
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 248 - 252

__

248

IJRITCC | March 2016, Available @ http://www.ijritcc.org

DL-Lite: Tractable Description Logics for Ontologies: A Survey

M. P. Bidve

Department of Computer Science and Engineering

M.S.Bidve Engg. Collage

Latur, Maharastra, India

manishabidve2@gmail.com

Prof. N. J. Pathan

Department of Computer Science and Engineering

M.S.Bidve Engg. Collage

Latur, Maharastra, India

pathan_nj@rediffmail.com

Abstract— Description Logic, called DL-Lite, specially used to capture essential ontology languages, and keeping low difficulty of logic. Here

logic means computing subsumption between concepts, and checking satisfiability of the whole knowledge base, as well as answer complex

queries over the set of instances maintained in secondary storage. DL-Lite the usual DL logical tasks are polynomial in the amount of the TBox,

and query answering is polynomial in the amount of the ABox (i.e., in data difficulty). To the best of knowledge, this is the first result of

polynomial data difficulty for query answering over DL knowledge bases. A distinguished visage of logic is to allow for a partitions between

TBox and ABox logic during query evaluation: the part of the process requiring TBox logic is self-determining of the ABox, and the some part

of the process requiring access to the ABox which can be carried out by an SQL engine, thus taking benefit of the query optimization strategies

provided by current DBMSs.

Keywords-component:knowledg_ebase,Description_Logic,binary_relation

__*****___

I. INTRODUCTION

Description Logics (DLs) is apprehensive with the

trade-off between expressive power and computational

difficulty of sound and complete reasoning. Survey carried out

in the past on this topic has shown that many DLs with

capable, i.e., worst case of polynomial time, logical algorithms

lack modeling power required in capturing theoretical models

and basic ontology languages, while most DLs with sufficient

modeling power undergo from inherently worst case

exponential time manners of reasoning [4, 5]. Even if the

requirement of polynomially tractable reasoning might be less

strict when dealing with comparatively small ontologies, we

consider that the need of efficient reasoning algorithms is of

principal significance when the ontology system is used to

manage large amount of objects (e.g., from thousands to

millions of instances). Several important applications uses

ontologies now a days. For example, in the Semantic Web,

ontologies are often used to explain the important concepts of

Web repositories, and such repositories may include very large

data sets. In such cases, two necessities come out that are

typically overlooked in DLs. First, the number of instance in

the knowledge bases requires organization instances of

concepts (i.e., ABoxes) in secondary storage. Second, major

queries to be posed to the knowledge bases are more complex

than the simple queries (i.e., concepts and roles) usually

considered in DL research. Regrettably, whenever the

difficulty of logic is exponential in the size of the instances

[11], there is little hope for effective instance management and

query answering algorithms. In this paper they propose a new

DL, called DL-Lite, specially modified to capture basic

ontology languages, while keeping low difficulty of logic, in

particular, polynomial in the size of the instances in the

knowledge base. Logic here means computing subsumption

between concepts, and checking satisfiability of the whole

knowledge base, answering those queries which are difficult

over the set of instances maintained in secondary storage.

Some of the contribution are :

1. They define DL-Lite, and show that it is prosperous

sufficient to capture a major ontology language. Although at a

first sight DL-Lite appears like very simple DL, the kind of

modeling constructs in their logic makes it suitable for

expressing a diversity of representation language broadly

adopted in different contexts, such as basic ontology

languages, abstract data models (e.g., Entity-Relationship [2]),

and object-oriented formalisms (e.g.,

basic UML class diagrams[3]).

2. For such a DL they gave narrative logic techniques for a

multiplicity of tasks, including conjunctive query answering

and control between conjunctive queries over concepts and

roles. Their management is focused especially on the problem

of answering conjunctive queries over a knowledge base. This

is one of the few results on answering difficult queries over a

DL knowledge base [11]. In fact, answering conjunctive

queries over a knowledge base is a difficult problem, even in

the case of DL-Lite, where the mixture of constructs

expressible in the knowledge base does not pose particular

difficulties in computing subsumption. Notice that, in spite of

the simplicity of DL-Lite TBoxes, the ability of taking TBox

knowledge into account during the process of answering

conjunctive queries goes beyond the “variablefree” fragments

of first-order logic represented by DLs.

