Rainfall Prediction based on Rainfall Statistical Data

Dr. Dayanand. G. Savakar Associate Professor Department of Computer Science. Post Graduate Centre,"Vachana Sangama", Rani Channamma UniversityToravi,
Vijaypur-586108,Karnataka,India

Dr. Anami.B.S
KLE IT Hubli
India

Dr. Venkatesh
Agrometeorologist
UAS Bijapur.Karnataka

R. R. Rohidekar
BLDEA,s Engg India

Abstract

The paper describes the development of a system to provide information on rainfall characteristics of rainfall and its prediction from the historical data sets, and selection of crops based on the forecast on taluka basis, with a case study of Bijapur district of Karnataka State, India. The analysis of rainfall viz. month wise, Nakshatra-wise, week-wise and year-wise is carried out. The developed system, evolved from the analysis of 20 years' rainfall data collected from the Agricultural Research Station, Bijapur is very useful to agrometeorologists. The performance of the prediction system is encouraging and the accuracy of the prediction varies between 80% and 90%.

INTRODUCTION

Rainfall is the most important climate variable that affects the crops in the tropical rain fed regions. People wish to know whether there would be rainfall in the coming months or year. To fulfill this requirement, one needs a forecast, well ahead of the commencement of the crop season. Such rainfall forecasts can be used both by the farmers and the Government in planning for the ensuing year. This work is an attempt to analyze the available data for development of a system for rainfall forecast and crop selection, from taluka level to state level. This work thus introduces a novel concept called region bound model for Rainfall prediction.

Rainfall is known to follow set patterns that can be explained by statistical and mathematical procedures like trend, periodicity and serial correlation. Hence it would be possible to develop appropriate models for long range forecast of rainfall. However, rainfall patterns vary within a country and within a state, in view of its high variability both temporally and spatially. We are aware, that the long range forecasts issued by the India Meteorological Department need considerable downscaling for appropriate agricultural applications. On the other hand models using the historical rainfall patterns in individual sub-regions like taluka or district can be up-scaled up to a larger area like a state or a country. This proposed model uses local speculation to global speculation approach (this, we call incremental approach). The forecast of rainfall for individual talukas of a particular district will help in guiding the district

Figure 1: Incremental Model

1.0 THE PROPOSED SYSTEM

The proposed system is divided into five modules, namely: Administrator Module, Rainfall data entry Module, Predictor Module, Comparator Module and Crop Selection Module (Figure 2).

Figure 2: Functional Diagram of the proposed system

2.1 Administrator Module

This module provides the security for the data and deals with the granting of permission and revoking of users, and therefore is the vital part of the system. The administrator module takes care of user accounts, facilitates updating data, editions to crop lists, the cities and the addresses. Granting permissions to users involves the user name and the password information, which are supplied by the system administrator. Modifying of account is also done by the system administrator.

2.2 Rainfall Entry Module

The Rainfall data entries are divided into four different categories, namely, Monthly Rainfall, Nakshatra Rainfall, Weekly rainfall and Daily Rainfall. The entries can be made as per data availability; if daily data are entered, the data for other periods will be computed as required. Interactions in this module are given in Figure 3.

Figure 3: Rainfall data Entry Module

2.3 Predictor Module

This module uses the algorithms for the processes involving trend, serial correlation, harmonic components and autoregression analysis as mentioned earlier - with appropriate reference to Aggarwal (1992), to forecast monthly, Nakshatra-period and weekly rainfall. The database of the particular month or Nakshatra is accessed, and the data are converted into vectors. The prediction is done by using these vectors, which are input to the algorithms. These vectors are stored into a temporary database to generate reports such as graphs, charts etc. The details of the predictor module are given in Figure 4 and detailed process is given in Algorithm 1.

Figure 4: Predictor Module

2.4 Comparator Module

The comparator module uses the rainfall forecast and compares with the actual rainfall in a given year, i.e. year to year, month to month, week to week and Nakshatra to Nakshatra, as required by the user.

a) Year_to_year

This comparison takes two parameters as inputs namely, from-year and to-year. It calculates the sum of all the months' rainfall data from-year to to-year using monthly database. Finally, the average of this sum is calculated. This
may be termed as mean annual rainfall, or the normal. Comparison of the annual rainfall of a selected year is made with the normal. The result is stored and displayed as per the user's requirement, as a report or graph.
b) months to months

In this method of prediction, three parameters are used namely, from-year, to- year and month. It extracts the data from the monthly rainfall database for a specified month to calculate the normal for the month. Comparison of rainfall in the month of any year is done with the normal.

c) week to week

In this method, weekly analysis is done in place of the monthly, mentioned above. Weekly normals are calculated and data of any year is compared with it.

d) Nakshatra to Nakshatra

In this comparison, three parameters are supplied they are from-year, to- year and the Nakshatra. This is similar to the above two, except that the procedure is for Nakshatra period. Comparison of rainfall is done for that particular Nakshatra period with the normal for the same Nakshatra period computed from the database.

e) Actual vs. Forecast

The data of estimated/forecast of rainfall and actual rainfall are extracted form the database for a given year and comparison is made. The various types of reports are generated such as Graph, charts etc. The aforesaid activities are depicted in Figure 5 and detailed process is depicted in Algorithm 2.

