algorithm is usually better from memory
perspective (no need to store all pointers) it has a lower space
complexity and it is good for detecting cycle in a graph,
topological sorting or finding strongly connected components
of a graph. But if the search domain is infinite, depth-first-
search may not find a solution, even if a finite solution does
exist. BFS algorithm can do that.

Taking all this into consideration, and having explained
why graph traversal is important, we set out to present a
different approach from what has been done so far. We are
developing a parallel breadth-first search graph traversal
algorithm and we will have it working on a newly developed
structure, a one-chip many-core MapReduce architecture.

So far, BFS algorithms have been implemented on multi-
core processors, which are still based on the shared-memory
model. They are limited in the number of cores, the memory
size and they are non-scalable for big data size [9], [13].
Another existing implementation of BFS algorithm is done in
cloud, where the MapReduce approach is limited by the latency
introduced by the communication network [3], [7].

Both of these solutions have limitations:
a) Multi-core architecture with shared external memory:

 the cores compete for the shared external memory
(known as the bottleneck effect).

 limited in the number of cores.

 limited in memory capacity.

 the solution does not scale well
b) Cloud MapReduce architecture with distributed memory

which implies multithreading (dividing the problem into
threads and processing them simultaneous on multiple cores)
has a latency in communicating between the machines,
meaning a significant increase in energy and time use.

What is new in our approach is that we are going to achieve
the parallel BFS algorithm on a one-chip many-core structure
not on multi-core or distributed computing. These techniques
have limitations due to the communication and power issues.
For example, if the interconnection network used is a
hypercube, then the size of the entire system is in O(PlogP)
with a latency in communication in O(log P).

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 4 76 - 81

77

IJRITCC | April 2016, Available @ http://www.ijritcc.org

__

 There are other one-chip MapReduce approaches. For
example, the Intel SCC family. In [8] and [12] two different
MapReduce applications are presented. The use of this general
purpose array of processors has a much slower response than
ours, because it has no more than 48 cores (which are much too
complex for solving this kind of problem) and the MapReduce
functionality is implemented in software, not hardware, as in
our case.

The architecture we work on is different than these existing
ones, it is a one-chip many-core MapReduce architecture. It is
presented in the next section. In sections three and four we
preset the parallel version for breadth-first search graph
traversal algorithm, developed for this new, one-chip many-
core MapReduce architecture. This system performs best on
matrix-vector operations. Therefore, we designed an algorithm
based on both dense and sparse matrix cases. In order to
determine the efficiency of the parallel algorithms we
developed for the MapReduce structure, we are comparing
them to the most efficient and used parallel structure today, the
distributed hypercube parallel computer.

II. THE GENERIC ONE-CHIP MAPREDUCE ARCHITECTURE

The research presented in this paper is part of a larger
project having as the main goal to improve, a generic new
architecture, using the 13 "dwarfs" (a collection of algorithm
families that are important to parallel computing) emphasized
in the Berkeley research report on parallel computation [1]. The
"dwarf" considered in this paper is Graph traversal.

A. The Structure (Heading 2)

The structure we work on is a one-chip MapReduce
architecture, presented in Fig. 1, where:

Linear Array of Cells : an array of hundreds of thousands
cells containing execution units and local memory of few
KB (kilobytes).

Controller : a processing unit which issues in each cycle an
instruction and various data, if needed, to be distributed in
the array of cells.

Distr : is a log-depth tree structure used to distribute
instructions and data in the array.

Reduce : is a log-depth tree structure used to compute few
reduction functions (add, min, max, ...) which provides for
the controller a scalar starting from a vector.

Trans : is a log-depth two-direction tree structure used to
exchange data between the internal distributed memory and
the external memory, Memory.

Scan : is a log-depth two-direction tree structure used to close a
combinatorial loop over the linear array of cells.

Host : is a general purpose computer whose complex program
is accelerated by the MapReduce structure formed by
Linear Array of Cells & Reduce.

Memory : is the external memory in the range of 1 GB.
Int : id the system interface (usually PCIe).
Interconnection Fabric : is a multi-point network used to

transfer data between the chip and the external resources:
Memory & Int.

This structure has a very short response time because of the
controller and the log-depth Reduction Module that works for
many (thousands) cores. The main features of this structure are:
high degree of parallelism, the cores are small and simple, the
local memory is big enough for data mining applications [11].