3. An one main feature of this approach is that it is completely

suitable to representing ABox assertions managed in

secondary storage by a Data Base Management System

(DBMS). Indeed, query answering algorithm is based on the

idea of growing the original query into a set of queries that can

be straightly evaluated by an SQL engine over the ABox, thus

taking advantage of well familiar query optimization

strategies[6].

4. Analyze the difficulty of reasoning in DL-Lite. It show that

the usual logic jobs considered in DLs can be done in

polynomial time. As for query answering, computing the

answers to a conjunctive query is having worst case

exponential in the size of the TBox and the query, but is

polynomial in the size of the ABox, i.e., in data difficulty [17].

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 248 - 252

__

249

IJRITCC | March 2016, Available @ http://www.ijritcc.org

Therefore, the difficulty of answering queries is no worse than

established query evaluation in relational databases.

An important feature of this approach is that it is completely

suitable to representing ABox assertions managed in

secondary storage by a Data Base Management System

(DBMS).

II. DL-LITE

As usual in DLs, DL-Lite allows for denoting binary

relations between objects. DL-Lite concepts are defined as

follows:

B ::= A ǀ ƎR ǀ ƎR¯

C ::= B ǀ ¬B ǀ C1 ∏ C2

where A denotes an atomic concept and R denotes an

(atomic) role; B denotes a basic concept that can be either an

atomic concept, a concept of the form ƎR, specifically, the

standard DL construct of unqualified existential quantification

on roles, or a concept of the form ƎR¯, which involves an

inverse role. C (possibly with subscript) denotes a (common)

concept. Note that thwy uses reversal of basic concepts only,

and we do not allow for disjunction.

A DL-Lite knowledge base (KB) is constituted by two

apparatus: a TBox used to represent intensional knowledge,

and an ABox, used to represent extensional information. DL-

Lite TBox assertions are of the form:

 B ∈ C inclusion assertions

(funct R), (funct R¯) functionality assertions

 An inclusion declaration expresses that a basic

concept is subsumed by a common concept, while a

functionality assertion expresses the (inclusive) functionality

of a role, or of the inverse of a role.

As for the ABox, DL-Lite allows for assertions of the form:

B(a), R(a, b) membership assertions

where a and b are constants. These assertions utter

respectively that the object denoted by a is an instance of the

basic concept B, and that the pair of objects denoted by (a, b)

is an instance of the role R.

Although DL-Lite is fairly simple from the language

point of vision, it allows for querying the extensional

knowledge of a knowledge of a KB in a much extra

authoritative way than common DLs, in which only

membership to a concept or to a role can be asked. Expressly,

DL-Lite allows for using conjunctive queries of random

complexity. A conjunctive query (CQ) q over a knowledge

base K is an look of the form:

where are the so-called well-known variables,

are existentially quantified variables called the non- well-

known variables, and conj(,) is a conjunction of atoms of

the form B(z), or R(z1, z2), where B and R are respectively a

basic concept and a role in K, and z, z1, z2 are constants in K

or variables in or . Sometimes, for simplifying details,

we will use the Datalog sentence structure, and write queries

of the above form as q() ←body(,) where the

existential quantification Ǝ has been ready inherent, and the

symbol “,” is used for conjunction in body(,).

The semantics of DL-Lite is specified in terms of

interpretations over a permanent endless domain Δ. They

assume to have one constant for each object, denoting

accurately that object. In other terms, they have standard

names [15], and they will not differentiate among the alphabet

of constants and Δ.

An interpretation I = (Δ,.
I
) consists of a initial order

arrangement over Δ with an interpretation function .
I
 such

that:

A
I ⊑ Δ R

I
 ⊑ Δ × Δ

(¬B)
I
 = Δ\ B

I
 (ƎR)

I
 = {cǀƎc

’
. (c, c’) ∈ R

I
}

(C1 ⊓ C2)
I
=C1

I
 ∩ C2

I
 (ƎR¯)

I
 ={cǀƎc

’
. (c, c’) ∈ R

I
}

An interpretation I is a model of an inclusion

assertion B ⊑ C if and only if B
I
 ⊑ C

I
; I is a model of a

functionality assertion (funct R) if (c, c’) ∈ R
I ∧ (c, c”) ∈ R ⊃

c’= c”, similarly for (funct R¯); I is a form of a membership

assertion B(a) (resp. R(a, b)) if a ∈ BI (resp. (a, b) ∈ R
I
). A

model of a KB K is an interpretation I that is a model of all the

assertions in K. A KB is satisfiable if it has at least one model.