Figure 5: Comparator Module

3.0 THE ALGORITHMS

The modules are presented as different algorithms in this section. The functionality of the modules and the important operations are brought out.

Algorithm 1: Rainfall prediction
Inputs: Rainfall data.
Output: Forecasted Rainfall

Start

Step 1: Accept rainfall data from the rainfall database
Step 2: Calculate average rainfall from the rainfall data

Step 3: Repeat Steps (3.1 to 3.4) for requested periods
Step3.1: Estimate rainfall using Linear trend
Step3.2: If (Estimated rainfall \geq (Average rainfall $+10 \%$ Average rainfall))
then
Rainfall status $=$ Above Normal
Step3.3: If (Estimated rainfall \leq (Average rainfall - 10\% Average rainfall))
then
Rainfall status $=$ Below Normal
Step3.4: If (Estimated rainfall lies between above and below normal limit)
then
Rainfall status $=$ Normal
Step 4: Display the Rainfall status.

Stop

a) Algorithm 1: Monthly Rainfall Prediction

The monthly rainfall prediction algorithm forecasts the monthly rainfall, by the history of monthly rainfall data from the rainfall database. It forecasts monthly rainfall of the given year and also the subsequent years.

Box 2: Monthly Rainfall Prediction for the Year 2004

b) Nakshatra Rainfall Prediction

The Nakshatra rainfall prediction involves history of Nakshatra rainfall and forecasts rainfall of the present year and also next year.

Box 3: Nakshatra Based Prediction for the Year 2004

Prediction for current year					X
Naschistra	Nakahatra Periods	Kameal status	Normal	Forecasted	
Utrachactia	jan 10 to jan 22	Normal	3.64	4.61	
Shravana	jan 23 to feb 4	Ni	. 00	00	
Dhanibha	feb 5 to feb 18	Nis	∞	00	
Shathabtuata	feb 19 to mar 3	Ni	∞	00	
Poosvathadra	mar 4 to mar 16	Normal	506	394	
Uutrakhadra	mar 17 to male 30	Normal	156	2.14	
Revath	mar 31 to apr 12	Normal	632	120	
Asthwini	apr 13 to apt 26	Normal	10.25	14.21	
Bharani	ape 27 to may 10	AboveNormal	15.28	31.15	
Kritika	may 11 to may 23	Normal	19.66	11.51	
Rohimi	may 24 to jun 6	Normal	58.18	51.59	
Mrigathra	jun 7 to jun 20	Normal	56.14	62.30	
Asmdra	jun 21 to jul 4	Normal	35.14	33.83	
Punevasu	jul 5 to jul 18	Normal	43.74	4158	
6				\%	
	Print Gro	aph clo	ose		

Box 4: Nakshatra Based Prediction for the Year 2004

c) Weekly Rainfall Prediction

The weekly rainfall prediction section forecasts the future weekly rainfall. By extracting historical weekly rainfall data from the database, it forecasts weekly rainfall of the present year and next year.

Box 5: Weekly Rainfall Prediction for the Year 2004

Wrediction for current year				\underline{x}
Week Penode	Raviall statue	Normal	Forecasted	A
Jan 1 to $\operatorname{Ian} 7$	Normal	0.99	29	
Jan 8 to Jan 14	Normal	0.67	1.46	
Jan 15 to Jan 21	Normal	3.525	10	
$\operatorname{Jan} 28$ to $\operatorname{Ian} 28$	Normal	0	00	
Jan 29 to Feb 4	Normal	0	00	
Feb S to Feb 11	Normal	0	00	
Feb 11 to Feb 18	Normal	0	00	
Feb 19 to Feb 25	Normal	0	00	
Feb 26 to Mar 4	Normal	101	2.11	
Mar 5 to Mar 11	Normal	161	271	
Mar 12 to Mar 18	Normal	246	53	
Mar 19 to Mar 25	Normal	0.5	14	
Mar 26 to Apt 1	Normal	1.81	1.41	
Apr 2 to Apr 8	Normal	3.495	3.01	
Apr 9 to Apr 15	Narmal	6.06	1451	$*$
Print	Graph	Clo	se	

Box 6: Weekly Rainfall Prediction for the Year 2004

d) Seasonal Rainfall Prediction

The seasonal rainfall predicts future seasonal rainfall. By the history of monthly rainfall data, it forecasts seasonal rainfall of the present year and also next year. One can specify the group of months as a season to the system.

