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Abstract— An implementation of a newly developed parallel graph traversal algorithm on a new one-chip many-core structure with a 

MapReduce architecture is presented. The generic structure's main features and performances are described. The developed algorithm uses the 

representation of the graph as a matrix and the new MapReduce structure performs best on matrix-vector operations so, the algorithm considers 

both, dense and sparse matrix cases. A Verilog based simulator is used for evaluation. The main outcome of the presented research is that our 

MapReduce architecture (with P execution units and the size in O(P)) has the same theoretical time performance: O(NlogN) for P = N = |V | = 

number of vertices in the graph, as the hypercube architecture (having P processors and the size in O(PlogP)). Also, the actual energy 

performance of our architecture is 7 pJ for 32-bit integer operation, compared with the ~150pJ per operation of the current many-cores.
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I.  INTRODUCTION (HEADING 1) 

Nowadays, there is a growing need for more divers and 
complex functions, resulting in the need for faster and bigger 
computer and communication networks. Parallelism and how to 
do thing faster, cheaper and more efficient are on every 
engineer's mind.  

 One of the needed function is the ability to operate 
with complex representations. The most complex 
representation is the graph representation and that is why we 
chose to focus on graphs, meaning graph algorithms and 
parallel accelerators.  

Why are graphs important? Because many real life 
problems, like computer networks, navigation systems, social 
networks and functions, etc., can be expressed in terms of 
graphs and can be solved using standard graph algorithms. 
There is a constant growth of applications like this nowadays, 
resulting in the growing need for processing larger and larger 
graphs with more complex functions, hence the need for 
developing new parallel algorithms and structures that can 
handle all this. 

So graph traversal/ searching algorithms can be applied to 
solve a multitude of real life problems: Computer Networks: 
peer to peer applications need to locate files requested by users. 
This is achieved by applying breadth-first search algorithm -
BFS- on one's computer network. GPS Navigation systems: 
navigation systems use shortest path algorithms. They take 
your location as the source node and your destination as the 
destination node on the graph. (A city can be represented as a 
graph by taking landmarks as nodes and the roads as edges.) 
Using these algorithms, the shortest route is generated, to give 
directions for real time navigation. Social networks: treat each 
user as a node on the graph and two nodes are connected if they 
are each other's friends. 

The Breadth-First-Search (BFS) and Depth-First-Search 
(DFS) algorithm are fundamentally the same and consist of 
visiting all the vertices and edges in a graph in a particular 
manner, updating and checking their values along the way 
(BFS works with queue and DFS with stack), each with it's 
own optimal application. 

For example, BFS is very good for finding the shortest path 
in a graph, while DFS algorithm is usually better from memory 
perspective (no need to store all pointers) it has a lower space 
complexity and it is good for detecting cycle in a graph, 
topological sorting or finding strongly connected components 
of a graph. But if the search domain is infinite, depth-first-
search may not find a solution, even if a finite solution does 
exist. BFS algorithm can do that. 

Taking all this into consideration, and having explained 
why graph traversal is important, we set out to present a 
different approach from what has been done so far. We are 
developing a parallel breadth-first search graph traversal 
algorithm and we will have it working on a newly developed 
structure, a one-chip many-core MapReduce architecture. 

So far, BFS algorithms have been implemented on multi-
core processors, which are still based on the shared-memory 
model. They are limited in the number of cores, the memory 
size and they are non-scalable for big data size [9], [13]. 
Another existing implementation of BFS algorithm is done in 
cloud, where the MapReduce approach is limited by the latency 
introduced by the communication network [3], [7]. 

Both of these solutions have limitations: 
a) Multi-core architecture with shared external memory: 

 the cores compete for the shared external memory 
(known as the bottleneck effect). 

 limited in the number of cores. 

 limited in memory capacity. 

 the solution does not scale well 
b) Cloud MapReduce architecture with distributed memory 

which implies multithreading (dividing the problem into 
threads and processing them simultaneous on multiple cores) 
has a latency in communicating between the machines, 
meaning a significant increase in energy and time use. 