A KB K sensibly implies an assertion α if all the models of K

are also models of . A query q()Ǝ ← ,conj (,) is

interpreted in an interpretation I as the set q
I
 of tuples ~c ∈ Δ

× ... × Δ such that when replace with the variables with

the constants ~c, the method Ǝ .conj (,) evaluates to

true in I.

 Ever since DL-Lite deals with conjunctive queries,

the vital logic services that are of interest are:

 query answering: known a query q with illustrious

variables and a KB K, return the set ans(q;K) of

tuples ~c of constants of K such that in each model I

of K we have ~c ∈ q
I
. Note that this job generalizes

instance checking in DLs, i.e., inspection whether a

given object is an example of a specified concept in

each model of the knowledge base.
 query containment: specified two queries q1 and q2

and a KB K, validate whether in every model I of K

q1
I
 ⊑ q2

I
 . Note That this job generalizes logical

implication of inclusion assertions in DLs.
 KB satisfiability: verify whether a KB is satisfiable.

Example 1 Let the infinitesimal concepts Professor and

Student, the roles TeachesTo and HasTutor, and the following

DL-Lite TBox T :

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 248 - 252

__

250

IJRITCC | March 2016, Available @ http://www.ijritcc.org

Professor ⊑ ƎTeachesTo Student ⊑ ƎHasTutor

ƎTeachesTo¯ ⊑ Student ƎHasTutor¯ ⊑ Professor

Professor ⊑ ¬Student (funct HasTutor).

Suppose that the ABox A contains just the assertion

(John,Mary). At last, think the query q(x) ←TeachesTo(x,y),

HasTutor(y, z), asking for professors that teach to students that

have a tutor.

Even though prepared with higher logic services, at

initial sight DL-Lite might seem rather feeble in modeling

intensional knowledge, and therefore of partial use in practice.

Although the ease of its language and the specific form of

inclusion assertions acceptable, DL-Lite is capable to capture

the major notions (though not all, obviously) of both

ontologies, and of intangible modeling formalisms used in

databases and software engineering. In particular, DL-Lite

assertions allow to specify ISA, e.g., stating that concept A1 is

subsumed by concept A2, using A1 ⊑ A2; disjointness, e.g.,

between concepts A1 and A2, using A1 ⊑ ¬A2; role-typing,

e.g., stating that the first (resp., second) component of the

relation R is an instance of A1 (resp., A2), using ƎR ⊑ A1

(resp., ƎR¯ ⊑ A2); participation constraints, e.g., stating that

all instances of concept A participate to the relation R as the

first (resp., second) component, using A ⊑ ƎR (resp., A ⊑

ƎR¯); non-participation constraints, using A ⊑ ¬ƎR and A ⊑

¬ƎR¯; functionality restrictions on relations, using (funct R)

and (funct R¯). Notice that DL-Lite is a firm subset of OWL

Lite, the fewer expressive sublanguage of OWL, which

presents various constructs (e.g., some kinds of role limits)

that are non expressible in DL-Lite, and that make logic in

OWL Lite non- well-mannered in general.

III. REASONING IN DL-LITE

It can be revealed that query containment can be

reformulated as query answering using techniques similar to

the ones in [1].

First tackle some introduction issues, and then

describe the query reformulation algorithm PerfectRef, which

is at the heart of query evaluation algorithm Answer. Finally,

address accuracy and difficulty issues.

 KB normalization It indicate by Normalize(K) the

DL-Lite KB obtained by transforming the KB K = (T ,A) as

follows. The ABox A is stretched out by adding to A the

assertions ƎR(a) and ƎR¯(b) for each R(a, b) ∈ A.

Then, assertions of K in which conjunctive concepts

occur are rewritten by iterative function of the rule: if B ⊑ C1

⊓ C2 occurs in T , then return it with the two assertions B ⊑ C1

; B ⊑ C2.

