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Abstract— Description Logic, called DL-Lite, specially used to capture essential ontology languages, and keeping low difficulty of logic. Here 

logic means computing subsumption between concepts, and checking satisfiability of the whole knowledge base, as well as answer complex 

queries over the set of instances maintained in secondary storage. DL-Lite the usual DL logical tasks are polynomial in the amount of the TBox, 

and query answering is polynomial in the amount of the ABox (i.e., in data difficulty). To the best of knowledge, this is the first result of 

polynomial data difficulty for query answering over DL knowledge bases. A distinguished visage of logic is to allow for a partitions between 

TBox and ABox logic during query evaluation: the part of the process requiring TBox logic is self-determining of the ABox, and the  some part 

of the process requiring access to the ABox which can be carried out by an SQL engine, thus taking benefit of the query optimization strategies 

provided by current DBMSs. 
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I. INTRODUCTION 

Description Logics (DLs) is apprehensive with the 

trade-off between expressive power and computational 

difficulty of sound and complete reasoning. Survey carried out 

in the past on this topic has shown that many DLs with 

capable, i.e., worst case of polynomial time, logical algorithms 

lack modeling power required in capturing theoretical models 

and basic ontology languages, while most DLs with sufficient 

modeling power undergo from inherently worst case 

exponential time manners of reasoning [4, 5]. Even if the 

requirement of polynomially tractable reasoning might be less 

strict when dealing with comparatively small ontologies, we 

consider that the need of efficient reasoning algorithms is of 

principal significance when the ontology system is used to 

manage large amount of objects (e.g., from thousands to 

millions of instances). Several important applications uses 

ontologies  now a days. For example, in the Semantic Web, 

ontologies are often used to explain the important concepts of 

Web repositories, and such repositories may include very large 

data sets. In such cases, two necessities come out that are 

typically overlooked in DLs. First, the number of instance in 

the knowledge bases requires organization instances of 

concepts (i.e., ABoxes) in secondary storage. Second, major 

queries to be posed to the knowledge bases are more complex 

than the simple queries (i.e., concepts and roles) usually 

considered in DL research. Regrettably, whenever the 

difficulty of logic is exponential in the size of the instances 

[11], there is little hope for effective instance management and 

query answering algorithms. In this paper they propose a new 

DL, called DL-Lite, specially modified to capture basic 

ontology languages, while keeping low difficulty of logic, in 

particular, polynomial in the size of the instances in the 

knowledge base. Logic here means computing subsumption 

between concepts, and checking satisfiability of the whole 

knowledge base, answering those queries which are difficult 

over the set of instances maintained in secondary storage. 

Some of the contribution are :  

 

1. They define DL-Lite, and show that it is prosperous 

sufficient to capture a major ontology language. Although at a 

first sight DL-Lite appears like very simple DL, the kind of 

modeling constructs in their logic makes it suitable for 

expressing a diversity of representation language broadly 

adopted in different contexts, such as basic ontology 

languages, abstract data models (e.g., Entity-Relationship [2]), 

and object-oriented formalisms (e.g., 

basic UML class diagrams[3]). 

 

2. For such a DL they gave narrative logic techniques for a 

multiplicity of tasks, including conjunctive query answering 

and control between conjunctive queries over concepts and 

roles. Their management is focused especially on the problem 

of answering conjunctive queries over a knowledge base. This 

is one of the few results on answering difficult queries over a 

DL knowledge base [11]. In fact, answering conjunctive 

queries over a knowledge base is a difficult problem, even in 

the case of DL-Lite, where the mixture of constructs 

expressible in the knowledge base does not pose particular 

difficulties in computing subsumption. Notice that, in spite of 

the simplicity of DL-Lite TBoxes, the ability of taking TBox 

knowledge into account during the process of answering 

conjunctive queries goes beyond the “variablefree” fragments 

of first-order logic represented by DLs. 