What is new in our approach is that we are going to achieve 
the parallel BFS algorithm on a one-chip many-core structure 
not on multi-core or distributed computing. These techniques 
have limitations due to the communication and power issues. 
For example, if the interconnection network used is a 
hypercube, then the size of the entire system is in O(PlogP) 
with a latency in communication in O(log P). 
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 There are other one-chip MapReduce approaches. For 
example, the Intel SCC family. In [8] and [12] two different 
MapReduce applications are presented. The use of this general 
purpose array of processors has a much slower response than 
ours, because it has no more than 48 cores (which are much too 
complex for solving this kind of problem) and the MapReduce 
functionality is implemented in software, not hardware, as in 
our case. 

The architecture we work on is different than these existing 
ones, it is a one-chip many-core MapReduce architecture. It is 
presented in the next section. In sections three and four we 
preset the parallel version for breadth-first search graph 
traversal algorithm, developed for this new, one-chip many-
core MapReduce architecture. This system performs best on 
matrix-vector operations. Therefore, we designed an algorithm 
based on both dense and sparse matrix cases. In order to 
determine the efficiency of the parallel algorithms we 
developed for the MapReduce structure, we are comparing 
them to the most efficient and used parallel structure today, the 
distributed hypercube parallel computer. 

II. THE GENERIC ONE-CHIP MAPREDUCE ARCHITECTURE 

The research presented in this paper is part of a larger 
project having as the main goal to improve, a generic new 
architecture, using the 13 "dwarfs" (a collection of algorithm 
families that are important to parallel computing) emphasized 
in the Berkeley research report on parallel computation [1]. The 
"dwarf" considered in this paper is Graph traversal. 

A. The Structure (Heading 2) 

The structure we work on is a one-chip MapReduce 
architecture, presented in Fig. 1, where: 

Linear Array of Cells : an array of hundreds of thousands 
cells containing execution units and local memory of few 
KB (kilobytes). 

Controller : a processing unit which issues in each cycle an 
instruction and various data, if needed, to be distributed in 
the array of cells. 

Distr : is a log-depth tree structure used to distribute 
instructions and data in the array. 

Reduce : is a log-depth tree structure used to compute few 
reduction functions (add, min, max, ...) which provides for 
the controller a scalar starting from a vector. 

Trans : is a log-depth two-direction tree structure used to 
exchange data between the internal distributed memory and 
the external memory, Memory. 

Scan : is a log-depth two-direction tree structure used to close a 
combinatorial loop over the linear array of cells. 

Host : is a general purpose computer whose complex program 
is accelerated by the MapReduce structure formed by 
Linear Array of Cells & Reduce. 

Memory : is the external memory in the range of 1 GB. 
Int : id the system interface (usually PCIe). 
Interconnection Fabric : is a multi-point network used to 

transfer data between the chip and the external resources: 
Memory & Int. 

This structure has a very short response time because of the 
controller and the log-depth Reduction Module that works for 
many (thousands) cores. The main features of this structure are: 
high degree of parallelism, the cores are small and simple, the 
local memory is big enough for data mining applications [11]. 

 

 
Figure 1.  The one-chip many-core MapReduce structure 

 

The structure supports two data domains: 

 the S domain: a linear array of scalars from the 
Memory module (see Fig. 1) 

S = < s0, s1, ... , sn−1 > 

 the V domain: a linear array of vectors distributed in 
the local memory of the cells in Linear Array of Cells 
(see Fig. 1) 

V = < v0, v1, ...  , vm−1, ix > 
where: 

vi = < xi 0, ... , xi p−1 > 

 for i = 0, . . . m -1 which forms a two-dimension array 

containing m p-scalar vectors distributed along the 

linear array of cells. 

There are also tree special vectors: 

 indexVector =< 0, 1, ... , p − 1 > 

 activeVector =< a0, a1, ... , ap−1 > 

 accVector =< acc0, acc1, ... . accp−1 > 

used, by turn, to index the position of each cell in the linear 
array of cells, to activate the cells (if the i-th component of the 
activeVector is 1, than the i-th cell is active), and to form a 
distributed accumulator along the one-dimension array of cells. 

The previously described structure was implemented in a 
few versions. The last of the three implemented version, issued 
in 2008 in 65nm standard cells technology [10], provides the 
following performances: 100 GOPS/Watt, 5 GOPS/mm

2
, while 

the current sequential engines (x86 architecture, for example) 
have, in the same technology: ~1GOPS/Watt, ~0,25 
GOPS/mm

2
 (GOPS stands for Giga Operations Per Second). 