The TBox T resulting from such a transformation

contains assertions of the form (i) B1 ⊑ B2, where B1 and B2

are essential concepts (i.e., each of them is either an atomic or

an existential concept), which call positive inclusions (PIs);

(ii) B1 ⊑ ¬B2, where B1 and B2 are basic concepts, which call

negative inclusions (NIs); (iii) functionality assertions on roles

of the form (funct R) or (funct R¯).

Then, the TBox T is expanded by computing all

(nontrivial) NIs between essential concepts indirect by T .

More precisely, the TBox T is closed with respect to the

following assumption rule: if B1 ⊑ B2 occurs in T and either B2

⊑ ¬B3 or B3 ⊑ ¬B2 occurs in T (where B1,B2,B3 are arbitrary

basic concepts), then add B1 ⊑ ¬B3 to T . It can be shown

that, after the over closure of T , for each couple of essential

concepts B1, B2, they have that T |= B1 ⊑ ¬B2 iff either B1 ⊑

¬B2 ∈ T or B2 ⊑ ¬B1 ∈ T.

It is immediate to confirm that, for each DL-Lite KB

K, Normalize(K) is equal to K, in the intellect that the set of

models of K coincides with that of Normalize(K). In the

following, without failure of generality we assume that every

concept name or role name occurring in A also occurs in T .

ABox storage Formerly the ABox is normalized,

amass it underneath the control of a DBMS, in order to

successfully handle objects in the knowledge base by means of

an SQL engine. To this aim, they construct a relational

database which faithfully represents a normalized ABox A.

More precisely,

 for each essential concept B occurring in A, define a

relational table tabB of arity 1, such that <a> ∈ tabB

if and only if B(a) ∈ A;
 for every role R occurring inA, define a relational

table tabR of arity 2, such that <a, b> ∈ tabR if and

only if R(a, b) ∈ A. They denote with DB(A) the

relational database thus constructed.

KB satisfiability The algorithm Consistent takes as

input a normalized KB K = (T , A) and verifies the following

situation:

(i) there exists a NI B1 ⊑ ¬B 2in T and a steady a such that the

assertions B1(a) and B2(a) fit in to A;

(ii) there exists an assertion (funct R) (respectively, (funct R¯))

in T and three constants a, b, c such that both R(a, b) and R(a,

c) (resp., R(b, a) and R(c, a)) belong to A.

Casually, situation (i) corresponds to examination

whether A openly contradicts some NI in T , and situation (ii)

corresponds to check whether A violates some functionality

assertion in T . If one of the above conditions holds, then the

algorithm returns false (i.e., K is not satisfiable); or

else, the algorithm returns true.

Notably, the algorithm verifies such situation by

affectation to DB(A) appropriate conjunctive queries

expressed in SQL. For example, situation (i) holds for a given

NI B1 ⊑¬B2 if and only if the query q(x) ← tabB1 (x), tabB2 (x)

has a non-empty if and only if the query q(x) ← tabR(x; y),

tabR(x, z), y ≠ z has a non-empty answer in DB(A), where ≠ is

the “not equal” predicate of SQL. Notice that the algorithm

does not think about the PIs occurring in T through its

execution. Indeed, they will show that PIs do not concern the

stability of a DL-Lite KB, if the TBox is normalized.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 248 - 252

__

251

IJRITCC | March 2016, Available @ http://www.ijritcc.org

Query reformulation Query reformulation is at the

spirit of query answering technique. Given the limited

significant power of DL-Lite TBoxes, it may seem that in

arrange to answer a query q over a KB K, we could simply

construct a limited first-order structure on the origin of K, and

then estimate the query as an expression over this first-order

structure. Actually, it is feasible to show that this is not the

case. In exacting, it can be exposed that, in common, given a

KB K, there exists no finite structure S such that, for all

conjunctive query q, the set of answers to q over K is the

answer of evaluating q over S. This property demonstrates that

answering queries in DL-Lite goes beyond both propositional

logic and relational databases. The essential suggestion of

technique is to reformulate the query captivating into version

the TBox: in exacting, given a query q over K, we compile the

assertions of the TBox into the query itself, thus obtaining a

new query q’. Such a new query q’ is then evaluated over the

ABox of K, as if the ABox were a easy relational database.

Since the size of q’ does not depend on the ABox, the data

difficulty of the whole query answering algorithm is

polynomial.

