
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 315 - 319

315
IJRITCC | February 2016, Available @ http://www.ijritcc.org

Optimization Scheme for Storing and Accessing Huge Number of Small Files on

HADOOP Distributed File System

 L. Prasanna Kumar

1
,

1
Assoc. Prof, Department of Computer Science &

Engineering.,

Dadi Institute of Engineering & Technology,

Visakhapatnam.

lpk.lakineni@gmail.com

Sampathirao Suneetha
2

2
M.Tech (CSE), 2

nd
 year,

Andhra University College of Engineering, Andhra

University, Visakhapatnam.

sampath.suneetha@gmail.com

Abstract:- Hadoop is a distributed framework which uses a simple programming model for the processing of huge datasets over the network of

computers. Hadoop is used across multiple machines to store very large files, which are normally in the range of gigabytes to terabytes. High

throughput access is acquired using HDFS for applications with huge datasets. In Hadoop Distributed File System(HDFS), a small file is the one

which is smaller than 64MB which is the default block size of HDFS. Hadoop performance is better with a small number of large files, as

opposed to a huge number of small files. Many organizations like financial firms need to handle a large number of small files daily. Low

performance and high resource consumption are the bottlenecks of traditional method. To reduce the processing time and memory required to

handle a large set of small files, an efficient solution is needed which will make HDFS work better for large data of small files. This solution

should combine many small files into a large file and treat these large files as an individual file. It should also be able to store these large files

into HDFS and retrieve any small file when needed.

Keywords: Hadoop distributed file System, small file

__*****___

I. Introduction:

 Hadoop is an open source distributed framework which

stores and processes large data sets and is developed by

Apache Software Foundation. It is built on clusters of

commodity hardware. Each single machine server stores

large data and provides local computation which can be

extended to thousands of machines. It is derived from

Google’s file system and MapReduce. It is also suitable to

detect and handle failures. It can be used by the application

which processes large amount of data with the help of large

number of independent computers in the cluster. In Hadoop

distributed architecture, both data and processing are

distributed across multiple computers. Hadoop consists of

the Hadoop Common package, HDFS and MapReduce

engine. A Hadoop cluster consists of a NameNode and

DataNodes. Function of NameNode is to manage the

metadata of file system and the actual data is stored at the

DataNodes.

 It is obligatory to divide the data across different

DataNodes when large amount of data is stored on a single

machine. Distributed file systems are the ones which are

responsible for the management of data storage over a

network. The distributed file system used by Hadoop is

called HDFS and it is a storage system. HDFS has been

considered as a highly reliable file system. HDFS is a

scalable, distributed, high throughput and portable file

system programmed in Java for the distributed framework

of Hadoop. HDFS has read-many-writeonce model that

allows high throughput access, simplifies data consistency

and eases concurrency control requirements. HDFS helps to

connect nodes which are personal computers present in a

cluster in which data is distributed. Then, the data files can

be accessed and stored as an one seamless file system.

HDFS work is done efficiently by distributing data and

logic to on nodes for parallel processing. It is well

grounded as it retains multiple copies of data and assigns

processing logic in the event of failures on its own.

Hadoop also comes with the MapReduce engine. For

writing applications, Hadoop MapReduce is used to process

large data parallely on large clusters. A MapReduce job

normally divides the input data into separate chunks. These

chunks are then processed parallely by the map tasks. The

framework classifies the results of the maps. These are fed

as input to the reduce tasks. File system stores both the

input and the output of the job. The framework manages

scheduling of tasks, supervising them and also the

unsuccessful tasks are reexecuted. It includes JobTracker

and TaskTracker. Client applications sends requests of the

MapReduce jobs to JobTracker and the JobTracker assigns

these jobs to available task tracker nodes in the cluster. The

JobTracker tries to keep the data and its processing in close

proximity to each other. MapReduce processing need not

be done in Java unlike Hadoop which needs Java base.