The size of the previously described structure is in O(p), 
where p is the number of cells, while the communication 
latency between the array and the controller is in O(log p). 
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B. Instruction Set Architecture 

Instruction Set Architecture defines the operations 
performed over the two data domains: S domain and V domain. 
A short description follows. Because the structure of the 
MapReduce generic engine consists of two programmable 
parts, the Controller and the Linear Array of Cells, the 
instruction set architecture, ISAMapReduce, is a dual one: 

 
ISAMapReduce = (ISAcontroller × ISAarray) 

 
In each clock cycle, a pair of instructions is read from the 

program memory of the Controller: one from ISAcontroller, to be 
executed by Controller, and another from ISAarray, to be 
executed by Linear Array of Cells. 

The arithmetic and logic instructions are identical in the 
two ISAs. The communication subset of instructions – part of 
ISAcontroller – controls the internal communication between array 
and controller and the communication of the MapReduce 
system with the host computer. The transfer subset of 
instructions – part of ISAarray – controls the data transfer 
between the distributed local memory of the array and the 
external memory of the system, Memory. The control subset of 
instructions part of ISAcontroller – consists of conventional control 
instructions in a standard processor. We must pay more 
attention to the spatial control subset of instructions – part of 
ISAarray – used to perform the specific spatial control in an array 
of execution units. The main instructions in this subset are: 

activate : all the cells of Linear Array of Cells are activated. 
where : maintains active only the cells where the condition 

cond is fulfilled; example: where(zero) maintains active 
only the active cells where the accumulator is zero (it 
corresponds to the if(cond) instruction form a standard 
sequential subset of control flow instructions). 

elsewhere : activates the cells inactivated by the associated 
where(cond) instruction (it corresponds to the else 
instruction form a standard sequential subset of control 
flow instructions). 

endwhere : restores the activations existed before the previous 
where(cond) instruction (it corresponds to the endif 
instruction). 

1) The Instruction Structure (Heading 3)  

The instruction format for the MapReduce engine allows 
issuing two instructions at a time, as follows: 

mapRedInstr[31:0] = 

{controlInstr[15:0], arrayInstr[15:0]} = 

      {{cInstr[4:0], cOperand[2:0], cValue[7:0]}, 

       {aInstr[4:0], aOperand[2:0], aValue[7:0]}} 

where: 
 

cInstr[4:0]/aInstr[4:0]: codes the instruction for 
Controller / Linear Array of Cells; 

cOperand[2:0]/aOperand[2:0] : codes the second operand 
used in instruction for Controller/Linear Array of Cells; 

cValue[7:0]/aValue[7:0] : is mainly the immediate value or 
the address for Controller/Linear Array of Cells; 

The field cOperand[2:0]/aOperand[2:0] is specific for our 
accumulator centered architecture. It mainly specifies the 
second n-bit operand, op, and has the following meanings: 
 

val :  op = {{(n-8){value[7]}}, value[7:0]}  
mab : op = mem[value] 

mrl : op = mem[value + addr] 

mri : op = mem[value + addr]; addr <= value + addr; 

cop : op = coop ; 

mac : op = mem[coop]; 

mrc : op = mem[value + coop] ; 

ctl : control instructions ; 

 
where the co-operand of the array is the accumulator of the 
controller: acc, while the co-operand of the controller is 
provided by the four outputs of reduction section of the array: 

redSum  :  the sum of the accumulators from the active cells. 
redMin : the minimum value of the accumulators from the 

active cells. 
redMax : the maximum value of the accumulators from the 

active cells. 
redBool : the sum of the active bit from the active cells. 

2) The Assembler Language (Heading 3) 

The assembly language provides a sequence of lines each 
containing an instruction for Controller (with the prefix c) and 
another for Array. Some of the line are labeled – LB(n) – where 
n is a positive integer used to specify the jumps in the  
flow of instructions. 

 
Example 1. The program which provides in the controllers 
accumulator the sum of indexes is: 

cNOP; ACTIVATE;  // activate all cells 

cNOP; IXLOAD;    // acc[i] <= i 

cCLOAD(0); NOP;  // acc <= sum of indexes 

 

Example 2. Let us show how the spatial selection works. 

