
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 136 - 154

__

136

IJRITCC | March 2016, Available @ http://www.ijritcc.org

A Reengineering Method from Procedural SW to Object-Oriented SW for SaaS in Cloud

Computing

Moonkun Lee

The Division of Computer Science and Engineering

The Chonbuk National University

+82-63-270-3404

moonkun@jbnu.ac.kr

Abstract

Abstract:- One of the strong requirements for SaaS in cloud computing is the reengineering capability to transform procedural SW to object-

oriented SW in case that there is no object-oriented SW available for a target application but procedural SW. Consequently it will be necessary to

convert the procedural to the object-oriented automatically by quantifiably acceptable means of conversion that guarantees the quality of SaaS.

This paper presents such a conversion method from C to C++ with the quantifiable means based on similarities for classes and inheritance

required for SaaS. The first phase of the conversion is to simplify the C source code into a graph with a minimum number of tightly coupled

components. The second phase is to generate all the possible groups of the class candidates from the graph. The third phase is to generate class

signature similarities in each group to determine class inheritance. The last phase is to generate class and inheritance similarities between each

group and the domain in the application. Compared with other approaches, this method gives SaaS experts with a comprehensive and integrated

base to control selection of the best or optimal group of the class candidates for the application from cloud computing.

Keywords: Cloud Computing, SaaS, SW Reengineering, Class/Inheritance Extraction, Similarity

__*****___

1. Introduction

There are strong needs for reengineering procedural SW (PSW) to object-oriented SW (OOSW) in cloud computing, especially

for SaaS [11, 12], since it is necessary to convert PSW to OOSW automatically when OOSW is not available is for the application

but PSW. It implies that the objective of the reengineering prior to cloud computing is still valid in the time of cloud computing:

modernizing legacy software for increase in software productivity, reduction in maintenance expenses, flexibility in adaptation to

the new environment, etc [1]. Further the objectives have to enhance the new requirement that SaaS experts should be able to

control the process of selecting the best or optimal OOSW for the application, based on some quantifiable means of measurements

[11, 12].

Figure 1 shows the generic process for the reengineering as follows [1, 5]. It can be applied to the reengineering for SaaS:

1) Object extraction phase: In this phase, the building blocks or units of PSW are clustered into a number of meaningful

sets, that is, object candidates, based on the degree of interconnectivities between global variables, used-defined variable

types, functions and parameters in the PSW.

2) Class extraction phase: In this phase, classes are defined by extracting common features among related object candidates.

The resulting classes have no class hierarchy among themselves. The inclusion relations among the classes based on the

common features are not revealed yet.

3) Inheritance phase: In this phase, such inclusion relations among the classes are formalized to be part-of or is-a relations.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 136 - 154

__

137

IJRITCC | March 2016, Available @ http://www.ijritcc.org

The formal relations are used to construct the hierarchical structure for inheritance among the classes, and the new

common overlapped classes can be generated if necessary.

4) Persistence phases: In this phase, the characteristics and dynamic properties that are not in PSW are added in a new

OOSW. The examples are the constructors and destructors of classes, their memory allocations and deallocations, etc.

Figure SaaS Reengineering Process from PSW to OOSW in Cloud Computing

Prior to cloud computing, a number of researches were reported to transform PSW into OOSW mainly at the object and class

extraction phases [2, 3, 5, 6, 7, 8, 10]. Further they only focused on producing only one deterministic pattern of target OOSW with

respect to classes and inheritance. Consequently it was not possible for reengineers to consider other possible reengineering

choices for the target OOSW. This is still the main issue for SaaS in cloud computing [11, 12]. Consequently it was not possible

for SaaS engineers to control the process of selecting the best or optimal OOSW for the application based on some quantifiable

means of measurements

In order to overcome the limitation, this paper presents a new and innovative conversion method that the engineer is able to select

the best suitable OOSW for the application from groups of class candidates with a set of reengineering factors to determine the

similarities between the candidates and the application domain for classes and inheritance. As shown in Figure 2, the method

consists of the following phases:

1) Preprocessing phase: In preprocessing, PSW will be represented in a graph. Then the graph will be reduced by grouping

its nodes with the tightly coupled relations, such as, variable-type, function call, memory-reference, etc. In this phase,

the engineer can determine types of the grouping relations for the application.

2) Class extraction phase: In this phase, groups of all possible class candidates are generated in the first step. The number of

groups appears to increase exponentially by the number of candidates, but does linearly due to the sequential

dependency among the candidates. Once groups are determined, all the attributes (variables) and methods (functions) are

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 136 - 154

__

138

IJRITCC | March 2016, Available @ http://www.ijritcc.org

clustered together for the candidates and further abstracted. In this phase, the engineer can determine clustering criteria

for attributes and methods.

3) Inheritance extraction phase: All the groups from the previous phase are organized in the abstraction levels of a special

graph. At each level from the bottom, similarities among classes are determined to generate inheritance classes as supper

classes. The results at the bottom will be reflected to the next top level from the bottom. It will repeat recursively up to

the top of the graph. For the calculation of the similarity, the engineer can provide a set of signature similarity criteria in

a quantifiable manner.

4) Decision Phase: With the given domain for the application, the similarities between the groups at each levels of the

graph and the domain are measured with respect to the classes (vertical) and their inheritances (horizontal). The group

with the best or optimal similarities will be selected as the best or optimal OOSW. Here the engineer can provide a set of

vertical and horizontal similarity criteria in a quantifiable manner to select the best.

Figure Detailed Reengineering Process for Optimal Selection

As described, one of the main advantages of the method is to provide SaaS engineers with a comprehensive and integrated means

to control the process of selecting the best or optimal OOSW for the application, based on different levels of reengineering factors

in quantifiable manners.