 

3. An one main feature of this approach is that it is completely 

suitable to representing ABox assertions managed in 

secondary storage by a Data Base Management System 

(DBMS). Indeed, query answering algorithm is based on the 

idea of growing the original query into a set of queries that can 

be straightly evaluated by an SQL engine over the ABox, thus 

taking advantage of well familiar query optimization 

strategies[6]. 

 

4. Analyze the difficulty of reasoning in DL-Lite. It show that 

the usual logic  jobs considered in DLs can be done in 

polynomial time. As for query answering, computing the 

answers to a conjunctive query is having worst  case 

exponential in the size of the TBox and the query, but is 

polynomial in the size of the ABox, i.e., in data difficulty [17]. 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                                     ISSN: 2321-8169 

Volume: 4 Issue: 3                                                                                                                                                           248 - 252 

____________________________________________________________________________________ 

249 

IJRITCC | March 2016, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

Therefore, the difficulty of answering queries is no worse than 

established query evaluation in relational databases.  

An important feature of this approach is that it is completely 

suitable to representing ABox assertions managed in 

secondary storage by a Data Base Management System 

(DBMS).  

II. DL-LITE 

As usual in DLs, DL-Lite allows for  denoting binary 

relations between objects. DL-Lite concepts are defined as 

follows: 

 

B ::= A ǀ ƎR ǀ ƎR¯ 

C ::= B ǀ ¬B ǀ C1 ∏ C2 

 

where A denotes an atomic concept and R denotes an 

(atomic) role; B denotes a basic concept that can be either an 

atomic concept, a concept of the form ƎR, specifically, the 

standard DL construct of unqualified existential quantification 

on roles, or a concept of the form ƎR¯, which involves an 

inverse role. C (possibly with subscript) denotes a (common) 

concept. Note that thwy uses reversal of basic concepts only, 

and we do not allow for disjunction.  

A DL-Lite knowledge base (KB) is constituted by two 

apparatus: a TBox used to represent intensional knowledge, 

and an ABox, used to represent extensional information. DL-

Lite TBox assertions are of the form:   

 

 B ∈  C         inclusion assertions   

(funct R), (funct R¯)     functionality assertions 

 

 An inclusion declaration expresses that a basic 

concept is subsumed by a common concept, while a 

functionality assertion expresses the (inclusive) functionality 

of a role, or of the inverse of a role.  

 

As for the ABox, DL-Lite allows for assertions of the form: 

B(a), R(a, b)   membership assertions 

 

where a and b are constants. These assertions utter 

respectively that the object denoted by a is an instance of the 

basic concept B, and that the pair of objects denoted by (a, b) 

is an instance of the role R. 

Although DL-Lite is fairly simple from the language 

point of vision, it allows for querying the extensional 

knowledge of a knowledge of a KB in a much extra 

authoritative way than common DLs, in which only 

membership to a concept or to a role can be asked. Expressly, 

DL-Lite allows for using conjunctive queries of random 

complexity. A conjunctive query (CQ) q over a knowledge 

base K is an look of the form: 

 

 
   

where  are the so-called well-known variables, 

are existentially quantified variables called the non- well-

known variables, and conj( , ) is a conjunction of atoms of 

the form B(z), or R(z1, z2), where B and R are respectively a 

basic concept and a role in K, and z, z1, z2 are constants in K 

or variables in  or . Sometimes, for simplifying details, 

we will use the Datalog sentence structure, and write queries 

of the above form as q( ) ←body( , ) where the 

existential quantification Ǝ  has been ready inherent, and the 

symbol “,” is used for conjunction in body( , ).  

 

The semantics of DL-Lite is specified in terms of 

interpretations over a permanent endless domain Δ. They 

assume to have one constant for each object, denoting 

accurately that object. In other terms, they have standard 

names [15], and they will not differentiate among the alphabet 

of constants and Δ.  