Initially, we have: 

indexVector = <0 1 2 ... p-2 p-1> 

activeVector = <x x x ... x x > 

The following sequence of instructions will provide: 

cNOP; ACTIVATE;   // activeVector <= <1 1 1 1...> 

cNOP; IXLOAD;     // acc[i] <= i 

cNOP; VSUB(3);    // acc[i] <= acc[i]-3; 

     // cryVector <= <1 1 1 0...> 

cNOP; WHERECARRY; // actVector <= <1 1 1 0...> 

cNOP; VADD(2);    // acc[i] <= acc[i]+ 2; 

cNOP; WHEREZERO;  // activeVector <= <0 1 0 0...> 

cNOP; ENDWHERE;   // activeVector <= <1 1 1 0...> 

cNOP; ENDWHERE;   // activeVector <= <1 1 1 1...> 

The first where instruction lets active only the first three 
cell. The second where adds a new restriction: only the cell 
with index 1 remains active. The first endwhere restore the 
activity of the first three cells, while the second endwhere 
reactivates all the cells. 

 
This one-chip MapReduce architecture is used as an 

accelerator in various application  fields: video [2], encryption, 
data mining. Also, nonstandard versions of this architecture are 
used for generating efficiently pseudo-random number 
sequences [5].  

The system we work with is a many-core chip with a 
MapReduce architecture that performs best on matrix- vector 
operations. Therefore, we designed an algorithm based on the 
representation of the graph as a matrix and so we have to cover 
both dense and sparse matrix cases. 

Furthermore, the steps we took were: choosing the BFS 
function, understanding how it works and what the result 
should be, developing the parallel algorithm having the same 
result on our MapReduce structure, testing and comparing it 
with the algorithm implemented on a Hypercube (the most 
efficient and used parallel structure nowadays). 
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III. BREADTH-FIRST SEARCH ALGORITHM FOR DENSE 

MATRIX REPRESENTATION OF GRAPHS 

Given a graph (G) and a starting vertex (s), a parallel 
breadth first search algorithm explores all edges in the graph to 
find all the vertices in (G) for which there is a path from (s). It 
finds all the vertices that are at distance (k) from (s) before it 
finds any vertices that are a distance (k+1). One good way to 
visualize what the breadth first search algorithm does is to 
imagine that it is building a tree, one level of the tree at a time. 
A breadth first search adds all children of the starting vertex 
before it begins to discover any of the grandchildren. 

A. The Algorithm (Heading 2) 

Let us take as example [4] an 8-vertex graph, V = {0,1, 
...,7} shown in Fig. 2, with the following adjacency matrix: 

 

 

 
Figure 2.  The 8-vertex graph used as example 

The result of applying the BFS is the tree described by the 
following two vectors: 

d = 0 1 2 3 4 5 6 7     // destination vector 
s = 1 3 5 8 3 3 4 3     // source vector 

where each pair of vertexes stands for an edge in the resulting 
tree. The vertex 8 is a virtual one, it is used to pinpoint the root 
of the tree. 

The algorithm desined for our MapReduce engine is: 

 
N = |V|;   // N = 8 

acc <= initial_root; // acc = 3 

s <= N+1 N+1 ...;   // s = 9 9 9 9 9 9 9 9: no source  

b <= 0 0 ...;  // b = 0 0 0 0 0 0 0 0: branches 

r <= 0 0 ...;   // r = 0 0 0 0 0 0 0 0: roots 

where (d=acc) 

     r <= 1;         // r = 0 0 0 1 0 0 0 0: initial root 

     s <= N;         // s = 9 9 9 8 9 9 9 9: points initial root as 8 

endWhere 

while (redMax(s)>N) { 

 while (redSum(r)>0) { 

 where ((r=1)&(first))  

      acc(first) <= ix; 

      acc <= redOr;     // acc = 3 

      r <= 0;           // r = 0 0 0 0 0 0 0 0 

 endWhere 

  

where ((v(acc)=1)&(s=9)) 

              s <= acc;            // s = 9 3 9 8 3 3 9 3 

              b <= 1 ;             // b = 0 1 0 0 1 1 0 1 

 endWhere 

   } 

   r <= b; 

   b <= 0 0 ...; 

} 

 

B. The Program 

The program is presented in Appendix (as an example of 
how our engine is programmed at the lowest level).  