Compared with other approaches [1, 2, 3, 4, 5, 8, 10, 11, 12], the method has the following innovative features:

1) Graphical model: It provides a graphical model for whole reengineering process, which makes the process clear and easy

to comprehend.

2) Multiple candidates: It provides multiple groups of class candidates.

3) Minimum sets: It provides the minimum set of input graph in the preprocessing phase, of combinations in the class

extraction phase, etc.

4) Reengineering factors: It provides four different types of reengineering factors at the phases of the processing, class

extraction, inheritance, and the decision.

5) Decision criteria by SaaS engineer: The best or optimal OOSW is determined by the reengineering factors supplied by the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 136 - 154

__

139

IJRITCC | March 2016, Available @ http://www.ijritcc.org

engineer. It means that the engineer has a strong influence on the selection.

The assumptions in the paper are as follows: there exists the documentation for the requirements of input PSW and a SaaS expert

who can determine a domain model from the requirements. Extracting objects from PSW is not enough to define meaningful

objects and classes. Therefore it is necessary to determine some domain model from the requirements and to determine similarities

between the extracted classes and the classes in the model.

The paper is organized as follows. Section 2 presents related research. Section 3 defines graph models used in the paper. Sections

4, 5 and 6 describe each phase of extracting class candidates, extracting inheritance, and deciding the group of best or optimal

class candidates. Section 7 shows the results of experiments and analysis. Section 8 discusses the conclusions and the future

research.

2. Related Research

In COREM, PSW is transformed into OOSW after creating object modeling of PSW at abstraction level by referring information

from both reverse-engineered knowledge and the domain-engineered modeling information by domain engineers [5].

Jin uses the relations among global variables, types and functions in order to extract objects and classes from PSW. A graph is

constructed from the relations. The degree of a relation is represented by the frequency and the weight of each type of the relations.

The clustering is performed with respect to the value of internal interconnectivity [7].

In the above approaches and others [2, 3, 6, 8, 10], the attributes of classes are commonly extracted by using function parameter,

global variables and types. The methods of classes are extracted from functions or sliced portions of functions. Such a process is

performed iteratively with respect to a group of object candidates. An expert is engaging in each step of the process. One of the

problems in the approaches is that each different clustering sequence generates non-deterministically different results. Further

only one group of object candidates is compared with a domain model.

In [11, 12], challenging issues and strategies for cloud computing are discussed by means of reengineering legacy applications.

Especially it emphasizes requirements and criteria for business applications, but it does not describe technical issues of the

reengineering, especially for conversion of PSW to OOSW. The requirements and criteria can be interpreted as a guideline for the

reengineering performed by SaaS engineers. This paper will show one of the possible guidelines.

3. VPR and FTV Graphs

The graph model used in the paper is Visual Program Representation (VPR) [9], based on Entity-Relation-Attribute (ERA) model

[4]. VPR is a graphical language used for visualization, analysis and transformation for a number of systems [13, 14].

3.1. VPR Graph

Each statement of SW in C and C++ is represented as a node in VPR graph. There are a number of node types for declaration and

execution statements. Note that nname and Nname imply the named node or its type.

A relation between statements is represented as an edge with a weight. The weight implies the frequency of the relation. There are

a number of edge types. Note that ename and Ename implies the named edge or its type.

G
VPR

 is a VPR graph with a set of nodes and a set of edges to represent input PSW.

3.2. FTV Graph

The Function-Type-Variable (FTV) graph G
FTV

 is a sub-graph of G
VPR

, whose nodes are only of function, data type, and global

variable, and whose edges are only of function call, type reference and global variable reference. G
FTV

 is to visualize and analyze

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 136 - 154

__

140

IJRITCC | March 2016, Available @ http://www.ijritcc.org

the information needed in extracting classes and inheritance from PSW.

Figure 3 shows FTV graph for a personnel management (PM) example written in C. There are three types of nodes: user-defined

types, global variables, and functions. And there are three types of edges: type references (T), variable references (M), and

function (C). The frequency of a relation is denoted at the edge after a colon.

variable

type

function

memory(M)
call (C)

type
reference (T)

: frequency
of relation

Figure 3 The FTV Graph for PM Example

3.3. TVCC Graph

FTV graph can be very complex. In order to reduce the complexity, a group of tightly coupled nodes can be considered as a

composite node.

Firstly, the global variables of the same data type can be merged into a cluster. It means that the variables will fall in the same

class and refer to the same functions. The approach can be similarly applied to the modified cases of the user-defined types. This

type of clusters is defined as the type-based variable connected component (TVCC), denoting a group of nodes consisted of the

global variables from G
FTV

 with the same type. The nodes and the graph of TVCC in G
FTV

 are represented as NTVCC and G
TVCC

,

respectively. For example, the type list and the variables, head, tail and current of the list type in Figure 3 become the

list&head&tail¤t NTVCC as shown the left corner of the bottom of Figure 4.

Secondly, the dynamic entities in the graph, that is, functions, can be pre-clustered. If a function is independently related to other

node (i.e., there is only a single edge from the function to any other node), the function can be merged into the node as a cluster.

This case is not found in Figure 3.