An interpretation I = (Δ,.
I
) consists of a initial order 

arrangement over Δ with an interpretation function .
I
 such 

that: 

 

A
I  ⊑ Δ                          R

I
 ⊑ Δ ×  Δ 

(¬B)
I
 = Δ\ B

I
                (ƎR)

I
 = {cǀƎc

’
. (c, c’) ∈ R

I
}

      
 

(C1 ⊓ C2)
I 
=C1

I
 ∩ C2

I 
    (ƎR¯)

I
 ={cǀƎc

’
. (c, c’) ∈ R

I 
} 

 

An interpretation I is a model of an inclusion 

assertion B ⊑ C if and only if B
I
 ⊑ C

I
; I is a model of a 

functionality assertion (funct R) if (c, c’) ∈ R
I ∧ (c, c”) ∈ R ⊃ 

c’= c”, similarly for (funct R¯); I is a form of a membership 

assertion B(a) (resp. R(a, b)) if a ∈ BI (resp. (a, b) ∈ R
I
). A 

model of a KB K is an interpretation I that is a model of all the 

assertions in K. A KB is satisfiable if it has at least one model. 

A KB K sensibly implies an assertion α if all the models of K 

are also models of . A query q( )Ǝ ←  ,conj (  , ) is 

interpreted in an interpretation I as the set q
I
 of tuples ~c ∈ Δ 

× ... × Δ  such that when  replace with the variables  with 

the constants ~c, the method Ǝ .conj ( , ) evaluates to 

true in I. 

 

 Ever since DL-Lite deals with conjunctive queries, 

the vital logic services that are of interest are:   

 query answering: known a query q with illustrious 

variables   and a KB K, return the set ans(q;K) of 

tuples ~c of constants of K such that in each model I 

of K we have ~c ∈ q
I
. Note that this job generalizes 

instance checking in DLs, i.e., inspection whether a 

given object is an example of a specified concept in 

each model of the knowledge base.  
 query containment: specified two queries q1 and q2 

and a KB K, validate whether in every model I of K 

q1
I
 ⊑ q2

I
 . Note That this job generalizes logical 

implication of inclusion assertions in DLs. 
 KB satisfiability: verify whether a KB is satisfiable. 

 
Example 1 Let the infinitesimal concepts Professor and 

Student, the roles TeachesTo and HasTutor, and the following 

DL-Lite TBox T : 
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Professor ⊑ ƎTeachesTo         Student ⊑ ƎHasTutor 

ƎTeachesTo¯ ⊑ Student         ƎHasTutor¯ ⊑ Professor 

Professor ⊑ ¬Student             (funct HasTutor). 

 

Suppose that the ABox A contains just the assertion 

(John,Mary). At last, think the query q(x) ←TeachesTo(x,y), 

HasTutor(y, z), asking for professors that teach to students that 

have a tutor. 

 

Even though prepared with higher logic services, at 

initial sight DL-Lite might seem rather feeble in modeling 

intensional knowledge, and therefore of partial use in practice. 

Although the ease of its language and the specific form of 

inclusion assertions acceptable, DL-Lite is capable to capture 

the major notions (though not all, obviously) of both 

ontologies, and of intangible modeling formalisms used in 

databases and software engineering. In particular, DL-Lite 

assertions allow  to specify ISA, e.g., stating that concept A1 is 

subsumed by concept A2, using A1 ⊑ A2; disjointness, e.g., 

between concepts A1 and A2, using A1 ⊑ ¬A2; role-typing, 

e.g., stating that the first (resp., second) component of the 

relation R is an instance of A1 (resp., A2), using ƎR ⊑ A1 

(resp., ƎR¯ ⊑ A2); participation constraints, e.g., stating that 

all instances of concept A participate to the relation R as the 

first (resp., second) component, using A ⊑ ƎR (resp., A ⊑ 

ƎR¯); non-participation constraints, using A ⊑ ¬ƎR and A ⊑ 

¬ƎR¯; functionality restrictions on relations, using (funct R) 

and (funct R¯). Notice that DL-Lite is a firm subset of OWL 

Lite, the fewer expressive sublanguage of OWL, which 

presents various constructs (e.g., some kinds of role limits) 

that are non expressible in DL-Lite, and that make logic in 

OWL Lite non- well-mannered in general. 