II. Background

A. Hadoop Distributed File System

The Hadoop Distributed File System provides several

services like NameNode, DataNode, Secondary

NameNode, JobTracker, TaskTracker, etc.

The NameNode is the main part of an HDFS. It keeps

the metadata information which is the directory tree of all

files present in the file system. It also tracks where the file

data is kept across the cluster. However, the data of these

files is not stored, but the metadata is stored. There is a

single NameNode running in any DFS deployment.

Namenode is the master of HDFS. It manages the slave

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 315 - 319

316
IJRITCC | February 2016, Available @ http://www.ijritcc.org

DataNode daemons to perform input output tasks at the

low-level. It also manages and keeps the information about

on which nodes the data blocks of file are actually stored,

on what basis the files are split into file blocks, and the

functioning of the distributed files ystem. In the HDFS

Cluster, the NameNode is a single point of failure.

Whenever client applications need to locate a file or say

they want to add or copy or move or delete a file, they

always talk to the NameNode. Then the NameNode

responds to the valid and successful requests by returning a

list of DataNode where the data actually resides.

 In HDFS, DataNode stores data. Generally there are many

DataNodes, with data replicated across them to recover the

data in case of data failure. When the cluster is started,

DataNode connects to Namenode and waits till the

acknowledgement comes from the Namenode. For file

system operations, the Datanode responds to requests from

the NameNode. Once the NameNode has given the location

where the data is stored, client applications can instantly

talk to a DataNode. Whenever MapReduce tasks are

submitted to TaskTracker which is near a DataNode, they

immediately contact to the DataNode for getting the files.

TaskTracker operations should generally be performed on

the same machine where Datanode resides. This helps for

the MapReduce operations to be executed in close

proximity to the data. To duplicate the data blocks,

DataNode communicate with each other and thus

redundancy is increased. The backup store of the blocks is

provided by the Datanodes. To keep the metadata updated,

Datanodes constantly report to the NameNode. If any one

DataNode crashes or becomes unreachable over the

network, backup store of the blocks assures that, file

reading operations can still be performed.

In HDFS, the Secondary NameNode acts as an

assistant node to supervise the state of the cluster. In each

cluster, there is one SecondaryNameNode. It resides on

each machine in the cluster. The SecondaryNameNode

differs from the NameNode in the context that, any realtime

changes to HDFS are not received or recorded by this

process. After definite time intervals defined by the cluster

configuration, SecondaryNameNode communicates with

the NameNode to get the instances of the HDFS metadata.

It is a daemon that periodically wakes up, triggers a

periodic checkpoint and then goes back to sleep. If the

NameNode goes down, the SecondaryNameNode helps to

lower the outage duration and data loss. If a NameNode

fails and to use the SecondaryNameNode as the primary

NameNode, we need to manually reconfigure the cluster.

The function of the JobTracker is to distribute the

MapReduce tasks between particular nodes containing the

data in the cluster. These nodes might be present in the

same rack. Job tracker acquires jobs from the client

applications. Once the code is submitted to the cluster, the

JobTracker determines the enactment strategy by finding

out which files to process. It then allocates nodes to

different tasks and superintends all running tasks. To

determine the location of the data, the JobTracker consults

the NameNode. The JobTracker discovers TaskTracker

nodes that available for processing the data. The work is

then given to the located TaskTracker nodes. In case of task

failure, that task is automatically instigated by the

JobTracker on some other node. The number of retries has

already been defined. The only JobTracker in Hadoop

cluster is run on the master node.

The TaskTracker in the cluster is the one that

receives tasks such as Map, Reduce and Shuffle operations

from a JobTracker. The number of tasks that TaskTracker

can accept is configured with a set of slots. To ensure that

process failure does not bring down the task tracker, it

manages a separate Java Virtual Machine (JVM) processes

to do the work. It supervises these processes and captures

the output and exit codes. It notifies the JobTracker whether

the process completed successfully or not. After every fixed

interval of time, the TaskTrackers also send out pulse

messages to the JobTracker, to conform that the JobTracker

is still alive.

