
International Journal on Recent and Innovation Trends in Computing and Communication                                 ISSN: 2321-8169 

Volume: 4 Issue: 2                                                                                                                                                   323 - 327 

________________________________________________________________________________________________________ 

323 
IJRITCC | February 2016, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

 

Implementation of Single Layer Perceptron Model using MATLAB 

 

 

Poonam Gupta 

Department of Mathematics, Hindu Girls College , Sonipat 

Poonammittal2207@gmail.com 

 

Parveen Mehta 

Department of Computer Science, Hindu Girls College , 

Sonipat 

Parveen_amb25@rediffmail.com 

 
Abstract :- ANN consists of hundreds of single units, artificial neurons or processing elements . Neurons are connected with weights, which 

constitute the neural structure and are organized in layers. Perceptron is single layer artificial neuron network and it works with continuous or 

binary inputs. In the modern sense perceptron is an algorithm for learning a binary classifier. In ANN  the inputs are applied  via series of 

weights and Actual output are compared to the target outputs. Then to adjust the weihts,  learning rule is used and  bias the network so that actual 

output move closer to the target output .The perceptron learning rules comes under the category of supervised learning. In this Paper , 

implementation of single layer  perceptron model using single perceptron learning rule through MAT LAB is discussed. 

Keyword: Perceptron , ANN, Sigmoid, Step function , FFNN. 

__________________________________________________*****_________________________________________________  

I. Introduction: 

Artificial neural networks are computational models which 

are inspired by biological neural networks . They are used 

to approximate functions thatare generally unknown. In 

ANN, Artificial neurons are elementary units.Artificial 

neuron on receiving inputs summing them and produces an 

output. Activation function (Transfer function) is used to 

pass the sum. Activation Function may be of the type –

Sigmoid function, Step function and piecewise linear 

functions. Usually they are monotonically 

increasing,continuous, differentiable and bounded.  

Single layer perceptron network is simplest kind of neural 

network, consisting of single layer of output nodes . In this 

network, inputs are directly given to outputs via a series of 

weights. Due to this it can be considered as the simplest 

kind of feed forward network. 

 In 1943, Mc Culloch and Pitts [1] produced a model of the 

neuron which is still used today in artificial neural 

networking. Mc Culloch created computational models 

based on mathematical algorithms called threshold logic 

which splits the enquiry into two distinct approaches. One 

approach focused on biological processes in the brain and 

the other focused on application of neural network to 

artificial intelligence.   

II. Activation Function 

The artificial neurons receives one or more inputs and sums 

them to produce an output(Activation).Usually the sums of 

each node are weighted and Activation function is used to 

transform the activation level of a neuron into an output 

signal. There are many types of activation functions such as 

linear function , step function , sigmoid function , Ramp 

function ,Gaussian function , hyperbolic tangent .   

 

 

Step Function 

A step function is a function is likely used by the original 

Perceptron.This function produces two scalar output values 

depending on the threshold(⍬). If input sum is above a 

http://www.ijritcc.org/
mailto:Poonammittal2207@gmail.com
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Computational_model
https://en.wikipedia.org/wiki/Biological_neural_network
https://en.wikipedia.org/wiki/Universal_approximation_theorem
https://en.wikipedia.org/wiki/Function_(mathematics)


International Journal on Recent and Innovation Trends in Computing and Communication                                 ISSN: 2321-8169 

Volume: 4 Issue: 2                                                                                                                                                   323 - 327 

________________________________________________________________________________________________________ 

324 
IJRITCC | February 2016, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

 

certain threshold the output is 1 and if input sum is below a 

certain threshold the output is 0 . 

 

 

 

                              f(netj)= 

 

III. Artificial Neuron Learning(Training) 

Training is the act of presenting the network with some 

sample data and modifying the weights to better 

approximate the desired function . There are two main types 

of training - Supervised Training  and unsupervised training 

. In supervised learning both the inputs and outputs are 

provided . Then neural network processes the input and 

calculate an error based on its desired output and actual 

output. The weights are modified to reduce the 

difference(error) between the actual and desired outputs 

A feedforward neural network (FFNN) is the simplest 

type of  artificialneuralnetwork. FFNN consists of three 

layers – input layer , hidden layer and output layer. 

In this network, the information moves in only one 

direction, forward, from the input layer, through the hidden 

layers (if any) and to the output layer and the connection 

between the units don’t form a cycle or loop . FFNN with 

monotonically increasing differentiable function can 

approximate any continuous function with one hidden layer , 

provided the hidden layer has enough hidden neurons.   