Figure 4 shows the TVCC graph from Figure 3. The number of nodes is reduced from 23 to 20: one cluster of a data type and

three variables of the type.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 136 - 154

__

141

IJRITCC | March 2016, Available @ http://www.ijritcc.org

print_personread_person add_couse read_teacher print_teacher read_student print_student

print_list

find_list

get_no_of_object

get_no_of_person

get_no_of_total_element

print_no_of_element

person

list & head &
 tail & current

student

teacher

T:1

T:2

insert_list

C:1

T:1

C:1

C:1

C:1

M:4
M:2

T:1

T:1

T:1

T:1

M:1

T:1

M:1

T:1

T:2

C:1

T:1

T:1 T:1

C:1

T:1
T:2

T:1

M:1

M:1

T:1
T:1

M:1

M:1

M:1

C:1 C:1

T:2

no_of_studentno_of_teacher

M:1
M:1

M:1

M:1

M:1

Figure 4 The TVCC Graph for PM Example

4. Class Extraction

This section describes the class extraction phase. The phase consists of four steps: combination, attribute clustering, method

clustering, and abstraction described as follows.

4.1. Combination Step

The purpose of the step is to define the maximum number of groups for possible class candidates by generating all combinatorial

cases for each type of clustering with respect to the number of TVCC nodes in G
TVCC

. A graph G
TVCC

 from the previous section is

input to the step, the number of NTVCC in the graph is counted, and all the possible combinatorial cases to cluster NTVCC are

determined. The graph for each clusterering is denoted by
),,(:. ii ccbaG
, where a and b represent the identifier (ID) of the input

graph and the number of clusters in the graph respectively, and
i,c,c 1 represent an ordered tuple of the number of TVCCs in

the custers. The sum of
i,c,c 1 should be the number of TVCCs in the graph. For example, if the ID of a graph, the number of

NTVCC in the graph and the type of clustering combination are 1, 6, and three clusters with one NTVCC, two NTVCC and three NTVCC,

i.e., (1, 2, 3), respectively, the graph will be denoted by G1.3:(1,2,3). Ga.b without the subscript (c1, …, ci) implies either an arbitrary

cluster i or a graph Ga.b only with one cluster.

As the numbers of combinations for each type of clustering is obtained by the following formula:

n

1k 1j

1

1

y k

i im

n

where k is the number of clustering types, y is the number of combinations in the clustering types, mi is the number of TVCCs in

the i-th cluster in the clustering type. Note that
),,(:. ii ccbaG

 for each clustering type represents the number of the combination

cases for
),,(:. ii ccbaG
. The total number of combination for PM example is obtained as follows:

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 136 - 154

__

142

IJRITCC | March 2016, Available @ http://www.ijritcc.org

)6(:1.1G +
)5,1(:2.1G +

)4,2(:2.1G +
)3,3(:2.1G +

)4,1,1(:3.1G +
)3,2,1(:3.1G +

)2,2,2(:3.1G +
)3,1,1,1(:4.1G +

)2,2,1,1(:4.1G +
)1,1,1,1,1(:5.1G +

)1,1,1,1,1,1(:5.1G

=

6

6 +

1

6 +

2

6 +

3

6 +

2

6 +

2

5

1

6
 +

2

4

2

6 +

3

6 +

2

4

2

6 +

4

6 +

6

6

= 1 + 6 + 15 + 20 + 15 + 60 + 90 + 20 + 90 + 15 + 1 =

= 333

As shown above, the total number of combinations can be very large that the process of class extraction would be very complex

task. However there exists at most one deterministic sequence of clustering for each clutering type as shown in the next step.

Consequently at most one combination case can be generated for each clustering type. The maximum number of all combination

cases is defined in the following formula:

(,) (, 1) (,)

where,

(0,) 1

(,) (,0) 0 (0)

f x y f x y f x y y

yf y

yf x y xf x if x

The initial values of x and y are the number of NTVCC in G
TVCC

. Compared with the previous formula, the total number becomes

linear to the number of TVCCs in the graph.

4.2. Attribute Clustering Step

In the attribute clustering step, NTVCCs in G
TVCC

 are clustered with respect to each combinatory case in sequence. The step can be

considered as a process of extracting class candidates with static entities since the clustering is performed only on variables and

types except functions. At the time of clustering NTVCC, the following clustering criterion is required from a user or expert:

),(),(),(

),(),(

),(),(

),(),(

),(),(),(

1

and , :

, :

, :

 , where

},,{

where,

,

TVCCTVCCspecTVCCspecspec

specspecspecspec

specTVCCspecTVCC

TVCCTVCCTVCCTVCC

specspecspecTVCCTVCCTVCC

NNNNNN

NNNN

NNNN

NNNN

NNNNNN

WETWETWET

eofweightWET

eofweightWET

eofweightWET

WETWETWETWET

WETLIMITC

Here C
1
 and C

1
LIMIT imply the value of LIMIT and the minimum value of two NTVCCs being clustered, respectively. Some

unnecessary candidate groups can be discarded by selecting an appropriate value of C
1
LIMIT. The weight of edge type (WET) of C

1
,

that is, C
1
WET, implies how important each type of edges is. When two NTVCCs are clustered, a different weight will be imposed on

each type of edges between them. The values of C
1
LIMIT and C

1
WET should be ranged between 0 and 1.

The value of relativity (VR) to cluster two NTVCCs is defined as follows:

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 136 - 154

__

143

IJRITCC | March 2016, Available @ http://www.ijritcc.org

TVCCjii

TVCCji

jjiiiji

j

il n

nn

nn

Nnnn

Nnn

nnnnnnnpath

WETew

WETew
VR

l

ll

ji

121

121

1

),(

),(

),(

,,,

 ,,

,,,,,),(

 where,

))((

)(
1

Here
),(kne and

),(kne
 mean all edges from and to an arbitrary node nk.

When there are several paths and their VRs between node ni and nj, the maximum VR (MVR) represents the strongest

interconnectivity between these nodes. MVR is similar to the most intensive path for the shortest distance between two nodes.