In case of an atom in a query is bound if it

corresponds to either a distinguished variable or a shared

variable, i.e., a variable taking place at least two times in the

query body, or a constant, while that it is unbound if it

corresponds to a non-distinguished non-shared variable (as

usual, the symbol _ used to represent non-distinguished non-

shared variables). Notice that, an atom of the type ƎR(x) (resp.

ƎR¯(x)) has the similar meaning as R(x,_) (resp. R(_, x)).

API I is applicable to an atom B(x), if I has B in its

right-hand side, and I is applicable to an atom R(x1, x2), if

either (i) x2 = _ and the right-hand side of I is ƎR, or (ii) x1 =_

and the right-hand side of I is ƎR¯. Approximately speaking,

an inclusion I is applicable to an atom g if all bound arguments

of g are propagated by I. Obviously, since all PIs in the TBox

T are unary, they are by no means applicable to atoms with

two bound arguments. It indicate with gr(g, I) the atom

obtained from the atom g by applying the inclusion I, i.e.,

 if g = B1(x) (resp., g = R1(x,_) or g = R1(_ , x)) and I = B2 ⊑

B1 (resp., I = B2 ƎR1 or I = B2 ⊑ ƎR
¯

1), we have:

 gr(g, I) = R2(x, _), if B2 = ƎR2;

 gr(g, I) = R2(_ , x), if B2 = ƎR
¯
2 ;

 gr(g, I) = A(x), if B2 = A, where A is a basic concept.

Query evaluation In sort to calculate the answers to q over the

KB K = (T ,A), it require to evaluate the set of conjunctive

queries P formed by the algorithm PerfectRef over the ABox

A. Obviously, in doing so, to develop the relational database

DB(A). For this aim, they require to convert every query q in P

into an SQL query expressed over DB(A). The conversion is

theoretically very simple. The only non-trivial case concerns

binary atoms with limitless terms: for an atom of the form R(_

, x), uses a view predicate that represents the union of tabR[2]

with tabƎR¯, where tabR[2] indicates projection of tabR on its

second column (similarly for R(x, _)). Each and every one

SQL queries obtained from P, together with the views

introduced in the conversion, denoted by SQL(P), can be

easily dispatched to an SQL query engine and evaluated over

DB(A).

Example 1 (contd.). Since ABox A contains only the

declaration HasTutor(John;Mary), it is minor to begin

satisfiability of K . Then, by executing Answer(q;K), first get

Normalize(K), which is computed by adding together to T all

NIs implied by T , i.e.,:

ƎTeachesTo¯ ⊑ ¬Professor ƎHasTutor¯ ⊑ ¬Student.

Then, Eval(SQL(PerfectRef(q, T));DB(A)) returns the set

{Mary}. In particular, Mary is returned by the evaluation

of the SQL transformation of the query q(x) ←HasTutor(_ , x).

IV. DISCUSSION AND RELATED WORK

DL-Lite is a portion of expressive DLs with assertions

and inverses studied in the 90’s (see [4] for an overview),

which are at the foundation of present ontology languages

such as OWL, and for which optimized automated logic

systems such as Fact and Racer have been developed.

Definitely, one could use, off-the-shelf, a system like Racer to

execute KB satisfiability, instance checking (of concepts), and

logical inference of inclusion assertions in DL-Lite. Also,

reasoning with conjunctive queries in these DLs has been

studied (see e.g. [11]), though not yet implemented in systems.

Regrettably, the reasoning events for these DLs are all

EXPTIME-hard, and further significantly they are not tailored

AAAI-05 / 606 towards obtaining firm difficulty bounds with

respect to data difficulty. Conjunctive queries joint with DLs

were also considered in [16, 13], but again data complication

was not the major worry. There has been a bundle of work in

DLs on the border line between polynomial and exponential

reasoning. This work first determined on DLs without the

TBox factor of the KB, and led to the growth of simple DLs,

such as ALN, that declare polynomial instance checking.

However, for negligible variants of ALN, such as ALE , FLE¡,

and ALU, instance checking, and therefore conjunctive query

answering, is coNP-complete in data complication [12].

