Analysis Shaped Dielectric Lens Antennas using Hybrid method

Mahesh A
Assistant Professor, Department of Electronics and communication Engineering
R V College of Engineering
Bangalore, India.
mahesha@rvce.edu.in

Ravishankar S
Professor, Department of
Electronics and communication Engineering
R V College of Engineering
Bangalore, India.
ravishankars@rvce.edu.in

Abstract

In this paper hybrid method of analysis of shaped dielectric lens with microstrip patch array is presented. Hybrid method combines the advantage of spherical modal expansion (SME) and geometrical optics (GO). First, SME is used to find the near fields using known far field expressions for the primary source. After obtaining spherical complex modal coefficients (SMCC), each mode is treated as a plane wave radiating through a shaped dielectric lens and analysed using GO. The far field at any point on a spherical surface surrounding the lens is the sum of individual modal contributions, which are then easily transformed to far field using a SME. This hybrid method is independent of lens geometry and computationally faster compared to any electromagnetic simulation software. As expected the prediction accuracy is between that of an exact SME technique and an EM flow solver. Results have been presented for an array with spherical lens.

Keywords- Neltec, HFSS, Sphere, Polypropylene, FEKO.

I. Introduction

Shaped Dielectric Lenses perform the task of collimation and shaping, along with physically small feed antennas, to obtain multiple and shaped beams in a fixed set of directions. Lenses are inherently broadband, easy to fabricate, have lower dimensional tolerances cost effective and provide a covering radome for the primary radiators that are embedded inside or placed behind the lens[1-3]. To illuminate the lens, microstrip patch array is used. Microstrip patch antennas have several advantages and applications [4] in wireless communication. In this work, analysis of shaped dielectric lenses illuminated by microstrip array is carried out using Hybrid method.

Analysis of the radiation pattern of shaped dielectric lens antennas include modal analysis, Ray tracing methods based on GO and employingElectromagnetic simulation tools such as HFSS, FEKO and CST microwave studio etc. GO methods of computing the field involves far field approximation of the primary source.

A modal expansion is most accurate as since it removes such approximations and considers the fields completely surrounding the source. An accurate FEM based analysis using an EM flow solver is discussed in [5] but is computationally very intensive, since it is dependent on the number of cells over finite sized geometries.

In the developed hybrid method, primary source is expressed as a SME. The principal component of these orthogonal modes act as collocated sources that are then ray traced through the lens onto a spherical surface completely surrounding the antenna. The summed modal contributions at any point are the total fields and can be transformed to the far field using SME. The analysis is discussed in next section.

II. Hybrid method of Analysis

In this section fields of shaped dielectric lens array antenna using a new hybrid method which combines the advantages of both Spherical Modal Expansion (SME) and Geometrical

Optics (GO) is presented. Here a shaped dielectric lens of maximum thickness ' T ' and dielectric constant ϵ_{r} located at a focal point from the source is shown in figure1. The source consists of an array of primary radiators arranged in a planar configuration. However source can be of any arbitrary orientation. Apart from the refractive index of the material, also well-defined is the curvature of the lens that is circularly symmetric and not necessarily spherical.

Fig 1: Shaped lens array geometry
The procedure for determining the radiation pattern of an array in the presence of a shaped dielectric lens is described as follows.

1. The primary radiator is characterized by a spherical modal expansion. Here the unknown spherical modal complex coefficients (SMCC's) $a_{m n}$ and $b_{m n}$ of the primary radiator are determined from the far fields on a surface where the fields are known. Using these coefficients the primary radiator is represented as sum of spherical modes.

$$
\begin{gather*}
\mathrm{E}(\mathrm{r}, \theta, \phi)=-\sum_{\mathrm{m}} \sum_{\mathrm{n}} A_{\mathrm{mn}} \mathrm{M}_{\mathrm{mn}}(\mathrm{r}, \theta, \phi)+\mathrm{B}_{\mathrm{mn}} \mathrm{~N}_{\mathrm{mn}}(\mathrm{r}, \theta, \phi) \\
\mathrm{H}(\mathrm{r}, \theta, \phi)=-\frac{\mathrm{k}}{\mathrm{j} \omega \mu} \sum_{\mathrm{m}} \sum_{\mathrm{n}} \mathrm{~B}_{\mathrm{mn}} \mathrm{M}_{\mathrm{mn}}(\mathrm{r}, \theta, \phi) \tag{1}\\
+\mathrm{A}_{\mathrm{mn}} \mathrm{~N}_{\mathrm{mn}}(\mathrm{r}, \theta, \phi)
\end{gather*}
$$