The algorithm for the attribute clustering is as shown in Algorithm 1. The inputs to the algorithm are a TVCC graph, the number

of combinatorial cases from the combination step, and the clustering criterion. The time complexity of the algorithm is O(n
2
).

Input : TVCC

iG ,),,,(.2.1.

x

zy

x

y

x

y aaa , 1C

Output : TVCC

kiG .

While (ConditionOfCombNo(TVCC

iG , x

ya)) {

 for each
TVCCN { calculate MVR(

TVCCN ,
TVCCN) }

 if (max(MVR) > 1

LIMITC) {

 merge(
)(:)(: , MVRMAXtoMVRMAXfrom NN);

 restructure TVCC

iG

 }

}

Algorithm The Attribute Clustering Algorithm

Here ConditionOfCombNo(Gi
TVCC

, ax
y
) inspects if the given combinatorial case is applicable with the number of NTVCCs in Gi

TVCC
.

The algorithm determines certain grouping cases where the clustering with the combinatorial case is not feasible. The first case is

that the value of MVR is smaller than C
1
LIMIT. Since there is no strong relation between the NTVCC , it is better not to generate a

candidate group, which may produce some undesirable outcome, i.e., meaningless classes. The second case is that the already-

clustered target NTVCCs are not clusterable. Since the tightly coupled NTVCCs are already clustered, partitioning the NTVCCs reversely

is not desirable.

Table 1 shows the output of the algorithm for PM example with the input (NTVCC:NTVCC =0.9, Nspec:Nspec =0.7, NTVCC: Nspec =0.8).

The table shows that there are only one clustering case for each clustering type, that is, G1.1:(6), G1.2:(3,3), G1.3:(1,2,3), G1.4:(1,1,2,2),

G1.5:(1,1,1,1,2), and G1.6:(1,1,1,1,1,1). There are also non-applicable cases, that is, G1.2:(1,5), G1.2:(2,4), G1.3:(1,1,4), G1.3:(2,2,2), and G1.4:(1,1,1,4),

since there are no clustering sequences for these clustering types in the algorithm. The total number of combination cases is now

reduced almost in half.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 136 - 154

__

144

IJRITCC | March 2016, Available @ http://www.ijritcc.org

Table 1 The Combinatorial Cases for PM Example

Combination Class candidate groups

G1.1:(6) {person, teacher, student, list&head&tail¤t, no_of_teacher, no_of_person}

G1.2:(1,5) Not applicable

G1.2:(2,4) Not applicable

G1.2:(3,3) {list&head&tail¤t, person, no_of_person}, { no_of_teacher, teacher, student}

G1.3:(1,1,4) Not applicable

G1.3:(1,2,3) {list&head&tail¤t, person, no_of_person}, { no_of_teacher, teacher}, {student}

G1.3:(2,2,2) Not applicable

G1.4:(1,1,1,4) Not applicable

G1.4:(1,1,2,2) {list&head&tail¤t}, {person, no_of_person}, {student}, { no_of_teacher, teacher}

G1.5:(1,1,1,1,2) {list&head&tail¤t}, {person, no_of_person}, {student}, { no_of_teacher}, {teacher}

G1.6:(1,1,1,1,1,1) {list&head&tail¤t}, {person}, {no_of_person}, {student}, { no_of_teacher}, {teacher}

Figure 5 shows the group of two candidate classes for G1.2:(3,3): one with three NTVCCs and the other with three NTVCCs.

print_person

read_person

add_couse

read_teacher

print_teacher

read_student
print_student

print_list

insert_list

list&head&tail¤t&person
&no_of_person

no_of_teacher&student&teacher

find_list

get_no_of_object

get_no_of_person

get_no_of_total_element

print_no_of_element

C:1

T:1

T:2

C:1

M:1

T:1

M:1

C:1

C:1

M:1

M:1

T:1

T:2

C:1

T:1

C:1

T:1

T:1

C:1 T:1

M:6

T:2

T:3

T:3

T:1

T:1

M:1
M:1

T:1

M:1

M:1

M:1

M:1

M:1

C:1

Figure 5 The Results of the Attribute Clustering for G1.2(3,3)

4.3. Method Clustering Step

This step consists of two sub-steps: 1) cluster functions with a clustering algorithm and 2) handle the function remained after the

algorithm by a domain expert.

4.3.1. Clustering with a Method Clustering Algorithm

As a result of the combination and the attribute clustering steps, the static elements of a graph Gi
TVCC

 , NTVCC, are clustered. In the

method clustering step, the dynamic elements, functions, are clustered into NTVCCs. The functions are considered as methods in a

class. The cluster of NTVCC and Nspec is defined as TVCC-extended-to-function (TEF) node and represented as NTEF. The graph with

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 136 - 154

__

145

IJRITCC | March 2016, Available @ http://www.ijritcc.org

NTEF is called G
TEF

.

For function clustering, the following clustering criterion is input from a user:

}

,

,

,{
where,

,

,,

,,

,,

,,

2

BACKWARDNN

FORWARDNN

BACKWARDNN

FORWARDNN

specspec

specspec

specTEF

specTEF

EWET

EWET

EWET

EWETEWET

EWETLIMITC

The LIMIT of C
2
, C

2
LIMIT, is the minimum value for Nspec to be clustered. The extended WET (EWET) of C

2
 is the weight of type

and the direction of the edge. The values of C
2
LIMIT and C

2
EWET are ranged between 0 and 1.

A domain expert can adjust the degree of cohesion among nodes with C
2
LIMIT. If the real small value of C

2
LIMIT is selected, all

functions can be clustered to NTEF. In this case, there exists weak cohesion between loosely coupled NTEF and clustered functions.