Then permit for repeated inclusion assertions in the

KB, then even subsumption in CLASSIC and ALN becomes

inflexible [9]. Examine that DL-Lite does permit for repeated

assertions without declining into intractability. In reality, they

can impose the repeated propagation of the existence of an R-

successor using the two DL-Lite inclusion assertions A ⊑ ƎR,

ƎR¯ ⊑ A. The restriction forced on a model is like to the one

forced by the ALN repeated assertion A ⊑ ƎR ⊓ ∀R.A, though

stronger, since it additionally enforces the second component

of R to be typed by A. In order to keep tractability even in the

presence of cycles, DL-Lite imposes limitations on the use of

the ∀R.C construct, which, if used jointly with inclusion

assertions, immediately would lead to intractability [9]. The

work is also tightly related to work in databases on implication

of integrity constraints (ICs) [2] and on query answering in the

presence of ICs under an open world semantics (see, e.g., [8,

3, 14, 7]). Rephrased as ICs, DL-Lite TBoxes permit for

expressing unique forms of inclusion dependencies, numerous

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 248 - 252

__

252

IJRITCC | March 2016, Available @ http://www.ijritcc.org

keys on relations, and exclusion dependencies. The results that

report here show that DL-Lite inclusion assertions form one of

the largest class of ICs for which query answering remains

polynomial.

CONCLUSIONS

DL-Lite, a latest DL purposely modified to imprison

theoretical data models and essential ontology language while

keeping the worst-case difficulty of sound and whole logic

obedient. It paying attention on binary roles only, other than it

is feasible to widen logic techniques to n-ary relations without

loosing their pleasant computational properties. Working on

further motivating extensions to DL-Lite, such as the preface

of subset constraints on roles. The results of [10] entail that

verdict an adjustment of query answering technique is going to

be a unbreakable trouble.

REFERENCES
[1] S. Abiteboul and O. Duschka. Complexity of answering

queries using materialized views. In Proc. of PODS’98,

pages 254–265, 1998.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison Wesley Publ. Co., 1995.

[3] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent

query answers in inconsistent databases. In Proc. of

PODS’99, pages 68–79, 1999.

[4] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P.

F. Patel-Schneider, editors. The Description Logic

Handbook: Theory, Implementation and Applications.

Cambridge University Press, 2003.

[5] A. Borgida and R. J. Brachman. Conceptual modeling with

description logics. In Baader et al. [4], chapter 10, pages

349–372.

[6] A. Borgida, R. J. Brachman, D. L. McGuinness, and L. A.

Resnick. CLASSIC: A structural data model for objects. In

Proc. of ACM SIGMOD, pages 59–67, 1989.

[7] L. Bravo and L. Bertossi. Logic programming for

consistently querying data integration systems. In Proc. of

IJCAI 2003, pages 10–15, 2003.

[8] A. Cal`ı, D. Lembo, and R. Rosati. On the decidability and

complexity of query answering over inconsistent and

incomplete databases. In Proc. of PODS 2003, pages 260–

271, 2003.

[9] D. Calvanese. Reasoning with inclusion axioms in

description logics: Algorithms and complexity. In Proc. of

ECAI’96,pages 303–307. John Wiley & Sons, 1996.

[10] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini,

and R. Rosati. What to ask to a peer: Ontology-based query

reformulation. In Proc. of KR 2004, pages 469–478, 2004.

[11] D. Calvanese, G. De Giacomo, and M. Lenzerini.

Answering queries using views over description logics

knowledge bases. In Proc. of AAAI 2000, pages 386–391,

2000.

[12] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf.

Deduction in concept languages: From subsumption to

instance checking. J. of Log. and Comp., 4(4):423–452,

1994.

[13] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-

log: Integrating Datalog and description logics. J. of

Intelligent Information Systems, 10(3):227–252, 1998.

[14] O. M. Duschka, M. R. Genesereth, and A. Y. Levy.

Recursive query plans for data integration. J. of Logic

Programming, 43(1):49–73, 2000.

[15] H. J. Levesque and G. Lakemeyer. The Logic of Knowledge

Bases. The MIT Press, 2001.

[16] A. Y. Levy and M.-C. Rousset. Combining Horn rules and

description logics in CARIN. Artificial Intelligence, 104(1–

2):165–209, 1998.

[17] M. Y. Vardi. The complexity of relational query languages.

In Proc. of STOC’82, pages 137–146, 1982.

http://www.ijritcc.org/

