
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 159 -164

__

159

IJRITCC | March 2016, Available @ http://www.ijritcc.org

Matlab Code For Identification Of Graphics Objects In Aircraft Displays

 Lakshmi Devi P

Assistant Professor

 Channabasaveshwara Institute of Technology, Gubbi

 Tumkur, Karnataka, India. E-mail: lakshmi21devip@gmail.com

Abstract— This paper is aimed at understanding, utilizing and improving the existing system and automating the graphics testing process. The paper involves

developing an automation design for automating the graphics testing process involved in software testing of aircraft displays. The paper comes under software
development; there are so many steps in software development like Requirement analysis, Design, Implementation, Testing and evolution. So testing is the one of

the step which comes under software development. We are designing an automation tool in graphics testing. Graphic testing tests the display devices. The main
motivation of this project is to save the time because current approach involves user to read each and every message box which gets popped up while executing

script. This approach involves a lot of manual effort and a person has to physically present and do the test execution and also there is possibility of mistakes when

a non-trained person working on it. So to make initial test set up as fast as possible, with no errors and with no manual effort we are developing an automation tool.
The tool includes techniques of image comparison, optical character recognition and template matching. Our automation should be able to handle all kinds of text

and digits. Implementing a design which is able to recognize characters which pops up from window and takes a decision of pass/fail based on the recognized

characters, while doing testing automatically, for that we use optical character recognition and template matching is mainly used for object recognition. Image
comparison is used to capture an image and do the executions process automatically.

Keywords- Image comparison, Automation design, Optical character recognition, template matching.

__*****___

I. INTRODUCTION

The concept of this paper comes under software development;

there are so many steps in software development like Requirement

analysis, Design, Implementation, Testing and evolution. So testing is

the one of the step which comes under software development. There

are so many testing‟s like graphics testing, integration testing,

Performance testing, System testing and etc. We are designing an

automation tool in graphics testing. Graphic testing tests the display

devices. This is a graphics test automation that aims at automating the

test execution process of tests related to graphics. It enables the user

to capture images for the respective test cases and facilitate the

execution of the test scripts. Automated test suite reduces the need for

manual testing. Graphical tests have to be repeated often during

development cycles to ensure quality. Every time source code is

modified software tests should be re-executed. For each release of the

software it may be tested on all supported operating systems.

Manually repeating these tests is costly and time consuming. The net

effect of the benefits listed above is that software development will

become more predictable and repeatable. Automated Software

Testing saves Time, Money and increases accuracy. Once created,

automated tests can be run over and over again at no additional cost

and they are much faster than manual tests. Automated testing can

reduce the time to run repetitive tests from days to hours. A time

savings that translates directly into cost savings. Testing is the one of

the step which comes under the software development life cycle.

Testing on a hardware target is very costly and hardware is

unavailable in early phases of life cycle, so where graphical images

are supposed to be tested using a hardware device, graphical software

testing methodology is being proposed. Software testing is an integral

and important phase of the software development life cycle. This part

of the process ensures that defects are recognized as soon as possible.

There are so many testing's like graphics testing, integration testing,

Performance testing, System testing and etc. The tool is a graphics

test automation tool that aims at automating the test execution process

of test scripts that are developed for testing the graphics images based

on Software Requirements.

Graphics Testing is used to test Display Units (DU‟s) or any

console where images are displayed. Graphical user interface testing

is a testing in which testing framework generates user interface events

such as keystrokes and mouse clicks, and observes the changes that

result in the user interface, to validate that the observable behavior of

the program is correct.

A. Problem Statement

In an aircraft there will be two display units. One is for

Pilot and another one is for Co-pilot. This is mainly for safety

purpose. The current graphics testing is an intensive graphical

human-machine interface testing. To perform a successful graphical

testing, tester (who does graphical testing) should be aware of all the

terminology and details about the particular aircraft display before

performing a graphical testing. If the tester performs an unsuccessful

testing, so aircraft display unit is displaying something else instead of

displaying correct data, then it might impact safety of aircraft and

pilot. So tester should be very serious and should have knowledge

about the testing.

B. Existing system

Human inspection has been employed for the purpose of

graphics testing for many years. But human inspection is expensive

and prone to error. The tests need to be executed multiple times to

ensure correctness.

Figure1: Existing system operation.