Figure 1. The one-chip many-core MapReduce structure

The structure supports two data domains:

 the S domain: a linear array of scalars from the
Memory module (see Fig. 1)

S = < s0, s1, ... , sn−1 >

 the V domain: a linear array of vectors distributed in
the local memory of the cells in Linear Array of Cells
(see Fig. 1)

V = < v0, v1, ... , vm−1, ix >
where:

vi = < xi 0, ... , xi p−1 >

 for i = 0, . . . m -1 which forms a two-dimension array

containing m p-scalar vectors distributed along the

linear array of cells.

There are also tree special vectors:

 indexVector =< 0, 1, ... , p − 1 >

 activeVector =< a0, a1, ... , ap−1 >

 accVector =< acc0, acc1, accp−1 >

used, by turn, to index the position of each cell in the linear
array of cells, to activate the cells (if the i-th component of the
activeVector is 1, than the i-th cell is active), and to form a
distributed accumulator along the one-dimension array of cells.

The previously described structure was implemented in a
few versions. The last of the three implemented version, issued
in 2008 in 65nm standard cells technology [10], provides the
following performances: 100 GOPS/Watt, 5 GOPS/mm

2
, while

the current sequential engines (x86 architecture, for example)
have, in the same technology: ~1GOPS/Watt, ~0,25
GOPS/mm

2
 (GOPS stands for Giga Operations Per Second).

The size of the previously described structure is in O(p),
where p is the number of cells, while the communication
latency between the array and the controller is in O(log p).

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 4 76 - 81

78

IJRITCC | April 2016, Available @ http://www.ijritcc.org

__

B. Instruction Set Architecture

Instruction Set Architecture defines the operations
performed over the two data domains: S domain and V domain.
A short description follows. Because the structure of the
MapReduce generic engine consists of two programmable
parts, the Controller and the Linear Array of Cells, the
instruction set architecture, ISAMapReduce, is a dual one:

ISAMapReduce = (ISAcontroller × ISAarray)

In each clock cycle, a pair of instructions is read from the

program memory of the Controller: one from ISAcontroller, to be
executed by Controller, and another from ISAarray, to be
executed by Linear Array of Cells.

The arithmetic and logic instructions are identical in the
two ISAs. The communication subset of instructions – part of
ISAcontroller – controls the internal communication between array
and controller and the communication of the MapReduce
system with the host computer. The transfer subset of
instructions – part of ISAarray – controls the data transfer
between the distributed local memory of the array and the
external memory of the system, Memory. The control subset of
instructions part of ISAcontroller – consists of conventional control
instructions in a standard processor. We must pay more
attention to the spatial control subset of instructions – part of
ISAarray – used to perform the specific spatial control in an array
of execution units. The main instructions in this subset are:

activate : all the cells of Linear Array of Cells are activated.
where : maintains active only the cells where the condition

cond is fulfilled; example: where(zero) maintains active
only the active cells where the accumulator is zero (it
corresponds to the if(cond) instruction form a standard
sequential subset of control flow instructions).

elsewhere : activates the cells inactivated by the associated
where(cond) instruction (it corresponds to the else
instruction form a standard sequential subset of control
flow instructions).

endwhere : restores the activations existed before the previous
where(cond) instruction (it corresponds to the endif
instruction).

1) The Instruction Structure (Heading 3)

The instruction format for the MapReduce engine allows
issuing two instructions at a time, as follows:

mapRedInstr[31:0] =

{controlInstr[15:0], arrayInstr[15:0]} =

 {{cInstr[4:0], cOperand[2:0], cValue[7:0]},

 {aInstr[4:0], aOperand[2:0], aValue[7:0]}}

where:

cInstr[4:0]/aInstr[4:0]: codes the instruction for
Controller / Linear Array of Cells;

cOperand[2:0]/aOperand[2:0] : codes the second operand
used in instruction for Controller/Linear Array of Cells;

cValue[7:0]/aValue[7:0] : is mainly the immediate value or
the address for Controller/Linear Array of Cells;

