
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 51 - 54

51

IJRITCC | March 2016, Available @ http://www.ijritcc.org

The Index Sorting Algorithm

Anubhav Chaturvedi, Kshitij Gupte, Anjali Jivani*

Department of Computer Science & Engineering

The M. S. University of Baroda

Vadodara, India

acanubhav@gmail.com, kugupte@yahoo.com, anjali_jivani@yahoo.com

Abstract—Efficient sorting and searching are corner-stones in algorithm design. In computer science it has become a deep-rooted habit to use

comparison-based methods to solve these problems. In this research paper we have come up with a new algorithm which we have named „The

Index Sorting Algorithm‟, that sorts given list of elements in the array in O(n) time and O(n) space complexity in worst case, better than any

other sorting algorithm. The algorithm is very easy to implement and understand.

Keywords-sorting algorithm; sorting technique; time complexity; space complexity

__*****___

I. INTRODUCTION

Sorting algorithms, which arrange the elements of a list in a

certain order (either ascending or descending), are an

important category in Computer Science. We use sorting as a

technique in a number of applications related to Computer

Science and Engineering. Vast amount of research has taken

place in this category of algorithms, and many techniques have

been developed till now. In fact the existing ones are so robust

and efficient that perhaps the need to develop a new one needs

courage! We have developed a new sorting algorithm which is

simple and more time efficient in an environment where the

data values are close to each other and the total number of

elements is not very large.

Figure 1. Sorting Technique.

II. SORTING ALGORITHMS

The sorting algorithms are generally classified into different

categories based on various factors like number of

comparisons, memory usage, recursion, space stacks built and

many more.

Existing sorting algorithms include Selection Sort, Bubble Sort,

Insertion Sort, Merge Sort, Heap Sort, Quick Sort, Bucket Sort

and Radix sort. All the listed algorithms have their own

advantages and disadvantages. Each one behaves in a different

way with different data types and size of element list.

Algorithms like Bubble, Selection and Insertion sort take O(n
2
)

time and Merge ,Heap and Quick sorts take O(nlog(n)) time

and Merge Sort also takes a Space Complexity of O(n). Radix

and Bucket Sorts take O(n) time ,but they ask for input

restrictions(only integers allowed as input) and cannot sort all

the input given. But our algorithm is able to sort any input (not

asking for any input restrictions) in O(n) time complexity and

O(n) space complexity. Any of the above mentioned

algorithms are not capable to throw the desired result in O(n)

time. In order to implement this algorithm we have used an

array mapping with the input numbers, and only by doing

three scans we are able to sort any kind of input (no restriction)

provided to us.

III. THE INDEX SORTING ALGORITHM

This new algorithm is basically very simple to

understand as well as implement. We have called it the Index

Sorting Algorithm as the sorting is done as per the content of

the index of the array that is being created. The Index Sorting

Algorithm works as follows:

1. Take as input the unsorted elements which are to be

sorted e.g. 4, 8, 2, 12, 6, 8, 15, 5.

2. Find the maximum from the input – 15

3. Create an array say A of the maximum size initializing

each value with zero. – over here we create an array of

size 15 i.e. A(15) with value zero for each.

4. Now read the elements one by one and considering

that value as the index value of the array, increase the

content of the array element at that position by one i.e.

when the first element 4 is read, go to A(4) and change

the content from 0 to 0+1. If the same element is

repeated i.e. if 4 appears again in our element list, A(4)

will become 2.

5. Keep on repeating the above till all unsorted elements

are completed.

6. Now simply scan the array from the first value to last

value in the array A and for every non-zero value,

display the index which is actually an element of the

list. If the array contains more than 1 in its value that

index is to be displayed that many times. Figure 2

displays the execution of the algorithm.

 The above sorting technique is very easy to implement and

very fast too. We need to scan the list once to find the

 Sorting Algorithm

4 8 2 12 6 8 15 5

2 4 5 6 8 8 12 15

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 51 - 54

52

IJRITCC | March 2016, Available @ http://www.ijritcc.org

maximum, once to read the elements one by one and change

the array content accordingly and once to read the array and

display the elements i.e. three scans of n elements – O(3n)

which is O(n).

 The comparison between the Index Sorting Algorithm and

other algorithms is given in the next section.

Unsorted

Elements

 Array

Index

Array

Va lue

So rted

Elements

4 1 0

8 2 1 2

2 3 0

12 4 1 4

6 5 1 5

8 6 1 6

15 7 0

5 8 2 8 , 8

 9 0

 10 0

 11 0

 12 1 12

 13 0

 14 0

 15 1 15

Figure 2. The Index Sorting Technique.