C. Proposed system

Image Comparison techniques are used to compare the new

images to the existing data set. A database is created with pre-

existing/required images to compare the obtained image. Image

comparison and OCR techniques can be employed to automate the

process of Graphics testing. OCR techniques are used to capture the

characters in image displayed. The automation test process in turns

consists of two blocks. First block consists of techniques which we

will be using and implementing in our paper like image comparison,

optical character recognition and template matching. Second block is

a message box which contains a message for automatic pass/fail

statement. Our algorithms checks and writes the result instead of user

manually to see the result. This is our novelty. So pass/fail asking

window will not be displayed, they will be in fact, that is stored in

summary file for further verification.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 159 -164

__

160

IJRITCC | March 2016, Available @ http://www.ijritcc.org

Figure2: Automation Proposed Design

D. Objective

 To automate complete graphics testing by using the

techniques of

 - Image comparison

 - OCR and

 - Template matching.

 Tool to capture and populate reference image database with

all data.

 Tool to run random suite of Graphics tests, compare image

and click Pass/Fail.

 Involve Advanced Technique for inputs on improving the

solution and algorithms.

 To eliminate a lot of manual effort and manual errors.

 To save huge amount of time.

 Implement character recognition techniques thereby

automating more scenarios.

 To reduce the effort and space required for image database

creation.

 Summary image archive files for offline comparison and

records.

II. IMAGE COMPARISON

In this phase the image is captured from the display by running

the script, bitmap and coordinates are fetched, new image is captured

and the two images are compared. The resultant images are stored in

the database for future comparison and reporting purpose. The

execution stops automatically after all the test cases in the test script

file are run.The captured images are compared against the pre-

existing images in the database pixel by pixel. OpenCV libraries are

used to efficiently compare the images. An error margin can be

specified to account for minor errors. The algorithm converts the

images into matrices and compares the matrices thus generated. After

the error margin bits are accounted for, the algorithm decides if the

comparison has passed or failed.

OpenCV libraries are used to efficiently compare the images. It

contains a large collection of image processing functions, to solve a

computational challenge. An error margin can be specified to account

for minor errors. The algorithm converts the images into matrices

and compares the matrices thus generated. After the error is

accounted for, the algorithm decides if the comparison has passed or

failed.

A. Image comparison algorithm:

Double cvNorm (const CvArr* arr1, const CvArr* arr2=NULL,

int norm_type=CV_L2, const CvArr* mask=NULL)

The function above can be used to compute the norm of an array

and also a variety of relative distance norms if two arrays are

provided. There is an intuitive interpretation of the norms as a

Euclidean distance in a space of dimension equal to the number of

pixels in an image.

Description: The function slides through image, compares the

overlapped patches of size against template using the specified

method and stores the comparison results in result. Here are the

formulae for the available comparison methods (denotes image,

template, result). The summation is done over template and/or the

image patch:

 method=CV_TM_SQDIFF

','

))2','()','((],[
yx

yyxxIyxTyxR

 method=CV_TM_SQDIFF_NORMED

',' ','

','

2)','(*2)','(

2))','()','((

],[

yx yx

yx

yyxxIyxT

yyxxIyxT

yxR

 method=CV_TM_CCORR

','

))','(*)','((],[
yx

yyxxIyxTyxR

 method=CV_TM_CCORR_NORMED

',' ','

','

2)','(*2)','(

))','()','((

],[

yx yx

yx

yyxxIyxT

yyxxIyxT

yxR

 method=CV_TM_CCOEFF

','

))','(*)','((],[
yx

yyxxIyxTyxR

Where

","

)","(*)*/(1)','()','('
yx

yxThwyxTyxT

","
)","(*)*/(1

)','()','('

yx
yyxxIhw

yyxxIyyxxI

 method=CV_TM_CCOEFF_NORMED

',' ','

','

2)','(*2)','(

))','(*)','((

],[

yx yx

yx

yyxxIyxT

yyxxIyxT

yxR

After the function finishes the comparison, the best matches

can be found as global minimums (when CV_TM_SQDIFF was

used) or maximums (when CV_TM_CCORR or CV_TM_CCOEFF

was used) using the minMaxLoc() function. In case of a color image,

template summation in the numerator and each sum in the

denominator is done over all of the channels and separate mean

values are used for each channel. That is, the function can take a

colour template and a colour image. The result will still be a single-

channel image, which is easier to analyse.

Where: x is the template gray level image.

x’ is the average grey level in the template image.

y is the source image section.

y’ is the average grey level in the source iHUmage.

There are two phase in image comparison:

-Image capturing phase

-Image execution phase.