Conversely, if the very large value of C
2

LIMIT is selected, all functions can not be clustered to NTEF. In this case, there exists strong

cohesion between tightly coupled NTEF and clustered functions.

The remaining functions, which are not clustered to any NTEF due to the high C
2
LIMIT value, are called procedure remainder [7]. It

will be discussed in Section 4.3.2.

In comparison, a writing relation (or a called relation) has a higher weight than a reading relation(a calling relation). In addition,

the weight of the relation between Nspec and NTEF is higher than that of the relation between Nspec and Nspec. Such differences are

due to whether a relation between nodes is direct or indirect. Such a type of a relation may imply the type function members to be

accessed, i.e., private or public in the C++ notion.

Using a clustering criterion C
2
, the VR between NTEF and Nspec is obtainable. Since it has the value of the direction of an edge, it is

defined as the extended VR (EVR) as follows:

TEFjspeci

jjiiiji

j

il n

nn

nn

NnNn

nnnnnnnpath

EWETew

EWETew
EVR

l

ll

ji

 ,

,,,,,),(

 where,

))((

)(

121

1

),(

),(

),(
1

When there exist several paths and EVR values from node ni to nj, the maximum EVR (MEVR) among the node represents the

EVR between two nodes.

The degree of relativity to determine probabilistically of which NTEF each Nspec should belong to is defined as follows:

nodetarget :

node source:

1),(0

where,

),(

),(
),(

TEFTVCCi

specx

xi

x

xi
xi

NNn

Nn

nnDR

nMEVR

nnMEVR
nnDR

Here MEVR(-, nx) implies all NTEF or NTVCC which have some relations to the node nx.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 136 - 154

__

146

IJRITCC | March 2016, Available @ http://www.ijritcc.org

The method clustering algorithm requires a group of class candidates from the clustering step, Gi,k
TEF

, and a clustering criteria, C2.

It processes each function determinately in any order as shown in Algorithm 2.

Input : TEF

kiG .
,

2C

Output : TEF

kiG .
 (graph clutsered)

EndFlag := false

while (! EndFlag) {

 for each specN { calculate EVR(
specTEF NN ,) }

 MEVR := max(EVR)

tofrom NN , := getNodeOfMEVR()

 DR := getDR(
tofrom NN ,)

 if (DR > 2

LIMITC) {

 merge(
tofrom NN ,)

 restructure TEF

kiG .

 }

 else { EndFlag := true }

}

Algorithm The Method Clustering Algorithm

Here getNodeOfMEVR() obtains the NTEF and Nspec with MEVR. If the DR of the NTEF and Nspec is higher than C
2

LIMIT, the two

nodes are merged and the algorithm is applied iteratively to the updated graph with the merged nodes. The time complexity of

algorithm is O(n
2
).

The output of the algorithm for PM example with an input (LIMIT=0.0000001,
 FORWARDNN specspec

EWET ,,
= 0.6,

 FORWARDNN specTEF
EWET ,,

=

0.8,
 BACKWARDNN specspec

EWET ,,
 = 0.8,

 BACKWARDNN specTEF
EWET ,,

 = 1.0) is shown in Figure 6.

print_person

read_person

add_couse

read_teacher

print_teacher

read_student
print_student

print_list

insert_list

list&head&tail¤t&person
&no_of_person

no_of_teacher&student&teacher

find_list

get_no_of_object

get_no_of_person

get_no_of_total_element

print_no_of_element

C:1

T:1

T:2

C:1

M:1

T:1

M:1

C:1

C:1

M:1

M:1

T:1

T:2

C:1

T:1

C:1

T:1

T:1

C:1 T:1

M:6

T:2

T:3

T:3

T:1

T:1

M:1
M:1

T:1

M:1

M:1

M:1

M:1

M:1

C:1

Figure 6 The Result of the Method Clustering for G1.2(3,3)

4.3.2. Clustering by a Domain Expert

In the paper, the remaining functions from the method clustering step are handled by a domain expert in two ways: 1) the expert

decides which class candidate, NTEF, each function is to be clustered into, and 2) the expert determines the functions that do not

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 136 - 154

__

147

IJRITCC | March 2016, Available @ http://www.ijritcc.org

belong to any candidate at all. If a function is decided to belong to a certain candidate, it follows the same procedures applied to

other class candidates. If a function is decided not to belong to any candidate, the function can become an individual function

member of a class without any attribute.

In PM example, all functions are clustered into all NTEF because a small value of C
2

LIMIT is given. If a large value is given, there

will be some remaining functions. A domain expert can control the degree of cohesion between functions and NTEF with C
2
LIMIT.

4.4. Abstraction step

Among class candidates among
),,(:. 1 iccbaG
s, there can be abstraction relations, resulting a reverse acyclic graph (RAG), G

RA
. The

nodes of G
RA

 graph have the generalization (abstraction) and specialization (actualization) relations among class candidates in

each group with respect to only static element, NTVCC, as shown in Figure 7. The node in the higher level is the generalization of

the node(s) in the lower level. Likewise the node(s) in the lower level is the actualization of a node in the higher level. Due to its

size, the methods are shown in the bottom layer only. These methods are included in the classes at other layers in the direction of

edges.