IV. IMPLEMENTATION OF THE INDEX SORT ALGORITHM

The code for the implementation of Merge Sort, Selection Sort

and or Index Sort is given below. We have executed the above

three algorithms with the same dataset and have compared the

execution time for each one of them.

All codes are compiled in the gcc compiler version: gcc

version 4.8.4 (Ubuntu 4.8.4-2ubuntu1~14.04).

A. The Index Sort Algorithm

Given below is the code for the Index Sort Algorithm. As

shown in the Figure 2 above, the array value is changed i.e.

incremented by one if an element with that index value is

present in the list. As can be seen since the element 8 occurs

twice, our array A(8) = 2.

The time complexity of the above algorithms is O(n) and with

only three scans ,we are able to arrive at the results. Its space

complexity is O(n), as it requires auxiliary space (almost equal

to the maximum element in the array) to get the result.

The Index Sort Algorithm:

#include<iostream>

#include<stdlib.h>

using namespace std;

void indexSort(int a[],int n)

{ int max=a[0],min=a[0];

 int j,i,temp;

 for(i=1;i<n;i++)

 { if (min>a[i])

 {min=a[i];}

if (max<a[i])

 {max=a[i];}

 }int*index=(int*)calloc((max+1),sizeof(int));

//for accomodating 0 also max+1

for (i=0;i<n;i++)

 {index[a[i]]++;}

//store the count of occurances of the element

 cout<<endl;

for (i=0;i<max+1;i++)

 {if (index[i]>0)

 {cout<<i<<'\t';}

 j=index[i];

//used to print duplicated element more than once.

 if (j==1 || j==0)continue;

 while(j!=1)

 {cout<<i<<'\t';//print the duplicates

 j--;}}}

int main()

{int a[]={4,1,0,5,3,2,34, 8, 10, 3, 2, 80, 30, 33, 1,9, 2, 3, 4, 5, 6,

7, 8};

int s=sizeof(a)/sizeof(int);

//size of the input array

 indexSort(a,s);

//function call to Sorting function

 Return0;}

B. The Selection Sort Algorithm

Given below is the code for the Selection Sort Algorithm.

#include <stdio.h>
void swap(int *xp, int *yp)
{int temp = *xp;
 *xp = *yp;
 *yp = temp;}
 void selectionSort(int arr[], int n)
{ int i, j, min_idx;
 // One by one move boundary of unsorted subarray
 for (i = 0; i < n-1; i++)
 {// Find the minimum element in unsorted array
 min_idx = i;
 for (j = i+1; j < n; j++)
 if (arr[j] < arr[min_idx])
 min_idx = j;
 // Swap the found minimum element with the first
element
 swap(&arr[min_idx], &arr[i]);}}
/* Function to print an array */
void printArray(int arr[], int size)
{ int i;
 for (i=0; i < size; i++)
 printf("%d ", arr[i]);
 printf("\n");}
 // Driver program to test above functions
int main()

{ int arr[] ={4,1,0,5,3,2,34, 8, 10, 3, 2, 80, 30, 33, 1,9, 2, 3, 4,

5, 6, 7, 8,};
 int n = sizeof(arr)/sizeof(arr[0]);
 selectionSort(arr, n);

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 51 - 54

53

IJRITCC | March 2016, Available @ http://www.ijritcc.org

 printf("Sorted array: \n");
 printArray(arr, n);
 return 0;}

The Index Sort Algorithm is much faster as compared to

selection sort algorithm. It is faster by “.100” seconds for an

input of 24 array elements. This difference increases as the

number of elements increase.

C. The Merge Sort Algorithm

Given below is the code for the Merge Sort Algorithm.

#include<iostream

using namespace std;

void merge(int arr[], int l, int m, int r)

{ int i, j, k;

 int n1 = m - l + 1;

 int n2 = r - m;

 /* create temp arrays */

 int L[n1], R[n2];

 /* Copy data to temp arrays L[] and R[] */

 for (i = 0; i < n1; i++)

 L[i] = arr[l + i];

 for (j = 0; j < n2; j++)

 R[j] = arr[m + 1+ j];

 /* Merge the temp arrays back into arr[l..r]*/

 i = 0; j = 0; k = l;

 while (i < n1 && j < n2)

 {if (L[i] <= R[j])