B. Parameters:
1. Character pointer variable holding first Image path: Char*

2. Character pointer variable holding second Image path: Char*
3. Types of array normalization: integer values as below.

 CV_C 1

 CV_L1 2

 CV_L2 4

 CV_NORM_MASK 7

 CV_RELATIVE 8
 CV_DIFF 16

 CV_MINMAX 32

 CV_DIFF_C (CV_DIFF | CV_C)
 CV_DIFF_L1 (CV_DIFF | CV_L1)

 CV_DIFF_L2 (CV_DIFF | CV_L2)

 CV_RELATIVE_C (CV_RELATIVE | CV_C)
 CV_RELATIVE_L1 (CV_RELATIVE | CV_L1)

CV_RELATIVE_L2 (CV_RELATIVE | CV_L2)

Provide other than the above values to choose the default norm:
“CV_DIFF_L1 (CV_DIFF | CV_L1)”.

mask – it must have the same size as src1 and CV_8UC1 type.

Description: The function slides through image, compares the overlapped
patches of size against template using the specified method and stores the

comparison results in result.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 159 -164

__

161

IJRITCC | March 2016, Available @ http://www.ijritcc.org

FOR LETTER CROP:

%function lines%

%function letter_in_a_line
function [fl re space]=letter_crop(im_texto)

% Divide letters in lines

im_texto=clip(im_texto);
num_filas=size(im_texto,2);

%figure,imshow(im_texto);
%title('line sent in the function letter');

for s=1:num_filas

 s;
 sum_col = sum(im_texto(:,s));

 if sum_col==0

 k = 'true';
 nm=im_texto(:,1:s-1); % First letter matrix

 %figure,imshow(nm);

 %title('first letter in the function letter_in_a_line');
 %pause(1);

 rm=im_texto(:,s:end);% Remaining line matrix

 %figure,imshow(rm);
 %title('remaining letters in the function letter_in_a_line');

 %pause(1);

 fl = clip(nm);
 %pause(1);

 re=clip(rm);

 space = size(rm,2)-size(re,2);
 %*-*-*Uncomment lines below to see the result*-*-*-*-

 %subplot(2,1,1);imshow(fl);

 %subplot(2,1,2);imshow(re);
 break

 else

 fl=im_texto;%Only one line.
 re=[];

 space = 0;

 end
end

function img_out=clip(img_in)

[f c]=find(img_in);
img_out=img_in(min(f):max(f),min(c):max(c));

FOR LINES CROP:

%function lines%

%

function [fl re]=lines_crop(im_texto)
im_texto=clip(im_texto);

num_filas=size(im_texto,1);

for s=1:num_filas
 if sum(im_texto(s,:))==0

 nm=im_texto(1:s-1, :); % First line matrix
 %pause(1);

 rm=im_texto(s:end, :);% Remain line matrix

 %pause(1);
 fl = clip(nm);

 pause(1);

 re=clip(rm);
 %*-*-*Uncomment lines below to see the result*-*-*-*-

 %subplot(2,1,1);imshow(fl);

 %subplot(2,1,2);imshow(re);
 break

 else

 fl=im_texto;%Only one line.

 re=[];

 end

end
%subplot(3,1,1);imshow(im_texto);title('INPUT IMAGE')

%subplot(3,1,2);imshow(fl);title('FIRST LINE')

%subplot(3,1,3);imshow(re);title('REMAIN LINES')
function img_out=clip(img_in)

[f c]=find(img_in);

img_out=img_in(min(f):max(f),min(c):max(c));

MAIN FUNCTION:

function[a, b]=letter(temp)
for i=1:67

d=dir(['let\',num2str(i),'*.jpg']);

for j=1:length(d)
 img=imread(['let\',num2str(i),'\',d(j).name]);

 img=im2bw(img);

 cor(j)=corr2(img,temp);

end

fcor(i)=max(cor);
end

[a,b]=max(fcor);

a
end

TO READ A LETTER:

function [a,letter]=read_letter(imagn)
%Computes the correlation between template and input image

%and its output is a string containing the letter.

%Size of 'imagn' must be 42 x 24 pixels
%Example:

% imagn=imread('D.bmp');

% letter=read_letter(imagn)
% Load_Data_Name=['template_english.mat'];

% load(Load_Data_Name);

% comp=[];
%load template_english

% for n=1:62

% sem=corr2(template_en{1,n},imagn);
% comp=[comp sem];

% end

% vd=find(comp==max(comp));
[a,vd]=my_main(imagn);