The maximum execution time is: 

TBFS_DENSE = (N –1)logP + 33N – 17    ∊ O(NlogP) 

with N ≤ P,  where P is the number of cells and N the number 
of vertices in the graph. 

The actual time depends on the final form of the tree. The 
maximum time is obtained when each vertex is only followed 
by one other vertex. 

C. The Test Program and the Results 

Example 3. Let us consider the graph from Fig. 2. The initial 
state of the vector memory contains the adjacency matrix as 
follows: 

vect[8]  = 0 1 1 0 0 0 0 0 x ... 

vect[9]  = 1 0 0 1 1 0 0 0 x ... 

vect[10] = 1 0 0 0 0 1 0 0 x ... 

vect[11] = 0 1 0 0 1 1 0 1 x ... 

vect[12] = 0 1 0 1 0 0 1 0 x ... 

vect[13] = 0 0 1 1 0 0 1 0 x ... 

vect[14] = 0 0 0 0 1 1 0 1 x ... 

vect[15] = 0 0 0 1 0 0 1 0 x ... 

 
The TEST program is listed in Appendix. The result is 

stored in the following two vectors: 
 
vect[0] = 0 1 2 3 4 5 6 7 x ... = destination 

vect[1] = 1 3 5 8 3 3 4 3 x ... = source 

 

whose content is interpreted as the adjacency list: 

((1 0)(3 1)(5 2)(x 3)(3 4)(3 5)(4 6)(3 7)) 

where the source x points to the root of the tree. 
The execution time is: TBFS_DENSE(8) = 223 cycles < 275 which 
is the maximal theoretical prediction. 

The resulting tree is shown in Figure 4: 
 

 
Figure 3.  The result of applying BFS on the graph from Fig.2 

IV. BREADTH-FIRST-SEARCH ALGORITHM FOR SPARSE 

MATRIX REPRESENTATION OF GRAPHS 

The representation of the sparse non-weighted adjacency 
matrix consists of two vectors, one for lines, another for 
columns. 

Example 4. Let us revisit the example form [4], where V = 
{0,1, ...,7} and |E| = 11. The length of the two vectors, l and c, 
is |E| : 

 
 

   0 1 2 3 4 5 6 7 

v0 0 1 1 0 0 0 0 0 

v1 1 0 0 1 1 0 0 0 

v2 1 0 0 0 0 1 0 1 

v3 0 1 0 0 1 1 0 1 

v4 0 1 0 1 0 0 1 0 

v5 0 0 1 1 0 0 1 0 

v6 0 0 0 0 1 1 0 1 

v7 0 0 0 1 0 0 1 0 

   0 1 2 3 4 5 6 7 

v0 0 1 1 0 0 0 0 0 

v1 1 0 0 1 1 0 0 0 

v2 1 0 0 0 0 1 0 1 

v3 0 1 0 0 1 1 0 1 

v4 0 1 0 1 0 0 1 0 

v5 0 0 1 1 0 0 1 0 

v6 0 0 0 0 1 1 0 1 

v7 0 0 0 1 0 0 1 0 
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l = 0 0 1 1 2 3 3 3 4 5 6  // line 

c = 1 2 3 4 5 4 5 7 6 6 7  // column 

 

A. The Algorithm  

The algorithm is similar to the algorithm for representation 
using dense matrix. The only difference refers to the search of 
the vertexes pointed by the currently considered vertex, i.e., the 
sequence of steps: 

  where (v(acc)=1) 

where (s=9)  

     s <= acc;   // s = 9 3 9 8 3 3 9 3 

     b <= 1  ;   // b = 0 1 0 0 1 1 0 1 

endWhere 

endWhere 

which will be substituted with a more complex one, as follows: 

 
N = |V|;                // (N = 8) 

acc <= initial_root;    // (acc = 3) 

s <= N+1 N+1 ...;       // s = 9 9 9 9 9 9 9 9: no source  

b <= 0 0 ...;           // b = 0 0 0 0 0 0 0 0: branches 

r <= 0 0 ...;           // r = 0 0 0 0 0 0 0 0: roots 

where (d=acc) r <= 1;   // r = 0 0 0 1 0 0 0 0: initial root 

              s <= N;   // s = 9 9 9 8 9 9 9 9:  

endWhere 

while (redMax(s)>N) {                    // while there is 9 in s 

 while (redSum(r)>0) {                // while roots unexplored 

        where ((r=1)&(first))  