The field cOperand[2:0]/aOperand[2:0] is specific for our
accumulator centered architecture. It mainly specifies the
second n-bit operand, op, and has the following meanings:

val : op = {{(n-8){value[7]}}, value[7:0]}
mab : op = mem[value]

mrl : op = mem[value + addr]

mri : op = mem[value + addr]; addr <= value + addr;

cop : op = coop ;

mac : op = mem[coop];

mrc : op = mem[value + coop] ;

ctl : control instructions ;

where the co-operand of the array is the accumulator of the
controller: acc, while the co-operand of the controller is
provided by the four outputs of reduction section of the array:

redSum : the sum of the accumulators from the active cells.
redMin : the minimum value of the accumulators from the

active cells.
redMax : the maximum value of the accumulators from the

active cells.
redBool : the sum of the active bit from the active cells.

2) The Assembler Language (Heading 3)

The assembly language provides a sequence of lines each
containing an instruction for Controller (with the prefix c) and
another for Array. Some of the line are labeled – LB(n) – where
n is a positive integer used to specify the jumps in the
flow of instructions.

Example 1. The program which provides in the controllers
accumulator the sum of indexes is:

cNOP; ACTIVATE; // activate all cells

cNOP; IXLOAD; // acc[i] <= i

cCLOAD(0); NOP; // acc <= sum of indexes

Example 2. Let us show how the spatial selection works.

Initially, we have:

indexVector = <0 1 2 ... p-2 p-1>

activeVector = <x x x ... x x >

The following sequence of instructions will provide:

cNOP; ACTIVATE; // activeVector <= <1 1 1 1...>

cNOP; IXLOAD; // acc[i] <= i

cNOP; VSUB(3); // acc[i] <= acc[i]-3;

 // cryVector <= <1 1 1 0...>

cNOP; WHERECARRY; // actVector <= <1 1 1 0...>

cNOP; VADD(2); // acc[i] <= acc[i]+ 2;

cNOP; WHEREZERO; // activeVector <= <0 1 0 0...>

cNOP; ENDWHERE; // activeVector <= <1 1 1 0...>

cNOP; ENDWHERE; // activeVector <= <1 1 1 1...>

The first where instruction lets active only the first three
cell. The second where adds a new restriction: only the cell
with index 1 remains active. The first endwhere restore the
activity of the first three cells, while the second endwhere
reactivates all the cells.

This one-chip MapReduce architecture is used as an

accelerator in various application fields: video [2], encryption,
data mining. Also, nonstandard versions of this architecture are
used for generating efficiently pseudo-random number
sequences [5].

The system we work with is a many-core chip with a
MapReduce architecture that performs best on matrix- vector
operations. Therefore, we designed an algorithm based on the
representation of the graph as a matrix and so we have to cover
both dense and sparse matrix cases.

Furthermore, the steps we took were: choosing the BFS
function, understanding how it works and what the result
should be, developing the parallel algorithm having the same
result on our MapReduce structure, testing and comparing it
with the algorithm implemented on a Hypercube (the most
efficient and used parallel structure nowadays).

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 4 76 - 81

79

IJRITCC | April 2016, Available @ http://www.ijritcc.org

__

III. BREADTH-FIRST SEARCH ALGORITHM FOR DENSE

MATRIX REPRESENTATION OF GRAPHS

Given a graph (G) and a starting vertex (s), a parallel
breadth first search algorithm explores all edges in the graph to
find all the vertices in (G) for which there is a path from (s). It
finds all the vertices that are at distance (k) from (s) before it
finds any vertices that are a distance (k+1). One good way to
visualize what the breadth first search algorithm does is to
imagine that it is building a tree, one level of the tree at a time.
A breadth first search adds all children of the starting vertex
before it begins to discover any of the grandchildren.

A. The Algorithm (Heading 2)

Let us take as example [4] an 8-vertex graph, V = {0,1,
...,7} shown in Fig. 2, with the following adjacency matrix:

Figure 2. The 8-vertex graph used as example

The result of applying the BFS is the tree described by the
following two vectors:

d = 0 1 2 3 4 5 6 7 // destination vector
s = 1 3 5 8 3 3 4 3 // source vector

where each pair of vertexes stands for an edge in the resulting
tree. The vertex 8 is a virtual one, it is used to pinpoint the root
of the tree.