 { arr[k] = L[i]; i++; }

 else{arr[k] = R[j]; j++;}

 k++;}

 /* Copy the remaining elements of L[], if there are any */

 while (i < n1)

 {arr[k] = L[i];

 i++; k++;}

 /* Copy the remaining elements of R[], if there are any */

 while (j < n2)

 {arr[k] = R[j];

 j++; k++;}}

void msort(int a[],int i,int j)

{int m;

 if(i<j)

 {m=i+((j-i)/2);

msort(a,i,m);

 msort(a,m+1,j);

 merge(a,i,m,j);}}

int main()

{int k;

int arr[] ={4,1,0,5,3,2,34, 8, 10, 3, 2, 80, 30, 33, 1,9, 2, 3, 4,

5, 6, 7, 8};

int s=sizeof(arr)/sizeof(int);

 msort(arr,0,s);

 cout<<"The sorted array is";

 cout<<endl;

 for (k=0;k<s;k++)

 {cout<<arr[k]<<"-";}

cout<<endl;}

We observe from the output that our algorithm is faster

than merge sort algorithm by 0.008 seconds and this difference

will increase with the number of input. Both Merge sort

[O(nlog(n))] and Quick Sort [O(nlog(n)) -best case] use

recursion to sort the input, also, the running time of quick sort

in the worst case is O(n
2
). There are always certain overheads

involved while calling the function. Time has to be spent on

passing values, passing control, returning values and returning

control. Recursion also takes a lot of stack space. Every time a

function calls itself memory has to be allocated, and recursion

also affects the efficiency of the time complexity.

V. COMPARISON OF SORTING ALGORITHMS

In our sorting algorithm we are eliminating all the issues

of recursion and reducing the time complexity. In comparison

with Merge Sort and Quick Sort we are almost cutting the time

by log(n) and making algorithm to run in O(n) time.

The time outputs of all the three implemented sorting
algorithms are as under:

 linux:/home/cse/programs# time -o indexsort

a. real 0m0.179s

b. user 0m0.135s

c. sys 0m0.044s

 linux:/home/cse/programs# time -o mergesort

a. real 0m0.187s

b. user 0m0.132s

c. sys 0m0.044s

linux:/home/cse/programs# time -o selectionsort

a. real 0m0.270s

b. user 0m0.131s

c. sys 0m0.045s

Table 1 below depicts the time and space complexity

comparison between the popular sorting algorithms. The table
clearly shows that the Index Sort Algorithm is very efficient in
terms of time complexity but has drawbacks in space
complexity.

VI. CONCLUSION

The advantages and disadvantages of the Index Sorting
Algorithm can be briefly described point-wise as given below.
The only disadvantage is when the elements are less but the
difference in their values is very high, unnecessarily a big array
needs to be created.

Advantages:

1. It is free from recursion and extra

overhead, and requires only three

scans to get the result.

2. Time efficient about O(n) in even the

worst case.

3. Simple code which is easy to

understand.

 Disadvantages:

1. It requires extra space as per input

provided.

Wastage of space if the input is short and has large

number. For example {1,890,56,345} – unnecessarily an array

of 890 size needs to be created to sort just four elements.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 3 51 - 54

54

IJRITCC | March 2016, Available @ http://www.ijritcc.org

REFERENCES

[1] Dennis Ritchie, “The C Programming Language

[2] Tremblay, Sorenson, “Introduction to Data Structures”

[3] Lipschultz, “ Data Structures”, Schaum Series

[4] Robert Kruse, “Data Structures using C”, PHI

[5] D. Samantha, “ Classic Data Structures, PHI

[6] Cormen, “Introduction to Algorithms”

TABLE I. COMPARISON OF SORTING ALGORITHMS

Algorithm Complexity

Space

Time

Worst Best Average Worst

Bubble sort O(1) O(n) O(n2) O(n2)

Bucket sort O(n) O(n+k) O(n+k) O(n2)

Merge sort O(n) O(nlog(n)) O(nlog(n)) O(nlog(n))

Quick sort O(log(n)) O(nlog(n)) O(nlog(n)) O(n2)

Heap sort O(1) O(nlog(n)) O(nlog(n)) O(nlog(n))

Insertion sort O(1) O(n) O(n2) O(n2)

Radix sort O(n+k) O(nk) O(nk) O(nk)

Selection sort O(1) O(n2) O(n2) O(n2)

Bucket sort O(1) O(n) O(n2) O(n2)

 Index sort O(n) O(n) O(n) O(n)

http://www.ijritcc.org/