     acc(first) <= ix; 

     acc <= redOr;              // acc = 3 

     r <= 0;                    // r = 0 0 0 0 0 0 0 0 

        endWhere 

        cr <= acc;                       // currentRoot <= acc 

        while (redFlag(where (l=acc)) {  // while l has current_root 

            where (first) 

                 acc <= c; 

                 l <= 9; 

            endwhere 

            where ((d=acc))&(s=9))         

                 s <= acc;              // because |V| =< |E| 

                 b <= 1 ; 

            endwhere 

        endwhere 

       } 

       acc <= cr; 

       while (redFlag(where (c=acc)) {  // while c has current_root 

            where (first) 

                 acc <= l; 

                 c <= 9; 

            endwhere 

            where ((d=acc))&(s=9))      // because |V| =< |E| 

                 s <= acc; 

                 b <= 1 ; 

            endwhere 

       endwhere 

      } 

   } 

   r <= b; 

   b <= 0 0 ...; 

} 

 

The search in the dense matrix representation is substituted 
with the search in the two vectors of  the sparse matrix 
representation, where each edge is represented only once. 

B. The Program 

The program for sparse matrix representation, written in the 

assembler language presented in chapter II.B.2, was used to 

determine the maximum execution time (the maximum 

execution time depends on the actual shape of the graph): 

TBFS_SPARSE_max  = 3.5(N – 1)logP + 85N – 66    ∊  O(NlogP) 

with N ≤ P, where P is the number of cells and N the number of 
vertices in the graph. 

C. The Test Program and the Results 

Let us revisit the same example as for dense matrix 
representation. The TEST program provided the following 
result, stored in the two vectors: 

vect[0] = 0 1 2 3 4 5 6 7 0 ... = destination 

vect[1] = 1 3 5 8 3 3 4 3 0 ... = source 

which corresponds to the following list of pairs of vertexes: 

((1 0)(3 1)(5 2)(x 3)(3 4)(3 5)(4 6)(3 7)) 

where vertex 3 is the root of the resulting tree. The measured 
running time is TBFS_SM(8) = 769. It is smaller then the maximal 
theoretical prediction, 837, because, in the case we considered, 
the depth of the resulting tree is not maximal. 

V. CONCLUDING REMARKS 

BFS algorithms on hypercube architecture are evaluated 
(see [6]) as working, for both sparse and dense matrix 
representation, in O(NlogP), where: N is the number of vertices 
and P the number of processors. Our architecture provides 
performances in the same magnitude order, but the advantages 
we offer are: our engine size is smaller, it is in O(P) compared 
with a hypercube organization's size which is in O(PlogP). 
Another advantage of our solution is that the cells in our engine 
are execution units, while in the hypercube engines, evaluated 
in [6], the cells are processing units. The program in a 
distributed hypercube architecture is replicated P times in each 
of the P processing units, while in our approach it is stored only 
once in the Controller's program memory.  
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APPENDIX 

A. The Program for BFS_Dense Matrix Representation 

The program is stored in the file named  03_BFS.v: 
cNOP;      IXLOAD; 

cNOP;      STORE(0); // dest : 0 1 2 3 4 5 6 7 

cNOP;      VLOAD(9); 

cNOP;      STORE(1); // source : 9 9 9 9 9 9 9 9 

cNOP;      VLOAD(0); 

cNOP;      STORE(2); // branches : 0 0 0 0 0 0 0 0 

cNOP;      STORE(3); // roots: 0 0 0 0 0 0 0 0 

cVLOAD(3); LOAD(0);  // acc <= 3 (the initial vertex); 

           // acc[i] <= dest 

cNOP;      CSUB; 

cNOP;      WHEREZERO; 

cNOP;      VLOAD(1); 

cLOAD(0);  STORE(3); 

cNOP;      CLOAD; 

cNOP;      STORE(1); 

cNOP;      ENDWHERE; 

cNOP;      NOP;       
 