G
1.1:(6)

list & head & tail & current no_of_person person no_of_teacher teacher student

G
1.2:(3,3)

list & head & tail & current no_of_person person no_of_teacher teacher student

student

G
1.3:(1,2,3)

 no_of_teacher teacherlist & head & tail & current no_of_person person

student
list & head & tail &
current

G
1.4:(1,1,2,2)

no_of_person person no_of_teacher teacher

teacher
list & head & tail &
current

student no_of_teacher

G1.5:(1,1,1,1,2)

no_of_person person

no_of_person no_of_teacher

G1.6:(1,1,1,1,1,1)

list & head & tail &
current

get_no_of_person():int
get_no_of_object():int
get_no_of_total_elemen
t():int
insert_list():void
find_list():void
print_list():void
print_no_of_element():v
oid

person

print_person
():void
read_person
():person

student

read_studen
t():student *
print_studen
t():void

teacher

add_course():
void
print_teacher(
):void
read_teacher(
):teacher *

 Figure 7 A RAG Graph for PM Example

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 136 - 154

__

148

IJRITCC | March 2016, Available @ http://www.ijritcc.org

5. Class Inheritance Extraction

The purpose of the inheritance extraction phase is to extract class hierarchy among class candidates from Section 4. The phase is

based on an idea of class similarity among classes in each group of class candidates. If there is a high degree of similarity between

two classes, there is a possibility of a supper class being generalized from them. This concept is applicable recursively to new

super classes.

5.1. Similarity

The degree of signature similarity (DSS) is the measurement of similarity between two classes. DSS is extended from the overall

similarity factor (OSF) [7]. The OSF is applicable only to measure the similarity between one object and a class, but DSS can be

applied to measure the similarities between n classes and m classes. The definition of DSS is as follows, where the factors of OSF

are redefined for this application:

Sum of maximum of each attribute
*

Number of attributes

Sum of maximum of each attribute
*

Number of attributes

Sum of maximum of each method
* *

Number of methods

an

an

at

at

mn

mnc
DSS

sf
w

sf
w

sf
sf w

Sum of maximum of each method
*

Number of methods

Sum of maximum of each method
*

Number of methods

mt

mt

mpt

mpt

sf
w

sf
w

Here sfc is the similarity factor (SF) between class names based on some special semantic rules. An, at, mn, mt, and mpt imply

attribute name, attribute type, method name, method return type, and method parameter type, respectively. Sfan, sfat, sfmn, sfmt, and

sfmpt are similarities for respective factors. And wan, wat, wmn, wmt, and wmpt are the weight values for those factors, respectively.

The values of SFs in class signature are decided by a domain expert with respect to the syntactic and semantic interpretation on

the element of classes. To obtain DSS, the following four conditions should be satisfied: 1) the sum of all weight values is 1, 2) the

sum of sfc between classes is 0sfc1, 3) the similarity between types is based on their names, and 4) the similarity between

parameters is based on the methods they belong to.

5.2. Inheritance

In order to find inheritance relations among class candidates in each group of class candidates from Section 4, DSS is applied to

them, resulting that a nn matrix S holds the values of DSS between classes i and j, where n is the number of the class candidates,

and i and j are the ids of the class candidates. The matrix is symmetric and the values in diagonal are 1.

The similarity for G1.2:(3,3) in the example is shown in Table 2. In order to obtain DSS, the weights of attributes and methods are

defined uniformly to be (Wan=0.2, Wat=0.2, Wmn=0.2, Wmt=0.2, Wmpt=0.2) for demonstration purpose. The value of similarity

indicates there is a possibility of a super class generalizable from two class candidates. The result of actualization of this similarity

is shown as a super class in the second layer of Figure 8.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 136 - 154

__

149

IJRITCC | March 2016, Available @ http://www.ijritcc.org

Table 2 A DSS Matrix for Class Candidates in G1.2:(3,3) of PM example

 {list&head&tail¤t}

{no_of_person}{person}

{no_of_teacher}{teacher}

{student}

{list&head&tail¤t}

{no_of_person}{person}
1 0.47

{no_of_teacher}{teacher}

{student}
0.47 1

5.3. Reverse Acyclic Graph with Inheritance

Similar to RAG in the attribute clustering step, a reverse acyclic graph for groups of class candidates with inheritance (RAGi) can

be generated. Figure 8 shows the RAGi graph G
RAi

 for PM example. In the figure, a super class, unnamed so far, with the person

attribute is generalized from the bottom layer to the second layer from top. Sub-classes are actualized at each layer respectively.

G1.1:(6)

list & head & tail & current no_of_person person no_of_teacher teacher student

G1.2:(3,3)

list & head & tail & current no_of_person no_of_teacher teacher student

person

student

G1.3:(1,2,3)

 no_of_teacher teacher

person

list & head & tail & current no_of_person

student
list & head & tail &
current

G1.4:(1,1,2,2)

 no_of_teacher teacherno_of_person

person

teacher
list & head & tail &
current

student no_of_teacher

G1.5:(1,1,1,1,2)

person

no_of_person

no_of_person no_of_teacher

G1.6:(1,1,1,1,1,1)

list & head & tail &
current

get_no_of_person():int
get_no_of_object():int
get_no_of_total_elemen
t():int
insert_list():void
find_list():void
print_list():void
print_no_of_element():v
oid

student

read_studen
t():student *
print_studen
t():void

teacher

add_course():
void
print_teacher(
):void
read_teacher(
):teacher *

person

print_person
():void
read_person
():person

Figure 8 A RAGi Graph for PM example

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 136 - 154

__

150

IJRITCC | March 2016, Available @ http://www.ijritcc.org

6. Decision Step

The purpose of the decision phase is to assist a reengineer to determine a group of the best or optimal class candidates from

section 5 by measuring the similarities between each group of the class candidates and the classes in a domain model constructed

by a domain expert.

6.1 Two-Dimensional Similarity: Class Group Similarity

Two-dimensional similarity is composed of the following horizontal and vertical similarities.

6.1.1 Horizontal Similarity

The horizontal similarity is the similarity between the i-th group of class candidates from RAG-GCCI and the classes of domain

model, defined as follows:

m

k

n

l

CCG

I

CCG

C

CCG i

lk

i

lk
SSS

1 1
),(),(

.