IV. Single Layer Perceptron : 

The simplest kind of neural network is a single layer 

perceptron network which consist of one or more artificial 

neurons in parallel and it can be considered the simplest 

kind of feedforward network as the inputs are given directly 

to the outputs via a series of weights  

The sum of the products of the weights and the inputs is 

calculated in each node and calculated value is compared 

with the threshold value. If the calculated value is above the 

some threshold value typically 0,  the neuron fires and takes 

the value typically 1(called activated value) otherwise it 

takes thevalue typically -1(called deactivated value). 

Neurons with this kind of activation function are also 

called artificial neurons or linear threshold units. 

Single-unit perceptrons are only capable of 

learning linearlyseparable patternsAlthough a single 

threshold unit is quite limited in its computational power, it 

has been shown that networks of parallel threshold units can 

approximate any continuous function from a compact 

interval of the real numbers into the interval [-1,1]. This 

result can be found in Peter Auer, Harald 

Burgsteiner and Wolfgang Maass "A learning rule for very 

simple universal approximators consisting of a single layer 

of perceptrons”[7].
 

 

 

 

  

1 if netj≥ ⍬ 

0 if netj<⍬ 

 

http://www.ijritcc.org/
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Artificial_neurons
https://en.wikipedia.org/wiki/Linearly_separable
https://en.wikipedia.org/w/index.php?title=Harald_Burgsteiner&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Harald_Burgsteiner&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Harald_Burgsteiner&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Wolfgang_Maass&action=edit&redlink=1


International Journal on Recent and Innovation Trends in Computing and Communication                                 ISSN: 2321-8169 

Volume: 4 Issue: 2                                                                                                                                                   323 - 327 

________________________________________________________________________________________________________ 

325 
IJRITCC | February 2016, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. Perceptron learning Algorithm 

 

Step1 

Create a perceptron with (n+1) input neurons x0, x1…….xn. 

where  b is the bias input  let z be the computed(actual )  

output neurons , target output  inialize [t0, t1….tn] 

Step 2 

Iniatlize weight w=(w0, w1, w2,…….wn) 

To random weights. 

Step3  

Iterate through the inpute patterns xj of the training set using 

the weight set i.e compute the weighted sum of inputs net =  

 𝑥𝑖𝑤𝑖+b for each input pattern I .

Compute output  using step 

function  

f(netj)=  

yes yes 

no 

yes 

no 

start 

Initialize the value of input 

vector x1….xn weight 

w1……wn  andbias  

Calculate the  f(net) by 

 𝑥𝑖𝑤𝑖+bias 

1 if netj≥ 𝟎 

0 if netj<0 

 

0 if 

netj<0 

 output!=t

arget 

Output=

1 and 

target=0 

Update 

weight=weight-

learningrate*in

putvector 

Output

=0 and 

target=

1 

Update 

weight=weight+

learningrate*inp

utvector 

Go to label 2      

no 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                                 ISSN: 2321-8169 

Volume: 4 Issue: 2                                                                                                                                                   323 - 327 

________________________________________________________________________________________________________ 

326 
IJRITCC | February 2016, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

 

Step 4  

 

Compute output yj using step function  z=f(net)= 

 

 

 

⍬ 𝑖𝑠  𝑡ℎ 𝑟𝑒𝑠ℎ 𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 

 

 

Step 5  

Compare the computed output  with the target output t for 

each input pattern . if all the computed output matches with 

target output ,  then output display the weights and exit . 

Step6 

otherwise  update the weights as given below 𝑧𝑖  if the 

computed output  is 1 but should have been 0 , then  

𝑤𝑖 = 𝑤𝑖 − 𝛼𝑥𝑖  

wherei= 0 ,1,2,3,4,5… 

If the computed output 𝑧𝑖  is 0 and target output should bbe 1 

then  

𝑤𝑖 = 𝑤𝑖 + 𝛼𝑥𝑖  

wherei= 0 ,1,2,3,4,5… 

 

step 7  

 

go to step 3  and repeat  

 

Implementation of single neuron layer suing mat lab  

 

Equation used in mat lab  

 

i. Calculating the output  

As in mat lab it is easy to multiple one vector 

to other as like variable multiply   

Input vector Multiple by the weight vector and 

add bias  

sigma=bias + x(j,i)*w'; 

 

 

ii. Calculate the update weight lr=eta*x(j,i) 

w(i)=w(i)-lr;          w(i)=w(i)+lr; 

 

 

Control structure for comparison used  

 

if sigma(i)> theta 

z(i)=1; 

elseif sigma(i)<=theta 

z(i)=0; 

end 

 

 

 

For loop used for iteration  

 

for j= 1:2 

sigma=0; 

fori=1 : 4 

sigma=bias + x(j,i)*w'; 

end 

end 

 

Displacement Function Are Used To Print  Output On 

The Screen  

 

disp('final calculation'); 

disp(sigma); 