B. Small File Problem

Normal approach for storing large number of small

files includes directly storing the files in HDFS without any

pre-processing done, this has many disadvantages,

following are few amongst them:

1) In HDFS, if data in files is significantly smaller than the

default block size, then the performance reduces drastically.

2) If small files are stored normally in HDFS, then it wastes

a lot of space in storing metadata of all files. When small

files are stored in HDFS, there will be lots of seeks and

jumps from one datanode to other to get a file, which is

ineffective data access method [12].

III. System Design

We have tried to eliminate the drawbacks of

storing large number of small files in HDFS, so that the

time required to read and write the files would be much less

and also the metadata storage decreases significantly.

While writing the files into HDFS,first we have

sorted the files and then stored them in order to get better

prefetching. Our program stores the similar files (similarity

of files is on the basis of their extension) zipped together

into HDFS. Once the sorting has been done, we have

zipped the small files till the size of zipped file i.e

combined file is equal to 64MB or till the extension of

small files change. This approach helps, as it leads to the

concept of locality of reference i.e. user will refer similar

types of files for later use. Storing files into HDFS requires

less time since we are zipping the files. Therefore, for

example, instead of writing thousands of small files into

HDFS, we will write only few zip files into HDFS, each zip

containing hundreds of small files. For the first read, a map

gets created for each extension, then this map is searched

for the given small file name and returns the combined file

name .This combined file is copied to local machine. Since

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 315 - 319

317
IJRITCC | February 2016, Available @ http://www.ijritcc.org

whole combined file is being copied to local machine the

similar files present in the zipped file are being prefetched.

For the next reads, time required to get combined filename

from small file name would be less since map is already

created and search time in a map is o(1) i.e constant. If a

similar small file is read then same combined file name is

returned hence it takes further less time since the combined

file is already present in local machine.

A. File Merging Algorithm

1) Start the program

2) Select the Write button to write the files into HDFS

3) Enter the file name (this file contains pathnames of all

the files which you need to store in HDFS)

4) Our program reads the file ,sorts it on the basis of

extension and stores it in output.txt file

5) initalisation of variable: index = 100 (some arbitary

number)

6) Reads each line from output.txt

7) creates a zip file archive+index.zip

8) while(line != null)

9) if (sum(size of read files) is less than 64MB and

extension doesn’t change)

10) then a) : add files into zip

11) else

12) close zip

13) add entry into hashtable.txt on the basis of extension

14) copy zip file from local to HDFS

15) index++

16) create a new zip file archive+index.zip

17) end ifelse

18) read next line of output.txt

19) end while

20) close zip file

 21) copy zip file from local to HDFS

B. File Reading Algorithm

 1) Start the program

2) Select the Read button to read from HDFS

3) Enter the small file name

 4) For the first read it creates a map by looking at the

hashtable.txt created by merger program

 5) For later reads it checks for the match in map (which

requires O(1) time)

 6) gets the archive index number

7) if (archive+index.zip is not in local machine)

8) copy the archive from HDFS to local machine

9) end if

10) read the small file from the zip present in local

machine.

C. File Sorting Algorithm

 1) Read the file contents from the filename (given by user)

2) Read a line

3) while (line ! = null)

 4) split on . (split on extension)

 5) interchange extension and name

6) add this to list

 7) read next line

8) end while

9) use Colection.sort (in build java function) to sort list

10) for (each list item)

11) split on extension

12) intechange extension and name

13) write into output.txt

14) end for

 /subsectionFile Searching Algorithm

1) find the smallest key which is greater than or equal to

given target (small file name)

2) if (smallfilename lies within the range of {

smallfilename1 } to { smallfilename2 g }

3) return the index

4) else

 5) print file doesn’t exist

6) exit program

7) end ifelse

IV. Evaluation & Results

A. Experimental Environment:

The multinode cluster had 4 nodes, one master and 3 slave

nodes. Each of these machines had following

configurations:

1) Processor: Intel Core i7-2600 CPU @ 3.10GHz

2. RAM: 4 GB

3. HDD: 500 GB

 4. Operating System: Linux

5. Version: Ubuntu 12.04 LTS

6. Java Version: 1.6.0 24

 7. Hadoop: 1.2.1 version

 8. Eclipse IDE: Helios

9. Network Protocol: Secure Shell All the machines were

connected through ethernet.