%*-*-*-*-*-*-*-*-*-*-*-*-*-

if vd>0
vd=vd(1);

if vd==1

 letter='1';
elseif vd==2

 letter='2';

elseif vd==3
 letter='3';

elseif vd==4

 letter='4';
elseif vd==5

 letter='5';

elseif vd==6
 letter='6';

elseif vd==7

 letter='7';

elseif vd==8

 letter='8';

elseif vd==9
 letter='9';

elseif vd==10

 letter='A';
elseif vd==11

 letter='a';
elseif vd==12

 letter='B';

elseif vd==13
 letter='b';

elseif vd==14

 letter='C';
elseif vd==15

 letter='c';

elseif vd==16
 letter='D';

elseif vd==17

 letter='d';

elseif vd==18

 letter='E';

elseif vd==19
 letter='e';

elseif vd==20

 letter='F';
elseif vd==21

 letter='f';

elseif vd==22
 letter='G';

elseif vd==23

 letter='g';
elseif vd==24

 letter='H';

elseif vd==25
 letter='h';

elseif vd==26

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 159 -164

__

162

IJRITCC | March 2016, Available @ http://www.ijritcc.org

 letter='I';

 %*-*-*-*-%

elseif vd==27
 letter='i';

elseif vd==28

 letter='J';
elseif vd==29

 letter='j';

elseif vd==30
 letter='K';

elseif vd==31

 letter='k';
elseif vd==32

 letter='L';

elseif vd==33
 letter='l';

elseif vd==34

 letter='M';
elseif vd==35

 letter='m';

elseif vd==36
 letter='N';

elseif vd==37

 letter='n';
elseif vd==38

 letter='O';

elseif vd==39
 letter='o';

elseif vd==40

 letter='P';
elseif vd==41

 letter='p';

elseif vd==42
 letter='Q';

elseif vd==43

 letter='q';
elseif vd==44

 letter='R';

elseif vd==45
 letter='r';

elseif vd==46

 letter='S';

elseif vd==47

 letter='s';

elseif vd==48
 letter='T';

elseif vd==49

 letter='t';
elseif vd==50

 letter='U';
elseif vd==51

 letter='u';

elseif vd==52
 letter='V';

 % ####

elseif vd==53
 letter='v';

elseif vd==54

 letter='W';
elseif vd==55

 letter='w';

elseif vd==56

 letter='X';

elseif vd==57

 letter='x';
elseif vd==58

 letter='Y';

elseif vd==59
 letter='y';

elseif vd==60

 letter='Z';
elseif vd==61

 letter='z';

elseif vd==62
 letter='0';

elseif vd==63

 letter='%';
elseif vd==64

 letter=':';

elseif vd==65

 letter='-';

elseif vd==66
 letter='+';

elseif vd==67

 letter='.';
end

else

 letter='#';

end

III. FLOW CHART OF CAPTURING PHASE

IV. FLOW CHART OF EXECUTION PHASE

V. TEMPLATE MATCHING

Template matching is a technique in digital image processing for

finding small parts of an image which match a template image. It is

developed as an answer to object recognition. Template matching

algorithm has the characteristics of high speed and real time.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 159 -164

__

163

IJRITCC | March 2016, Available @ http://www.ijritcc.org

 cvMatchTemplate(imgOriginal, imgTemplate,imgResult,

CV_TM_CCORR_NORMED);

This instruction does all the sliding and correlation mathematics

using imgOriginal (the source), imgTemplate (the template) and puts

the correlation map into imgResult. The calculations used for

determining the correlation map is the last parameter,

CV_TM_CCORR_NORMED. To determine the maximum point in

the correlation, we use another OpenCV function: cvMinMaxLoc.

This function returns the minimum and maximum values and their

locations.

Now max_loc holds the point we are interested in: the point with

maximum correlation. We‟ll just put a rectangle there, and also print

out the actual value of correlation. Correlation value shows that how

much template image is matched to an original image, and finally

displays the modified original image. Correlation is a measure of the

degree to which two variables agree, not necessary in actual value but

in general behavior. The two variables are the corresponding pixel

values in two images, template and source.

VI. OPTICAL CHARACTER RECOGNITION

One of the most frequent tasks in computer vision and image

processing is the recognition of an image or an object in the image.

Among these tasks, Optical character recognition (OCR) is a popular

research topic. OCR aims at enabling computers to recognize optical

symbols without human intervention. OCR is the mechanical or

electronic conversion of scanned images of handwritten, typewritten

or printed text into machine-encoded text. OCR is an image to text

conversion. It is sometimes called as “Intelligent character reader”

(ICR).

VII. RESUTS

A.Image comparison

It enables the user to capture images for the respective test cases and

facilitate the execution of the test scripts. Tool asks to upload a test

file as shown in the figure below and respective configuration

management version of the test file is entered. After that click on the

start button to start the database creation for the capturing phase.