 

MAT LAB CODE   

 

x=[0 0 1 1; 0 1 0 1];  

%input variable pass 

d=[1 1 0 0]; 

% target output  

w=[-20 3 3 -5]; 

%initialize weight for per input  

z=[0 0 0 0]; 

% vector to store the calculated value of the sigma 

input*weight + bias 

bias=0.2; 

%iniatlize of bias to store the value  

%calculate the values total value ; 

for j= 1:2 

sigma=0; 

fori=1 : 4 

sigma=bias + x(j,i)*w'; 

end 

end 

disp('final calculation'); 

disp(sigma); 

 % set the theta value for step function  

theta=0.3; 

fori=1:4 

if sigma(i)> theta 

z(i)=1; 

elseif sigma(i)<=theta 

z(i)=0; 

1 if net≥ ⍬ 

0 if net<⍬ 

 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                                 ISSN: 2321-8169 

Volume: 4 Issue: 2                                                                                                                                                   323 - 327 

________________________________________________________________________________________________________ 

327 
IJRITCC | February 2016, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

 

end 

end 

disp('Finaloutput of the computed net value'); 

disp(z); 

disp('oldweight'); 

disp(w); 

 

 % updation  to minimize the error  

eta=1.2; % learning rate ; 

for j= 1:4 

lr=0; 

fori=1 : 2 

lr= x(i,j)*eta; 

end 

end 

disp(lr); 

 

fori=1:4 

if and(z(i)==1 , d(i)==0) 

w(i)=w(i)-lr; 

elseif and(z(i)==0, d(i)==1) 

w(i)=w(i)+lr; 

end 

end 

 

%final weight  

disp('final updated weight'); 

disp(w); 

 

 

 

VI. Conclusion 

The perceptron learning rule was originally developed by 

Frank Rosenblatt in the late 1950’s. The perceptron learning 

rule provides a simple algorithm for training a perceptron 

neural network. In present paper we have considered the 

various steps in single layer perceptron model and only one 

epoch is used to update the weight so that error between 

actual output and target output can be minimized. However 

single layer perceptron network are not computationally 

complete. Much more work needs to be done to apply this 

research to multilayer network. 

References 

[1] Mc Culloch , Warren ;Walter Pitts(1943), “A 

logical calculus of ideas immanent in Nervous 

Activity” . Bulletin of Mathematical Biophysics, 

5(4):115-1133. 

[2] Ken Aizawa(2004), “Mc Culloch , Warren Sturgis” 

In : Dictionary of the Philosophy of Mind . 

Retrived May 17, 2008 . 

[3] Freund, Y; Schapire, R.E.(1999). “Large margin 

classification using the perceptron 

algorithm”(PDF). Machine Learning . 37(3) :277-

296. 

[4] https://en.wikipedia.org/wiki/Types_of_artificial_n

eural_networks 

[5] http://www2.econ.iastate.edu/tesfatsi/NeuralNetwo

rks.CheungCannonNotes.pdf 

[6] https://en.wikibooks.org/wiki/Artificial_Neural_Ne

tworks/Activation_Functions 

[7] Auer, Peter; Harald Burgsteiner; Wolfgang Maass 

(2008). "A learning rule for very simple universal 

approximators consisting of a single layer of 

perceptrons" (PDF). Neural Networks. 21 (5): 786–

795. doi:10.1016/j.neunet.2007.12.036. PMID 182

49524. 

[8] https://en.wikipedia.org/wiki/Feedforward_neural_

network. 

http://www.ijritcc.org/
https://en.wikipedia.org/wiki/Types_of_artificial_neural_networks
https://en.wikipedia.org/wiki/Types_of_artificial_neural_networks
http://www2.econ.iastate.edu/tesfatsi/NeuralNetworks.CheungCannonNotes.pdf
http://www2.econ.iastate.edu/tesfatsi/NeuralNetworks.CheungCannonNotes.pdf
https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Activation_Functions
https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Activation_Functions
http://www.igi.tugraz.at/harry/psfiles/biopdelta-07.pdf
http://www.igi.tugraz.at/harry/psfiles/biopdelta-07.pdf
http://www.igi.tugraz.at/harry/psfiles/biopdelta-07.pdf
http://www.igi.tugraz.at/harry/psfiles/biopdelta-07.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1016%2Fj.neunet.2007.12.036
https://en.wikipedia.org/wiki/PubMed_Identifier
https://www.ncbi.nlm.nih.gov/pubmed/18249524
https://www.ncbi.nlm.nih.gov/pubmed/18249524
https://www.ncbi.nlm.nih.gov/pubmed/18249524
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Feedforward_neural_network