Here k and l represent the number of the candidates and the number of the classes, respectively. iCCG

CS is a matrix implying

class similarities between the m class candidates in the group and the n classes in the model with respect to attributes and methods.

It is obtained by measuring the degrees of DSS of the m candidates to the n classes. i

nm

CCG

CS
),(
 represents class similarity between

the k-th candidate and the l-th class in iCCG

CS .

iCCG

IS is a matrix implying inheritance similarities between the m candidates and the n classes, defined as follows:

HM

CI

CCG

CI

HM

CI

CCG

CICCG

C

CCG

I
SSMax

SSMin
SS

i

i

ii

,

,

where iCCG

CS represents the class similarity only for the classes with inheritance from iCCG

CS , and iCCG

CIS and
HM

CIS imply

the ratios of inheritance for the candidates and the classes, respectively, defined as follows:

CIC

CICCG

CI
CCGCCG

CCG
S i

CIC

CIHM

CI
DMDM

DM
S

Here
CICCG ,

CCCG ,
CIDM , and

CDM are obtained by adding all inheriting class members (CI), that is, attributes and

methods in the group, and all inherited class members (C) for each the group (CCG) and the model (DM), respectively.

 HM

CI

CCG

CI SSMin i , and HM

CI

CCG

CI SSMax i , are the minimum and maximum values between iCCG

CIS and
HM

CIS . iCCG

CIS

represents the degree of commonality among classes with inheritance in the group.
HM

CIS represents the degree of commonality

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 136 - 154

__

151

IJRITCC | March 2016, Available @ http://www.ijritcc.org

among classes with inheritance in the model. i

lk

CCG

IS
),(

 represents inheritance similarity between the k-th candidate and the l-th

class in iCCG

IS .

Tables 3 shows iCCG

CS for PM example with respect to a domain model for the example shown in Figure 9. The domain model is

designed to demonstrate the approach in the paper. iCCG

CS , iCCG

IS , iCCG

CIS and
HM

CIS are discarded due to their size.

Logical View

person

+read() : person
+print() : void

-name : char *

Linked_list

+insert(p : person) : Boolean
+find(name : char) : person
+print() : void

-p : person *
-next : Linked_list *

student

+read() : student
+print() : void

-id : int

teacher

+read() : teach
+print() : void

-courses : int

Figure 9 A Domain Model for PM Example

Table 3 iCCG
S for PM Example

G S
CCG

G1.1:(6) 0

G1.2:(3,3) 2.06

G1.3:(1,2,3) 2.99

G1.4:(1,1,2,2) 2.95

G1.5:(1,1,1,1,2) 2.61

G1.6:(1,1,1,1,1,1) 2.93

6.1.2 Vertical similarity: class hierarchy similarity

The vertical similarity is the similarity between the subset (Cg) of class candidates in the i-th group of class candidates from the

previous step and each set (Cm) of classes in the same class hierarchy from the domain model. There will be a best or optimal Cg

among the groups from RAG-GCCI for each Cm, where Cg is most similar with Cm in inheritance. This similarity is defined as

follows:

m

k

n

l

CCG

I

CCG

C

CCG

CIG
i

lk

i

lk

i SSS
1 1

),(),(

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 136 - 154

__

152

IJRITCC | March 2016, Available @ http://www.ijritcc.org

Here k and l represent the number of the candidates and the number of the classes respectively. And iCCG

CS and iCCG

IS

represent the degrees of class similarity and inheritance relation between Cg and Cm, respectively. These values are obtained from

iCCG

CS and iCCG

IS only for those Cg and Cm. i

lk

CCG

CS
),(

 and i

lk

CCG

IS
),(

 represents class and inheritance similarity between the k-th

candidate and the l-th class in iCCG

CS and iCCG

IS , respectively.

Table 4 shows iCCG

CIGS for PM example. It shows that G1.4:(1,1,2,2) has the highest value with the domain model. Note that there is

only one set of classes with inheritance in the domain model.

Table 4 iCCG

CIGS for PM Example

G S
CCG

: {person, student, teacher}

G1.1:(6) 0

G1.2:(3,3) 1.62

G1.3:(1,2,3) 2.47

G1.4:(1,1,2,2) 2.81

G1.5:(1,1,1,1,2) 2.45

G1.6:(1,1,1,1,1,1) 2.78

6.2 Decision

The decision for the group with the best or optimal class candidates is made by comparing both the horizontal and vertical

similarities. The horizontal similarity represents the overall similarity between a group of class candidates and the classes in the

domain model. The vertical similarity represents the class hierarchy similarity for each class hierarchy between the candidate

group and the domain. As shown in Table 3, it cannot be guaranteed that G1.3:(1,2,3) with the highest value for horizontal similarity

is selected as the group of best class candidates, since its value for the vertical similarity in Table 4 is relatively less than that of

G1.4:(1,1,2,2). However there is a strong possibility that G1.4:(1,1,2,2) with the highest value of vertical similarity in Table 4 can be

selected as the group with optimal class candidates, since its value for horizontal similarity in Table 3 is not much less than that of

G1.3:(1,2,3). Consequently, if there are a number of class hierarchies in the domain model, there is a possibility of selecting a subset

of partially best or optimal class candidates from each group of class candidates in order to construct a complete group with the

overall best or optimal class candidates for the domain model.