Where, $A_{m n}$ and $B_{m n}$ are SMCC's. Spherical vector wave functions $\overline{\mathrm{M}}_{\mathrm{mn}}$ and $\overline{\mathrm{N}}_{\mathrm{mn}}$ are defined in [6]. The orthogonality of spherical vector wave functions is defined in [6].
The spherical modal complex coefficients are determined by procedure as described in [7] as

$$
\begin{align*}
& A_{m n}= \frac{\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi} \mathrm{E}(\mathrm{r}, \theta, \phi) \cdot \overline{\mathrm{M}}_{\mathrm{mn}} \sin \theta \sin \cos \mathrm{~m} \phi \mathrm{~d} \theta \mathrm{~d} \phi}{\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi} \overline{\mathrm{M}}_{\mathrm{mn}} \cdot \overline{\mathrm{M}}_{\mathrm{mn}} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi} \\
& B_{m n}=\frac{\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi} \mathrm{E}(\mathrm{r}, \theta, \phi) \cdot \overline{\mathrm{N}}_{\mathrm{mn}} \sin \theta \cos \sin \mathrm{~m} \phi \mathrm{~d} \theta \mathrm{~d} \phi}{\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi} \overline{\mathrm{N}}_{\mathrm{mn}} \cdot \overline{\mathrm{~N}}_{\mathrm{mn}} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi}
\end{align*}
$$

2. The plane wave component is extracted from each spherical mode. The principal component of these spherical modes act as N collocated primary plane wave sources. For linear polarization being considered, azimuth index m becomes 1 in equation 3 and 4 .

$$
\begin{align*}
& \overline{\mathrm{E}}_{\mathrm{i}}=\sum_{n=1}^{N}\left[A_{1 n} \frac{\mathrm{P}_{\mathrm{n}}^{1}(\cos \theta)}{\sin \theta} \mathrm{h}_{n}^{2}(\mathrm{kr}) \sin \phi \bar{\theta}\right. \\
&\left.\quad+\mathrm{B}_{1 n} \frac{\partial P_{n}^{1}(\cos \theta)}{\partial \theta} \mathrm{h}_{n}^{2}(\mathrm{kr}) \sin \phi \bar{\phi}\right] \tag{5}
\end{align*}
$$

$\mathrm{h}_{n}^{2}(\mathrm{kr})$ is a Spherical Hankel function and $\mathrm{P}_{\mathrm{n}}^{\mathrm{m}}(\cos \theta)$ is associated Legendre function defined in [6].
3. The field at any point on the measurement surface is the sum of plane wave contributions corresponding to SME.

$$
\begin{equation*}
\overline{\mathrm{E}}_{m}=\sum_{n=1}^{N} \frac{e^{-j k r}}{r}\left[A_{n} \frac{\mathrm{P}_{\mathrm{n}}^{1}(\cos \theta)}{\sin \theta} \bar{\theta}+\mathrm{B}_{n} \frac{\partial P_{n}^{1}(\cos \theta)}{\partial \theta} \bar{\phi}\right] \sin \phi \tag{6}
\end{equation*}
$$

4. The field on the measurement surface is now used to compute a new set of spherical modal complex coefficients (SMCC's) which are valid everywhere for the total radiating system.

$$
\begin{align*}
& a_{n s}=\frac{\int_{0}^{2 \pi} \int_{0}^{\pi} \overline{\mathrm{E}}_{\mathrm{m}} \cdot \overline{\mathrm{M}}_{1 \mathrm{n}} \sin \phi \mathrm{r}^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi}{\int_{0}^{2 \pi} \int_{0}^{\pi} M_{1 n} \cdot M_{1 n} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi} \tag{7}\\
& b_{n s}=\frac{\int_{0}^{2 \pi} \int_{0}^{\pi} \overline{\mathrm{E}}_{\mathrm{m}} \cdot \overline{\mathrm{~N}}_{1 \mathrm{n}} \cos \phi \mathrm{r}^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi}{\int_{0}^{2 \pi} \int_{0}^{\pi} N_{1 n} \cdot N_{1 n} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi} \tag{8}
\end{align*}
$$

This procedure is independent of lens geometry.
5. Using the new set of SMCC's, the total field is reconstructed in the far field.
$\mathrm{E}_{\mathrm{t}}(\mathrm{r}, \theta, \phi)=-\sum_{\mathrm{m}} \sum_{\mathrm{n}} a_{n s} \mathrm{M}_{1 \mathrm{n}}(\mathrm{r}, \theta, \phi)+b_{n s} \mathrm{~N}_{1 \mathrm{n}}(\mathrm{r}, \theta, \phi)$
The numerical computed results and HFSS simulation results are discussed in next section.