Figure3: Image comparison tool

Figure4: Captured image preview

The above preview image shows the Test file name and tool asks

whether it needs to save with default name or would like to enter any

name. By default it saves Test_file_1_REF if it is first reference

image or Test_file_2_REF if it is second reference image and so on.

Entered image name saves like Test_file_name and specified_name,

by specifying the x co-ordinate and y co-ordinate pixel values in the

database.

B. Failure test case

After selecting failure test case condition, automatically non-graphic

condition is disabled, because as explained in the image comparison

part, for failure test condition there is an image but that is not the

required image which is displaying on the aircraft display unit, and

for Non-graphic condition, no need to select an image. So obviously

for failure test case there will be some image to capture so

automatically non-graphic condition is disabled as shown in the

figure below.

In any of the condition if the captured image is not proper then it can

be recaptured by selecting „Recapture‟ option.

Figure5: Selecting Failure test case

C. Non-Graphic condition

After selecting the non-graphic condition, then automatically failure

test case option is disabled. Because for non graphic condition no

need to consider any image at all then there is no point in saying that

this image is wrong image. So tool disables the failure test case

option while performing non-graphic condition as shown in the figure

below.

Figure6: Selecting Non-graphic condition

D. Database created after capturing phase

After performing capturing phase successfully, tool automatically

stores all the information about the performed test file name, captured

images X co-ordinate and Y co-ordinate pixel values, pass-fail

messages and also saves the reference image name for further

verification.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 159 -164

__

164

IJRITCC | March 2016, Available @ http://www.ijritcc.org

Figure7: Database of capturing phase.

E. Execution phase

Automatically it captures and compares with the created database for

particular test cases according to the requirement. If the captured and

saved images are in the database for a particular test case then it

automatically clicks and says that test case is pass and writes every

details in database as a summary file for further verification. If the

reference and resultant images are not same then it automatically

clicks No by saying that it is a fail test case. Automatic clicking yes

or no option performs for every test case in a test file and information

has been written automatically in the database as shown in the figure

below.

Figure8: Stored database information.

F. Optical Character Recognition Results

The input image may be colored or grayscale image, if it is colored

image then it converts into a gray scale image. The optical character

recognition has been checked for all the cropped aircraft display

images. The input image may be series of characters, character

followed by numbers, character followed by symbols and input image

may consists of many number of lines. The tool is able to recognize.

Figure9: Line segmented image

Figure10: Recognized characters

Table1: Time taken and Accuracy rate of characters.

VIII. CONCLUSION & FUTURE WORK

Overall the paper has been a success with the entire paper

requirement. The automation tool has been used three popularly used

image processing and computer vision techniques to deal with the

problem of manual testing for the identification of graphics objects in

aircraft display units.

The design could be effectively deployed in various platforms using

image comparison, OCR and template matching techniques to reduce

the manual efforts required for the graphics testing process with very

less amount of time and with no errors and saves huge amount of

time. Coming up with an Optical Character Recognition algorithm

which works for aircraft display image and it is still an open problem

in computer vision. One more challenge is to obtain an algorithm

which can be applied for any kind of real time data to perform

automated testing. It may be a Moving, rolling, blinking and even if

the size of the DU varies between the Image Capturing phase and the

execution phase, the tool has to perform automated testing with same

accuracy.

REFERENCES

[1] Huizhong Chen, Sam S. Tsai, Georg Schroth, David M. Chen, Radek
Grzeszczuk and Bernd Girod, “Robust text detection in natural images
with edge enhanced maximally stable extremal regions”.

[2] Boris Epshtein, Eyal Ofek, Yonatan Wexler, “Detecting text in natural
scenes with stroke width transform”.

[3] M. Szmurlo, Masters Thesis, Oslo, May
1995,(users.info.unicaen.fr/~szmurlo/papers/masters/master.thesis.ps.gz)

[4] Lukas Neumann and Jiri Matas, “A method for text localization and
recoginition in real world images”.

[5] http://www.aishack.in/2010/02/installing-and-getting-opencv-running/.

[6] Artificial neural network based character recognition using
backpropagation by Madhup Shrivastava

[7] Dinesh Dileep., “ A Feature extraction technique based on character
geometry for character recognition”, IEEE.

[8] Artificial Intelligence and cognitive science
©2006,NilsJ.NilssonStanfordAI Lab
http://ai.stanford.edu/~nilsson.

[9] Unicode Optical Character Recognition by Daniel Admassu, 23 Aug
2006

[10] Using Neural Networks to Create an Adaptive Character Recognition
System
© 2002, Alexander J. Faaborg
Cornell University, Ithaca NY

http://ai.stanford.edu/~nilsson