The time taken for read and write operations was

measured for both the original HDFS and the proposed

solution for single node as well as for multinode cluster. A

set of 1000, 2000, 4000, 6000, 8000 and 10000 files. Here

we have considered a mix of text and pdf files.These files

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 315 - 319

318
IJRITCC | February 2016, Available @ http://www.ijritcc.org

were first copied into HDFS and then read back to the local

machine. The time taken to complete these operations was

noted down and similar readings were obtained for the

proposed solution[11]. This was repeated three times and

an average of the results was calculated and used for

analysis.

B. Single-Node Cluster

1) Read Operation: The results obtained for read operation

are summarized below:

Comparison for Reading

2) Write Operation: The results obtained for write

operation in single node cluster are summarized in a similar

manner which is shown below:

Comparison for writing

The data obtained clearly indicates that the proposed

solution is faster than the default original HDFS for read as

well as write operation in single node cluster setup.

C. Multi-Node Cluster:

1) Read Operation: In the following graph, we have

compared the read time required in HDFS and in proposed

solution for .txt files:

In the following graph, we have compared the read time

required in HDFS and in proposed solution for .pdf files:

Comparison for reading (pdf) files

2) Write Operation:

The results obtained for write operation in a multinode

cluster are summarized in a similar manner which is shown

below:

D. READ Analysis:

The first read will take more time since the map is created

but the next reads take significantly lesser time as depicted

in the figure below:

V. Related Work:

Bo Dong1, Jie Qiu, Qinghua Zheng, Xiao Zhong,

Jingwei Li and Ying Li in [1] designed a way of effective

storage and access pattern for large number of small files in

HDFS. For storing and accessing small files, correlations

between the files and locality of reference remaining among

small files in the context of PPT courseware are taken into

account. In the first step, they tried to merge all the

correlated small files of a PPT courseware into a single big

file that can effectively reduce the metadata load on the

NameNode. In the second step, they introduced a concept

of two-level prefetching mechanism. Applying this

mechanism, the efficiency of accessing small files is

improved. The experimental results finally indicate that

their presented design efficiently reduces burden on the

NameNode. It also improves the efficiency of storing and

accessing huge number of small files on HDFS. However,

it does not take into account other types of files such as .txt,

.pdf, .png, .odt, etc.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 315 - 319

319
IJRITCC | February 2016, Available @ http://www.ijritcc.org

Chandrasekar S, Dakshinamurthy R, Seshakumar

P G, Prabavathy B and Chitra Babu in [2] proposed a

solution based on the works of Dong et al., where a set of

correlated files is combined, as identified by the client, into

a single large file to reduce the file count. An indexing

mechanism has been built to access the individual files

from the corresponding combined file. Efficient

management of metadata for small files helps for greater

utilization of HDFS resources. However, it does not sort the

files on the basis of their extension which makes it difficult

while reading similar types of files.

Yang Zhang and Dan Liu [3] proposed an

approach for small files processing strategy and proposes

files efficient merger, which builds the file index and uses

boundary file block filling mechanism. It successfully

accomplishes it’s goal of effective files separation and files

retrieval. Their experimental results clearly show that their

proposed design has improved the storing and processing of

huge number of small files efficiently in HDFS. However,

it does not take into account file correlation mechanism

which can reduce access time in HDFS. This solution can

be enhanced further by effectively implementing file

correlation mechanism.

VI. Conclusions

HDFS was originally developed for storing large files.