 

III. REASONING IN DL-LITE 

It can be revealed that query containment can be 

reformulated as query answering using techniques similar to 

the ones in [1].  

First tackle some introduction issues, and then 

describe the query reformulation algorithm PerfectRef, which 

is at the heart of  query evaluation algorithm Answer. Finally, 

address accuracy and difficulty issues. 

 

 KB normalization It indicate by Normalize(K) the 

DL-Lite KB obtained by transforming the KB K = (T ,A) as 

follows. The ABox A is stretched out by adding to A the 

assertions ƎR(a) and ƎR¯(b) for each R(a, b) ∈ A. 

Then, assertions of K in which conjunctive concepts 

occur are rewritten by iterative function of the rule: if B ⊑ C1 

⊓ C2 occurs in T , then return it with the two assertions B ⊑ C1 

; B ⊑ C2. 

The TBox T resulting from such a transformation 

contains assertions of the form (i) B1 ⊑ B2, where B1 and B2 

are essential concepts (i.e., each of them is either an atomic or 

an existential concept), which call positive inclusions (PIs); 

(ii) B1 ⊑ ¬B2, where B1 and B2 are basic concepts, which call 

negative inclusions (NIs); (iii) functionality assertions on roles 

of the form (funct R) or (funct R¯). 

Then, the TBox T is expanded by computing all 

(nontrivial) NIs between essential concepts indirect by T . 

More precisely, the TBox T is closed with respect to the 

following assumption rule: if B1 ⊑ B2 occurs in T and either B2 

⊑ ¬B3 or B3 ⊑ ¬B2 occurs in T (where B1,B2,B3 are arbitrary 

basic concepts), then add B1 ⊑ ¬B3 to T . It can be shown 

that, after the over closure of T , for each couple of essential 

concepts B1, B2, they have that T |= B1 ⊑ ¬B2 iff either B1 ⊑ 

¬B2 ∈ T or B2 ⊑ ¬B1 ∈ T. 

 

It is immediate to confirm that, for each DL-Lite KB 

K, Normalize(K) is equal to K, in the intellect that the set of 

models of K coincides with that of Normalize(K). In the 

following, without failure of generality we assume that every 

concept name or role name occurring in A also occurs in T .  

 

ABox storage Formerly the ABox is normalized, 

amass it underneath the control of a DBMS, in order to 

successfully handle objects in the knowledge base by means of 

an SQL engine. To this aim, they construct a relational 

database which faithfully represents a normalized ABox A. 

More precisely,  

 for each essential concept B occurring in A,  define a 

relational table tabB of arity 1, such that <a> ∈ tabB 

if and only if B(a) ∈ A; 
 for every role R occurring inA, define a relational 

table tabR of arity 2, such that <a, b> ∈ tabR if and 

only if R(a, b) ∈ A. They denote with DB(A) the 

relational database thus constructed. 
 

KB satisfiability The algorithm Consistent takes as 

input a normalized KB K = (T , A) and verifies the following 

situation: 

(i) there exists a NI B1 ⊑ ¬B 2in T and a steady a such that the 

assertions B1(a) and B2(a) fit in to A; 

(ii) there exists an assertion (funct R) (respectively, (funct R¯)) 

in T and three constants a, b, c such that both R(a, b) and R(a, 

c) (resp., R(b, a) and R(c, a)) belong to A. 

 

Casually, situation (i) corresponds to examination 

whether A openly contradicts some NI in T , and situation (ii) 

corresponds to check whether A violates some functionality 

assertion in T . If one of the above conditions holds, then the 

algorithm returns false (i.e., K is not satisfiable); or 

else, the algorithm returns true.  