The algorithm desined for our MapReduce engine is:

N = |V|; // N = 8

acc <= initial_root; // acc = 3

s <= N+1 N+1 ...; // s = 9 9 9 9 9 9 9 9: no source

b <= 0 0 ...; // b = 0 0 0 0 0 0 0 0: branches

r <= 0 0 ...; // r = 0 0 0 0 0 0 0 0: roots

where (d=acc)

 r <= 1; // r = 0 0 0 1 0 0 0 0: initial root

 s <= N; // s = 9 9 9 8 9 9 9 9: points initial root as 8

endWhere

while (redMax(s)>N) {

 while (redSum(r)>0) {

 where ((r=1)&(first))

 acc(first) <= ix;

 acc <= redOr; // acc = 3

 r <= 0; // r = 0 0 0 0 0 0 0 0

 endWhere

where ((v(acc)=1)&(s=9))

 s <= acc; // s = 9 3 9 8 3 3 9 3

 b <= 1 ; // b = 0 1 0 0 1 1 0 1

 endWhere

 }

 r <= b;

 b <= 0 0 ...;

}

B. The Program

The program is presented in Appendix (as an example of
how our engine is programmed at the lowest level).

The maximum execution time is:

TBFS_DENSE = (N –1)logP + 33N – 17 ∊ O(NlogP)

with N ≤ P, where P is the number of cells and N the number
of vertices in the graph.

The actual time depends on the final form of the tree. The
maximum time is obtained when each vertex is only followed
by one other vertex.

C. The Test Program and the Results

Example 3. Let us consider the graph from Fig. 2. The initial
state of the vector memory contains the adjacency matrix as
follows:

vect[8] = 0 1 1 0 0 0 0 0 x ...

vect[9] = 1 0 0 1 1 0 0 0 x ...

vect[10] = 1 0 0 0 0 1 0 0 x ...

vect[11] = 0 1 0 0 1 1 0 1 x ...

vect[12] = 0 1 0 1 0 0 1 0 x ...

vect[13] = 0 0 1 1 0 0 1 0 x ...

vect[14] = 0 0 0 0 1 1 0 1 x ...

vect[15] = 0 0 0 1 0 0 1 0 x ...

The TEST program is listed in Appendix. The result is

stored in the following two vectors:

vect[0] = 0 1 2 3 4 5 6 7 x ... = destination

vect[1] = 1 3 5 8 3 3 4 3 x ... = source

whose content is interpreted as the adjacency list:

((1 0)(3 1)(5 2)(x 3)(3 4)(3 5)(4 6)(3 7))

where the source x points to the root of the tree.
The execution time is: TBFS_DENSE(8) = 223 cycles < 275 which
is the maximal theoretical prediction.

The resulting tree is shown in Figure 4:

Figure 3. The result of applying BFS on the graph from Fig.2

IV. BREADTH-FIRST-SEARCH ALGORITHM FOR SPARSE

MATRIX REPRESENTATION OF GRAPHS

The representation of the sparse non-weighted adjacency
matrix consists of two vectors, one for lines, another for
columns.

Example 4. Let us revisit the example form [4], where V =
{0,1, ...,7} and |E| = 11. The length of the two vectors, l and c,
is |E| :

 0 1 2 3 4 5 6 7

v0 0 1 1 0 0 0 0 0

v1 1 0 0 1 1 0 0 0

v2 1 0 0 0 0 1 0 1

v3 0 1 0 0 1 1 0 1

v4 0 1 0 1 0 0 1 0

v5 0 0 1 1 0 0 1 0

v6 0 0 0 0 1 1 0 1

v7 0 0 0 1 0 0 1 0

 0 1 2 3 4 5 6 7

v0 0 1 1 0 0 0 0 0

v1 1 0 0 1 1 0 0 0

v2 1 0 0 0 0 1 0 1

v3 0 1 0 0 1 1 0 1

v4 0 1 0 1 0 0 1 0

v5 0 0 1 1 0 0 1 0

v6 0 0 0 0 1 1 0 1

v7 0 0 0 1 0 0 1 0

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 4 76 - 81

80

IJRITCC | April 2016, Available @ http://www.ijritcc.org

__

l = 0 0 1 1 2 3 3 3 4 5 6 // line

c = 1 2 3 4 5 4 5 7 6 6 7 // column

A. The Algorithm

The algorithm is similar to the algorithm for representation
using dense matrix. The only difference refers to the search of
the vertexes pointed by the currently considered vertex, i.e., the
sequence of steps:

 where (v(acc)=1)

where (s=9)

 s <= acc; // s = 9 3 9 8 3 3 9 3

 b <= 1 ; // b = 0 1 0 0 1 1 0 1

endWhere

endWhere

which will be substituted with a more complex one, as follows:

N = |V|; // (N = 8)

acc <= initial_root; // (acc = 3)

s <= N+1 N+1 ...; // s = 9 9 9 9 9 9 9 9: no source

b <= 0 0 ...; // b = 0 0 0 0 0 0 0 0: branches

r <= 0 0 ...; // r = 0 0 0 0 0 0 0 0: roots

where (d=acc) r <= 1; // r = 0 0 0 1 0 0 0 0: initial root

 s <= N; // s = 9 9 9 8 9 9 9 9:

endWhere

while (redMax(s)>N) { // while there is 9 in s

 while (redSum(r)>0) { // while roots unexplored

 where ((r=1)&(first))

 acc(first) <= ix;

 acc <= redOr; // acc = 3

 r <= 0; // r = 0 0 0 0 0 0 0 0

 endWhere

 cr <= acc; // currentRoot <= acc

 while (redFlag(where (l=acc)) { // while l has current_root

 where (first)

 acc <= c;

 l <= 9;

 endwhere

 where ((d=acc))&(s=9))

 s <= acc; // because |V| =< |E|

 b <= 1 ;

 endwhere

 endwhere

 }

 acc <= cr;

 while (redFlag(where (c=acc)) { // while c has current_root

 where (first)

 acc <= l;

 c <= 9;

 endwhere

 where ((d=acc))&(s=9)) // because |V| =< |E|

 s <= acc;

 b <= 1 ;

 endwhere

 endwhere

 }

 }

 r <= b;

 b <= 0 0 ...;

}

The search in the dense matrix representation is substituted
with the search in the two vectors of the sparse matrix
representation, where each edge is represented only once.

B. The Program

The program for sparse matrix representation, written in the

assembler language presented in chapter II.B.2, was used to

determine the maximum execution time (the maximum

execution time depends on the actual shape of the graph):

TBFS_SPARSE_max = 3.5(N – 1)logP + 85N – 66 ∊ O(NlogP)

with N ≤ P, where P is the number of cells and N the number of
vertices in the graph.

C. The Test Program and the Results

Let us revisit the same example as for dense matrix
representation. The TEST program provided the following
result, stored in the two vectors:

vect[0] = 0 1 2 3 4 5 6 7 0 ... = destination

vect[1] = 1 3 5 8 3 3 4 3 0 ... = source

which corresponds to the following list of pairs of vertexes:

((1 0)(3 1)(5 2)(x 3)(3 4)(3 5)(4 6)(3 7))

where vertex 3 is the root of the resulting tree. The measured
running time is TBFS_SM(8) = 769. It is smaller then the maximal
theoretical prediction, 837, because, in the case we considered,
the depth of the resulting tree is not maximal.

V. CONCLUDING REMARKS

BFS algorithms on hypercube architecture are evaluated
(see [6]) as working, for both sparse and dense matrix
representation, in O(NlogP), where: N is the number of vertices
and P the number of processors. Our architecture provides
performances in the same magnitude order, but the advantages
we offer are: our engine size is smaller, it is in O(P) compared
with a hypercube organization's size which is in O(PlogP).
Another advantage of our solution is that the cells in our engine
are execution units, while in the hypercube engines, evaluated
in [6], the cells are processing units. The program in a
distributed hypercube architecture is replicated P times in each
of the P processing units, while in our approach it is stored only
once in the Controller's program memory.

ACKNOWLEDGMENT

This work has been funded by the Sectoral Operational
Program Human Resources Development 2007-2013 of the
Ministry of European Funds through the Financial Agreement
POSDRU/159/1.5/S/132397.