LB(2); cNOP;   LOAD(1);  // acc[i] <= source[i] 

cCLOAD(2); NOP;      // acc <= redMax 

cSUB(0);   NOP;      // acc <= redMax - N 

cBRZ(1);   NOP;      // redMax = N, jump to end 
 

// the inner loop 
 

LB(4); cNOP;   LOAD(3);   // acc[i] <= roots 

cCLOAD(0); NOP; 

cBRZ(3);   NOP;       // test end inner loop 

cNOP;      VSUB(1);   // acc[i] <= roots[i] - 1 

cNOP;      WHEREZERO; // where roots = 1 

cNOP;      NOP;        

cNOP;      WHEREFIRST;  // where first (roots = 1) 

cNOP;      IXLOAD;      // acc[i] <= index 

cCLOAD(0); VLOAD(0);    // acc <= redSum;   

                     // acc[i] <= 0 

cVADD(8); STORE(3);     // acc <= acc + 8;     

                     // roots[i] <= 0 

cNOP;     ENDWHERE; 

cNOP;     NOP; 

cNOP;     ENDWHERE; 

cNOP;     CALOAD;       // acc[i] <= v[acc] 

cNOP;     VSUB(1); 

cNOP;     WHEREZERO; 
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cNOP;     LOAD(1);      // acc[i] <= source 

cNOP;     VSUB(9);      // acc[i] <= source - 9 

cVSUB(8); WHEREZERO; 

cNOP;     CLOAD;        // acc[i] <= acc 

cNOP;     STORE(1);     // source <= acc[i] 

cNOP;     VLOAD(1);     // acc[i] <= 1 

cNOP;     STORE(2);     // branches <= 1 

cNOP;     ENDWHERE; 

cNOP;     NOP; 

cNOP;     ENDWHERE; 

cJMP(4);  NOP; 
 

// end inner loop 
 

LB(3); cNOP;  LOAD(2);     // acc[i] <= branches[i] 

cNOP;    STORE(3);     // roots[i] <= branches[i] 

cNOP;    VLOAD(0);     // acc[i] <= 0 

cJMP(2); STORE(2);     // branches[i] <= 0      
 

// LB(1); cSTOP; NOP; 

          cHALT; NOP; 

 

B. Test Program for BFS_Dense Matrix Representation 

 

The TEST program for 03_BFS.v is:  
 

cNOP;     ACTIVATE; 

cVLOAD(8);IXLOAD;     // acc <= N; acc[i] <= index 

cSTORE(0);CSUB;       // mem[0]<= N; acc[i]<= index - N 

cNOP;     WHERECARRY; // select only the first N cells 
 

‘include "03_matrixLoad.v" 
 

cSTART;   NOP; 
 

‘include "03_BFS.v" 

 

LB(1); cSTOP; NOP; 

   cHALT; NOP; 
 

The program 03_matrixLoad.v, which loads the adjacency 
matrix, is: 

cVPUSHL(0); NOP; 

cVPUSHL(0); NOP; 

cVPUSHL(0); NOP; 

cVPUSHL(0); NOP; 

cVPUSHL(0); NOP; 

cVPUSHL(1); NOP; 

cVPUSHL(1); NOP; 

cVPUSHL(0); NOP; 

cNOP;       SRLOAD; 

cNOP;       STORE(8); // v0 

cVPUSHL(0); NOP; 

cVPUSHL(0); NOP; 

cVPUSHL(0); NOP; 

cVPUSHL(1); NOP; 

cVPUSHL(1); NOP; 

cVPUSHL(0); NOP; 

cVPUSHL(0); NOP; 

cVPUSHL(1); NOP; 

cNOP;       SRLOAD; 

cNOP;       STORE(9); // v1 

cVPUSHL(0); NOP; 

cVPUSHL(0); NOP; 

cVPUSHL(1); NOP; 

cVPUSHL(0); NOP; 

cVPUSHL(0); NOP; 

cVPUSHL(0); NOP; 

cVPUSHL(0); NOP; 

cVPUSHL(1); NOP; 

cNOP;       SRLOAD; 

cNOP;       STORE(10); // v2 

cVPUSHL(1); NOP; 

cVPUSHL(0); NOP; 

cVPUSHL(1); NOP; 

cVPUSHL(1); NOP; 

cVPUSHL(0); NOP; 

cVPUSHL(0); NOP; 

cVPUSHL(1); NOP; 

cVPUSHL(0); NOP; 

cNOP;       SRLOAD; 

cNOP;       STORE(11);  // v3 

cVPUSHL(0); NOP; 

cVPUSHL(1); NOP; 

CVPUSHL(0); NOP; 
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