When a large number of small files are stored in it,

efficiency is reduced. The approach designed in this

solution could improve small files storage and accessing

efficiency significantly. Files are sorted on the basis of their

extensions and then merged into zip files whose size does

not exceed the HDFS block size. This helps to locate any

small file easily. A file read cache has been established, so

that the program can read a small file quickly. The

experimental results show that the approach can effectively

reduce the load of HDFS and improve the efficiency of

storing and accessing small files. For 10,000 small files, the

writing time is reduced by 80% and the reading time is

reduced by 92% on a single-node cluster while for the

multi-node cluster, the percentage decrease for writing is

77% and for reading text files is 89% and for .pdf files is

15%.

VII. Future Work

As for future work, this solution can be enhanced further to

provide a more advanced file correlation framework. This

framework should provide a mechanism to combine files of

similar domain. Append operation can also be provided to

add similar files into the existing combined files. It can also

be extended for other types of file format.

References

[1] Bo Dong1, Jie Qiu, Qinghua Zheng, Xiao Zhong,

Jingwei Li, Ying Li ”Improving the Efficiency of

Storing and Accessing Small Files on Hadoop: a Case

Study by PowerPoint Files”. In proceedings of Services

Computing (SCC), 2010 IEEE International Conference,

Miami, FL, July 2010, pp. 65 72.

[2] Chandrasekar S, Dakshinamurthy R, Seshakumar P G,

Prabavathy B, Chitra Babu ”A Novel Indexing Scheme

for Efficient Handling of Small Files in Hadoop

Distributed File System”. In proceedings of Computer

Communication and Informatics (ICCCI), 2013

International Conference, Coimbatore, Jan. 2013, pp. 1

8.

[3] Yang Zhang, Dan Liu ”Improving the Efficiency of

Storing for Small Files in HDFS”. In proceedings of

Computer Science and Service System (CSSS), 2012

International Conference,Nanjing, Aug. 2012, pp. 2239

2242.

[4] C. Shen, W. Lu, J. Wu and B. Wei, “A digital library

architecture supporting massive small files and efficient

replica maintenance”, Proceedings of the 10th annual

joint conference on digital libraries, ACM Press, QLD,

Australia, June 21-25, (2010), pp.391-394

[5] Petascale Data Storage Institue, “NERSC file system

statistics,” World Wide Web electronic publication,

Available: http://pdsi.nersc.gov/filesystem.htm, (2007).

[6] G. Mackey, S. Sehrish and J. Wang, “Improving

metadata management for small files in HDFS”,

Proceedings of IEEE International Conference on

Cluster computing, New Orleans, USA, August 31 -

September 4, (2009).

[7] Shafer J., Rixner S. and Cox A., “The Hadoop

Distributed File System: Balancing Portability and

Performance”, Proceedings of 2010 IEEE International

Symposium on Performance Analysis of Systems &

Software, White Plains, NY, USA, March 28-30,

(2010), pp. 122-133

[8] J. Venner, “Pro Hadoop”, Springer Press, (2009).

[9] K. Shvachko, H. Kuang, S. Radia and R. Chansler, “The

Hadoop Distributed File System”, Proceedings of the

26th IEEE Symposium on Massive Storage Systems and

Technologies, Incline Village, NV, USA, May 3-7,

(2010).

[10] “The Hadoop Distributed File System: Architecture and

Design”, available:

http://hadoop.apache.org/common/docs/r0.20.1/hdfsdesi

gn.html, (2010).

[11] “The major issues identified: The small files problem”,

available:

http://www.cloudera.com/blog/2009/02/02/the-small-

files-problem, (2010).

[12] A. Chervenak, J. M. Schopf, L. Pearlman, M.-H. Su, S.

Bharathi, L. Cinquini, M. D’Arcy, N. Miller and D.

Bernholdt, “Monitoring the Earth System Grid with

MDS4”, Proceedings of the Second IEEE International

Conference on e-Science and Grid Computing.

Washington: IEEE Computer Society, (2006).

http://www.ijritcc.org/