APPENDIX

A. The Program for BFS_Dense Matrix Representation

The program is stored in the file named 03_BFS.v:
cNOP; IXLOAD;

cNOP; STORE(0); // dest : 0 1 2 3 4 5 6 7

cNOP; VLOAD(9);

cNOP; STORE(1); // source : 9 9 9 9 9 9 9 9

cNOP; VLOAD(0);

cNOP; STORE(2); // branches : 0 0 0 0 0 0 0 0

cNOP; STORE(3); // roots: 0 0 0 0 0 0 0 0

cVLOAD(3); LOAD(0); // acc <= 3 (the initial vertex);

 // acc[i] <= dest

cNOP; CSUB;

cNOP; WHEREZERO;

cNOP; VLOAD(1);

cLOAD(0); STORE(3);

cNOP; CLOAD;

cNOP; STORE(1);

cNOP; ENDWHERE;

cNOP; NOP;

LB(2); cNOP; LOAD(1); // acc[i] <= source[i]

cCLOAD(2); NOP; // acc <= redMax

cSUB(0); NOP; // acc <= redMax - N

cBRZ(1); NOP; // redMax = N, jump to end

// the inner loop

LB(4); cNOP; LOAD(3); // acc[i] <= roots

cCLOAD(0); NOP;

cBRZ(3); NOP; // test end inner loop

cNOP; VSUB(1); // acc[i] <= roots[i] - 1

cNOP; WHEREZERO; // where roots = 1

cNOP; NOP;

cNOP; WHEREFIRST; // where first (roots = 1)

cNOP; IXLOAD; // acc[i] <= index

cCLOAD(0); VLOAD(0); // acc <= redSum;

 // acc[i] <= 0

cVADD(8); STORE(3); // acc <= acc + 8;

 // roots[i] <= 0

cNOP; ENDWHERE;

cNOP; NOP;

cNOP; ENDWHERE;

cNOP; CALOAD; // acc[i] <= v[acc]

cNOP; VSUB(1);

cNOP; WHEREZERO;

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 4 76 - 81

81

IJRITCC | April 2016, Available @ http://www.ijritcc.org

__

cNOP; LOAD(1); // acc[i] <= source

cNOP; VSUB(9); // acc[i] <= source - 9

cVSUB(8); WHEREZERO;

cNOP; CLOAD; // acc[i] <= acc

cNOP; STORE(1); // source <= acc[i]

cNOP; VLOAD(1); // acc[i] <= 1

cNOP; STORE(2); // branches <= 1

cNOP; ENDWHERE;

cNOP; NOP;

cNOP; ENDWHERE;

cJMP(4); NOP;

// end inner loop

LB(3); cNOP; LOAD(2); // acc[i] <= branches[i]

cNOP; STORE(3); // roots[i] <= branches[i]

cNOP; VLOAD(0); // acc[i] <= 0

cJMP(2); STORE(2); // branches[i] <= 0

// LB(1); cSTOP; NOP;

 cHALT; NOP;

B. Test Program for BFS_Dense Matrix Representation

The TEST program for 03_BFS.v is:

cNOP; ACTIVATE;

cVLOAD(8);IXLOAD; // acc <= N; acc[i] <= index

cSTORE(0);CSUB; // mem[0]<= N; acc[i]<= index - N

cNOP; WHERECARRY; // select only the first N cells

‘include "03_matrixLoad.v"

cSTART; NOP;

‘include "03_BFS.v"

LB(1); cSTOP; NOP;

 cHALT; NOP;

The program 03_matrixLoad.v, which loads the adjacency
matrix, is:

cVPUSHL(0); NOP;

cVPUSHL(0); NOP;

cVPUSHL(0); NOP;

cVPUSHL(0); NOP;

cVPUSHL(0); NOP;

cVPUSHL(1); NOP;

cVPUSHL(1); NOP;

cVPUSHL(0); NOP;

cNOP; SRLOAD;

cNOP; STORE(8); // v0

cVPUSHL(0); NOP;

cVPUSHL(0); NOP;

cVPUSHL(0); NOP;

cVPUSHL(1); NOP;

cVPUSHL(1); NOP;

cVPUSHL(0); NOP;

cVPUSHL(0); NOP;

cVPUSHL(1); NOP;

cNOP; SRLOAD;

cNOP; STORE(9); // v1

cVPUSHL(0); NOP;

cVPUSHL(0); NOP;

cVPUSHL(1); NOP;

cVPUSHL(0); NOP;

cVPUSHL(0); NOP;

cVPUSHL(0); NOP;

cVPUSHL(0); NOP;

cVPUSHL(1); NOP;

cNOP; SRLOAD;

cNOP; STORE(10); // v2

cVPUSHL(1); NOP;

cVPUSHL(0); NOP;

cVPUSHL(1); NOP;

cVPUSHL(1); NOP;

cVPUSHL(0); NOP;

cVPUSHL(0); NOP;

cVPUSHL(1); NOP;

cVPUSHL(0); NOP;

cNOP; SRLOAD;

cNOP; STORE(11); // v3

cVPUSHL(0); NOP;

cVPUSHL(1); NOP;