Box 7: Seasonal Rainfall Prediction

Rainfall Predic	Predletions		X
SEASONAL PREDICTION			
To Janlafy	Γ mar	$1-$ SEPTEMPEA	
TV EEbRLAAY	\lceil June	T OCTOEER	
F MARCH	Γ suty	「 NOVEMBER	
- AFPIL	Γ August	Γ DECEmber	
QK	Cancel	Hack	

Box 8: Seasonal Rainfall Prediction for the Year 2004

(t) Prediction for current y				区
Seanonal Rarfall Prediction for carrent ypar				
Morch	Raverfall status	Normal	Forecasted	
January	Normal	4.68	16	
February	Normal	09	41	
March	Normal	6.18	460	
Agnil	Normal	20.77	28.77	
Searonal Ruarfall for the selected seazon				
Rainfal status		al For	recasted	
Normal			33.94	
Erint	Graph		Close	

Algorithm 2: Rainfall Comparison Input: Rainfall database
Output: Rainfall comparison

Start

Step 1: Accept the period for which data to be compared
Step 2: Get rainfall data from the relevant database for a specified period.
Step 3: Compare the rainfall status for a given period.
Step 4: Display rainfall status as a report.

Stop

e) Yearly Rainfall comparison

The yearly rainfall is used for the analysis of annual rainfall. By the history of monthly rainfall data annual rainfall is calculated.

Box 9: Comparison of Actual Rainfall Prediction from the 2001 to 2002

Box 10: Comparison of Actual Rainfall from 2001 to 2002

f) Monthly Rainfall comparison

The monthly rainfall comparison section gives comparative analysis of month wise rainfall. By extracting historical monthly rainfall data from the database comparison is done.

Box 11: Comparison of Actual Rainfall with Normal for the Month of June

Year	Actual	With Previous	Rainfall Status	Normal
1995	58	-	BelowNormal	112.77
1996	126	Increase	AboveNormal	112.77
1997	122	Decrease	Normal	112.77
1998	115	Decrease	Normal	112.77
1999	94	Decrease	BelowNormal	112.77
2000	161	Increase	AboveNormal	112.77
2001	4	Decrease	BelowNormal	112.77

Box 12: Graphical Presentation Actual Rainfall for June

g) Nakshatra Rainfall comparison

The Nakshatra based rainfall gives comparative analysis of the Rain. By history of Nakshatra rainfall data is stored for the database.

Box 13: Comparison of Actual Rainfall for the Nakshatra "Punarvasu" with Previous Year

Box 14: Graphical Comparison of Actual Rainfall with Previous Year for the Nakshatra "Punarvasu"

Algorithm 3: Actual v/s Forecast Rainfall Comparison Input: Monthly Rainfall data
Output: Forecast Vs Actual Rainfall Comparison

Start

Step 1: Get monthly rainfall data available
Step 2: Calculate Average Rainfall for all the months in a year

Step 3: Accept the year from user
Step 4: Calculate Average Rainfall of the given month
Step 5: Calculate estimated Rainfall for 12 months
Step 6: Display Monthly Rainfall data, Average Rainfall data and Estimated Rainfall

Stop

h) Forecast vs Actual Rainfall Comparison

The forecast vs actual rainfall comparison section gives comparative analysis forecasted rainfall and actual rainfall. By extracting historical monthly rainfall data from the database comparison is done

Box 15: Forecasted Vs Actual Rainfall for the Year 2002

Box 16: Graphical comparison of Forecast and Actual Rainfall for the Year 2002

3.0. CONCLUSION

A methodology for analyzing the historical rainfall data of monthly and Nakshatra periods is developed for their long range forecast one season ahead. This system is useful for not only for forecasting, but also for analytical comparison with the past data. Regional data is used in the analysis, which is considered to be a novel approach for forecast and up-scaling to state level.

REFERENCES:

[1] Agarwal A. (1999) Stochastic model of monthly rainfall for Nainital, Journal of Agricultural Engineering, Vol. 25 (3), pp 20-31
[2] .Cannon Alex J. and Mckendry Ian G., (1999) Forecasting all India summer monsoon rainfall using regional circulation principle components: A comparison between neural network and multiple regression models, Journal of Climatology, Vol. 19(4), PP-1561-1578.
[3] Cannon Alex J. and Mckendry Ian G., (2002) A graphical sensitivity analysis for statistical climate models: Application to Indian monsoon rainfall prediction by Artificial Neural Networks and Multiple Linear Regression models, Journal of Climatology, Vol. 22, pp1687-1708.
[4] Mooley D.A and Parthsarathy B. (1984), Fluctuations of all India summer monsoon rainfall
during 1871-1978, Climatic change, Vol. 6, pp 287-301.
[5] Rupa Kumar K, Pant G.B, Parthsa.rathy B. and Sontakke N A (1992) Spatial and sub seasonal patterns of long term trends of Indian summer monsoon rainfall. International Journal of climatology, Vol. 12, pp 257-268.
[6] Shukla, P.R., Sharma Subodh K, Venkata Ramana P (2002) Climate Change and India: Issues, Concerns and Opportunities. Publishers: TATA McGraw-Hill, New Delhi.
[7] Venkatesh H (2004) Rainfall analysis as a tool in watershed development in northern dry zone of Karnataka. Publishers: Publication Centre, University of Agricultural ScieSnces, Dharwad.