7. Experiments and analysis

A number of experiments have been performed to demonstrate the feasibility and efficiency of the approach in the paper. Table 5

describes some randomly selected input PSWs. The data in the tabel reveals the following four facts: 1) there is a large variation

for the number of clusters in the preprocessing and class extraction steps with respect to the size of the PSW, 2) the size of the

PSW is not a main factor to determine the number of combinatorial groups of class candidates, which is represented relatively by

the value in the method clustering entry of the table, 3) the main determining factor for the number is the number of TVCC

clusters, and 4) there is a strong dependency between the number of global data types and the number of new super classes. The

data shows that the numbers of clusters and classes are relatively small and manageable with respect to the total number of nodes

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 136 - 154

__

153

IJRITCC | March 2016, Available @ http://www.ijritcc.org

in the PSWs.

Table 5 Expreimental Data

PSW Dfs.c PM.c Chory.c Os.c

preprocessing

Size (Line of Code) 195 300 1065 1374

Total # of nodes 147 254 817 1279

of global types 2 4 4 1

of global varriables 5 4 13 17

of functions 9 15 40 14

of clusters 14 20 51 17

of TVCC clusters 5 5 11 3

of function clusters 9 15 40 14

class extraction attribute cluster # of clusters 10~14 16~20 41~51 15~17

method cluster # of clusters 1~5 1~5 1~11 1~3

inheritance extraction inheritance # of new super classes 0 1 1 0

8. Conclusions and Future Research

This paper presented a methodology to extract classes and inheritance from PSW. The methodology was based on the idea of

generating all possible groups of class candidates in combination and selecting a group with the best or optimal combination of

candidates with respect to the degree of class group and hierarchy similarities. The methodology has innovative features: the usage

of a deterministic clustering sequence method, the generation of all possible combinatorial cases of groups of multiple class

candidates and inheritance based on abstraction and generalization, the usage of clustering methods as subjective decision rules

based on the different types of the degree of interconnectivities for attributes and methods, the usage of an algorithm to measure

both group and hierarchy similarities between multiple n class candidates in a group and m classes from a domain model, and the

provision of statistics in these similarities of all combinatorial groups of possible candidates groups to a domain model to

demonstrate diverse selection choice for the group of best or optimal candidates and inheritance. This methodology provides

reengineering experts a comprehensive and integrated environment to select a group of the best or optimal class candidates.

The future research includes the persistence phase and the verification of equivalence between PSW and OOSW.

Acknowledgements

This work was supported by Basic Science Research Programs through the National Research Foundation of Korea(NRF) funded

by the Ministry of Education(2010-0023787), and the MISP(Ministry of Science, ICT and Future Planning), Korea, under the

ITRC(Information Technology Research Center) support program(IITP-2015-H8501-15-1012) supervised by the IITP(Institute for

Information & communications Technology Promotion), and Space Core Technology Development Program through the

NRF(National Research Foundation of Korea) funded by the Ministry of Science, ICT and Future Planning(NRF-

2014M1A3A3A02034792), and Basic Science Research Program through the National Research Foundation of Korea(NRF)

funded by the Ministry of Education(NRF-2015R1D1A3A01019282).

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 136 - 154

__

154

IJRITCC | March 2016, Available @ http://www.ijritcc.org

References

[1] Robert S. Arnold. Software Reengineering. IEEE Computer Society Press. 1994.

[2] G. Canfora, A. Cimitile and M. Munro. An Improved Algorithm for Identifying Object in Code. Software-Practice and Experience, Vol.

26(1), pp. 25-48. January, 1996.

[3] Doris L. Carver. Reverse Engineering Procedural Code for Object Recovery. Proceedings of Conf. of Software Engineering &

Knowledge Engineering, pp. 442-449. 1996.

[4] P. Chen. The Entity-Relationship Model : Toward A unified View of Data. ACM Transactions on Database System, pp. 9-36. May

1976.

[5] Harald C. Gall, Rene R. Klosch and Roland T. Mittermier. Architecture Transformation of Legacy System. Technical Report Number

CS95-418, Seattle. April, 1995.

[6] E. Horowitz. An Expensive view of reusable software. IEEE Transaction on Software Engineering, Vol. SE-10, No. 5, pp. 477-487.

September, 1984.

[7] Yunsook Jin, Pyeong S. Mah and Gyusang Shin. Deriving an Object Model from Procedural Programs. Proceedings of TOOLS97.

1997.

[8] C. L. Ong and W. T. Tsai. Class and Object Extraction from Imperative. Journal of Object-Oriented Programming, pp. 58-68. March-

April, 1993.

[9] Moonkun Lee, Changshin Jeoung and Myeongsun Jeong, A Reverse-Engineering Model using a Software Architecture. Journal of

KISS (B), Vol. 25, No. 11, pp. 1630-1647. November, 1998.

[10] Panos E. Livadas and Theodore Johnson, A New Approach to Finding Objects in Programs. Journal of Software Maintenance :

Research and Practice, Vol. 6, pp. 249-260. 1994.

[11] Dimitris N. Chorafas. Cloud Computing Strategies. CRC Press, 2010. ISNB: 978-1-4398-3453-4.

[12] Anca Daniela Ionita, Marin Litoiu & Grace Lewis, Migrating Legacy Applications: Challenges in Service Oriented Architecture and

Cloud Computing Environment. Information Service Reference, USA, 2013, ISBN978-1-4666-24887-7.

[13] S. Woo, J. On, M. Lee. An Abstraction Method for Mobility and Interaction in Process Algebra Using Behavior Ontology. Computer

Software and Applications Conference (COMPSAC), 2011 IEEE 35th Annual, pp.128-133.

[14] M. Lee, J. Choi. A Calculus for Transportation Systems. Computer Software and Applications Conference (COMPSAC)/MVDA, 2014

IEEE 38th Annual.

http://www.ijritcc.org/