CVPUSHL(0); NOP;

REFERENCES

[1] K. Asanovic, R. Bodik, B.C. Catanzaro, et al., “The landscape of
parallel computing research: A view from Berkeley”, Technical
Report No. UCB/EECS-2006-183, December 18, 2006.

[2] C. Bira, R. Hobincu, L. Petrica, V. Codreanu, S. Cotofana,
“Energy - Efficient Computation of L1 and L2 Norms on a
FPGA SIMD Accelerator, with Applications to Visual Search”,
Proceedings of the 18th International Conference on Computers
(part of CSCC 14), Advances in Information Science and
Applications, Vol. II, Santorini, Greece, 2014, pp. 432-437.

[3] M. Cosulschi, A. Cuzzocrea and R. De Virgilio, “Implementing
BFS-based Traversals of RDF Graphs over MapReduce
Efficiently”, IEEE Conference on Cluster, Cloud and Grid
Computing (CCGrid), Delft, 2013, pp. 569-574 .

[4] V. Dragomir, “Graph Traversal on One-Chip MapReduce
Architecture”, Proceedings of the 18th International Conference
on Computers (part of CSCC 14), Advances in Information
Science and Applications, Vol. II, Santorini, Greece, 2014, pp.
559-563 .

[5] A. Gheolbanoiu, D. Mocanu, R. Hobincu, L. Petrica, “Cellular
Automaton pRNG with a Global Loop for Non-Uniform Rule
Control”, Proceedings of the 18th International Conference on
Computers (part of CSCC 14), Advances in Information Science
and Applications Vol. II, Santorini, Greece, 2014, pp. 415-420.

[6] V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to
Parallel Computing. Design and Analysis of Algorithms, The
Benjamin/Cummings Pub. Comp. Inc., 1994.

[7] Q. Lianghong, F. Lei, L. Jianhua, “Implementing QuasiParallel
Breadth-First Search in MapReduce for LargeScale Social
Network Mining”, IEEE Conference on Computational Aspects
of Social Networks (CASoN), Fifth International Conference,
pp. 714 ,2013.

[8] A. Papagiannis, D.S. Nikolopoulos, “MapReduce for the Single-
Chip- Cloud Architecture”, Institute of Computer Science (ICS),
Foundation for Research and Technology Hellas (FORTH),
Greece, 2011.

[9] G. Revesz, “Parallel Graph-Reduction With A Shared Memory
Multiprocessor System”, IEEE Computer Languages, New
Orleans, LA, 1990, pp. 33-38.

[10] G.M. Stefan, “One-Chip TeraArchitecture”, Proceedings of the
8th Applications and Principles of Information Science
Conference, Okinawa, Japan ,2009.

[11] G.M. Stefan, M. Malita, “Can One-Chip Parallel Computing Be
Liberated from Ad Hoc Solutions? A Computation Model Based
Approach and Its Implementation”, Proceedings of the 18th
International Conference on Computers (part of CSCC 14),
Advances in Information Science and Applications Vol. II,
Santorini Island, Greece, 2014, pp. 582-597.

[12] A. Tripathy, S. Mohan, R. Mahapatra, A. Patra, “Distributed
Collaborative Filtering on a Single Chip Cloud Computer, IEEE
Conference on Cloud Engineering (IC2E), 2013, pp. 140-145.

[13] M. Yasugi, T. Hiraishi, S. Umatani, T. Yuasa, “Dynamic Graph
Traversals for Concurrent Rewriting using Work-Stealing
Frameworks for Multi-core Platforms”, IEEE Conference on
Parallel and Distributed Systems (ICPADS), 16th edition, 2010,
pp. 406-414.

http://www.ijritcc.org/