Notably, the algorithm verifies such situation by 

affectation to DB(A) appropriate conjunctive queries 

expressed in SQL. For example, situation (i) holds for a given 

NI B1  ⊑¬B2 if and only if the query q(x) ← tabB1 (x), tabB2 (x) 

has a non-empty if and only if the query q(x) ← tabR(x; y), 

tabR(x, z), y ≠ z has a non-empty answer in DB(A), where ≠ is 

the “not equal” predicate of SQL. Notice that the algorithm 

does not think about the PIs occurring in T through its 

execution. Indeed, they will show that PIs do not concern the 

stability of a DL-Lite KB, if the TBox is normalized. 
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Query reformulation Query reformulation is at the 

spirit of query answering technique. Given the limited 

significant power of DL-Lite TBoxes, it may seem that in 

arrange to answer a query q over a KB K, we could simply 

construct a limited first-order structure on the origin of K, and 

then estimate the query as an expression over this first-order 

structure. Actually, it is feasible to show that this is not the 

case. In exacting, it can be exposed that, in common, given a 

KB K, there exists no finite structure S such that, for all 

conjunctive query q, the set of answers to q over K is the 

answer of evaluating q over S. This property demonstrates that 

answering queries in DL-Lite goes beyond both propositional 

logic and relational databases. The essential suggestion of 

technique is to reformulate the query captivating into version 

the TBox: in exacting, given a query q over K, we compile the 

assertions of the TBox into the query itself, thus obtaining a 

new query q’. Such a new query q’ is then evaluated over the 

ABox of K, as if the ABox were a easy relational database. 

Since the size of q’ does not depend on the ABox, the data 

difficulty of the whole query answering algorithm is 

polynomial.  

In case of an atom in a query is bound if it 

corresponds to either a distinguished variable or a shared 

variable, i.e., a variable taking place at least two times in the 

query body, or a constant, while that it is unbound if it 

corresponds to a non-distinguished non-shared variable (as 

usual, the symbol _ used to represent non-distinguished non-

shared variables). Notice that, an atom of the type ƎR(x) (resp. 

ƎR¯(x)) has the similar meaning as R(x,_ ) (resp. R(_, x)). 

API I is applicable to an atom B(x), if I has B in its 

right-hand side, and I is applicable to an atom R(x1, x2), if 

either (i) x2 = _ and the right-hand side of I is ƎR, or (ii) x1 =_  

and the right-hand side of I is ƎR¯. Approximately speaking, 

an inclusion I is applicable to an atom g if all bound arguments 

of g are propagated by I. Obviously, since all PIs in the TBox 

T are unary, they are by no means applicable to atoms with 

two bound arguments. It indicate with gr(g, I) the atom 

obtained from the atom g by applying the inclusion I, i.e., 

 if g = B1(x) (resp., g = R1(x,_ ) or g = R1(_ , x)) and I = B2 ⊑ 

B1 (resp., I = B2  ƎR1 or I = B2 ⊑ ƎR
¯

1), we have: 

 gr(g, I) = R2(x, _ ), if B2 = ƎR2; 

 gr(g, I) = R2(_ , x), if B2 = ƎR
¯
2 ; 

 gr(g, I) = A(x), if B2 = A, where A is a basic concept. 
 

Query evaluation In sort to calculate the answers to q over the 

KB K = (T ,A), it require to evaluate the set of conjunctive 

queries P formed by the algorithm PerfectRef over the ABox 

A. Obviously, in doing so, to develop the relational database 

DB(A). For this aim, they require to convert every query q in P 

into an SQL query expressed over DB(A).  The conversion  is 

theoretically very simple. The only non-trivial case concerns 

binary atoms with limitless terms: for an atom of the form R(_ 

, x), uses a view predicate that represents the union of tabR[2] 

with tabƎR¯, where tabR[2] indicates projection of tabR on its 

second column (similarly for R(x, _ )). Each and every one 

SQL queries obtained from P, together with the views 

introduced in the conversion, denoted by SQL(P), can be 

easily dispatched to an SQL query engine and evaluated over 

DB(A). 