III. Results and discussion

The hybrid method of analysis developed in equations (1) to (9) is numerically computed in Matlab. To validate the numerical results, spherical lens antenna with microstrip
patch array is simulated in EM flow solver HFSS software. The results are presented at 6 GHz for 1 x 2 patch array illuminating a spherical lens.

Fig2: Structure of 1×2 patch array with Spherical lens

Fig3: Radiation pattern of 1×2 Patch array with Spherical lens at 6 GHz for $\mathrm{phi}=0$

Fig4: Radiation pattern of 1x2 Patch array with Spherical lens at 6 GHz for $\mathrm{phi}=90$

IV. CONClUSION

The results of the developed hybrid method and SME results are in agreement as compared with finite element based HFSS. Computation time required by the hybrid method is a fraction of an EM solver HFSS. In comparison, the accuracy of the hybrid method is between that of a closed form SME and HFSS. The developed hybrid method is independent of lens geometry and can be applied to other non-spherical geometries.

REFERENCES

[1] Carlos A Fernandes, Shaped dielectric lenses for WirelessMillimeter-Wave Communications, IEEE Antennas
and Propagation Magazine, vol 41, No 5, pp 141-150, October 1999.
[2] Leandro Fernandes, -Developing a system concept \& Technologies for Mobile Broadband Communications IEEE Personal Communications Magazine, pp 54-59, Feb 1995.
[3] Carlos A Fernandes, Jose G Fernandes, Performance of Lens Antennas in Wireless IndoorMillimeter Wave Applications, IEEE Transactions on Microwave theory and Techniques, vol 47, No 6, pp 732-736, June 1999.
[4] Constantine A Balanis, Antenna Theory - Analysis and Design, 2nd Edn, Singapore: John Wiley and Sons: 2002, Chapters 6 and 12.
[5] Yunxiang Zhang, Jian Wang, Zhiqin Zhao , Jianyu Yang "Numerical Analysis of Dielectric Lens Antennas Using a Ray-Tracing Method and HFSS Software", IEEE Ant \&Propag Mag, Vol 50, No 4, Aug 2008.
[6] Julius A Stratton, "Electromagnetic Theory", John Wiley \& Sons,2007,Chapt 7.
[7] S.Ravishankar and M.S. Narasimhan, "Multiple Scattering of EM Waves by Dielectric Spheres located in the near field of a source of Radiation," IEEE Transactions on Antennas and Propagation, vol AP-35, No 4, pp 399-405, April 1987.
[8] M. Taguchi, M. Masuda, H. Shimoda, and K. Tanaka, "Analysis of Arbitrarily Shaped Dielectric Lens Antenna," IEEE International Symposium on Antennas and Propagation Digest, 2, July 3- 8, 2005, pp. 769-772.
[9] Y T Lo and S W Lee, "Antenna Handbook", Van Nostrand Reinhold Publishers, 1993, Vol-2, Chapter 16.
[10] Ravishankar S, Mahesh A, Rukmini T S, Arjun R, "Spherical ModalAnalysis of a Patch Array Dielectric Lens Antenna", 4th European IEEEconf on Ant and Propag (EUCAP2010), Barcelona, Spain, April 2010.

Authors

Mahesh A has completed M.Tech from R V College of Engineering, Bangalore in Communication Systems. He is currently working towards his PhD degree. His research interests are Electromagnetics and Antennas. He is currently working as Asst. Professor in the department of Electronics and Communication engineering, RVCE Bangalore.

Ravishankar S received his Ph.D. degree in Electromagnetic Scattering from IIT Madras. His research interests are in the fields of Wire line Signal Processing Technologies, Electromagnetic Scattering and Antennas. He has published more than 25 papers in journals and international conference proceedings. He is currently working as Professor in the department of Electronics and Communication engineering, RVCE Bangalore.