 

Example 1 (contd.). Since ABox A contains only the 

declaration HasTutor(John;Mary), it is minor to begin 

satisfiability of K . Then, by executing Answer(q;K), first get 

Normalize(K), which is computed by adding together to T all 

NIs implied by T , i.e.,: 

 

ƎTeachesTo¯ ⊑ ¬Professor     ƎHasTutor¯ ⊑ ¬Student. 

 

Then, Eval(SQL(PerfectRef(q, T ));DB(A)) returns the set 

{Mary}. In particular, Mary is returned by the evaluation 

of the SQL transformation of the query q(x) ←HasTutor(_ , x). 

 

IV. DISCUSSION AND RELATED WORK 

 

DL-Lite is a portion of expressive DLs with assertions 

and inverses studied in the 90’s (see [4] for an overview), 

which are at the foundation of present ontology languages 

such as OWL, and for which optimized automated logic 

systems such as Fact and Racer have been developed. 

Definitely, one could use, off-the-shelf, a system like Racer to 

execute KB satisfiability, instance checking (of concepts), and 

logical inference of inclusion assertions in DL-Lite. Also, 

reasoning with conjunctive queries in these DLs has been 

studied (see e.g. [11]), though not yet implemented in systems. 

Regrettably, the reasoning events for these DLs are all 

EXPTIME-hard, and further significantly they are not tailored 

AAAI-05 / 606 towards obtaining firm difficulty bounds with 

respect to data difficulty. Conjunctive queries joint with DLs 

were also considered in [16, 13], but again data complication 

was not the major worry. There has been a bundle of work in 

DLs on the border line between polynomial and exponential 

reasoning. This work first determined on DLs without the 

TBox factor of the KB, and led to the growth of simple DLs, 

such as ALN, that declare polynomial instance checking. 

However, for negligible variants of ALN, such as ALE , FLE¡, 

and ALU, instance checking, and therefore conjunctive query 

answering, is coNP-complete in data complication [12].  

Then permit for repeated inclusion assertions in the 

KB, then even subsumption in CLASSIC and ALN becomes 

inflexible [9]. Examine that DL-Lite does permit for repeated 

assertions without declining into intractability. In reality, they 

can impose the repeated propagation of the existence of an R- 

successor using the two DL-Lite inclusion assertions A ⊑ ƎR, 

ƎR¯ ⊑ A. The restriction forced on a model is like to the one 

forced by the ALN repeated assertion A ⊑ ƎR ⊓ ∀R.A, though 

stronger, since it additionally enforces the second component 

of R to be typed by A. In order to keep tractability even in the 

presence of cycles, DL-Lite imposes limitations on the use of 

the ∀R.C construct, which, if used jointly with inclusion 

assertions, immediately would lead to intractability [9]. The 

work is also tightly related to work in databases on implication 

of integrity constraints (ICs) [2] and on query answering in the 

presence of ICs under an open world semantics (see, e.g., [8, 

3, 14, 7]). Rephrased as ICs, DL-Lite TBoxes permit for 

expressing unique forms of inclusion dependencies, numerous 
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keys on relations, and exclusion dependencies. The results that  

report here show that DL-Lite inclusion assertions form one of 

the largest class of ICs for which query answering remains 

polynomial. 

CONCLUSIONS 

DL-Lite, a latest DL purposely modified to imprison 

theoretical data models and essential ontology language while 

keeping the worst-case difficulty of sound and whole logic 

obedient. It paying attention on binary roles only, other than it 

is feasible to widen logic techniques to n-ary relations without 

loosing their pleasant computational properties. Working on 

further motivating extensions to DL-Lite, such as the preface 

of subset constraints on roles. The results of [10] entail that 

verdict an adjustment of query answering technique is going to 

be a unbreakable trouble. 
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