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Abstract –  In order to detect and prevent faults, researchers have developed safety standards, safety analysis techniques, and fault-tolerant 

techniques; however, there are still no methodology frameworks for verifying safety-critical software systems.  This research‟s methodology 

combines software-safety methods into a comprehensive whole for the purpose of verifying safety-critical software systems.  This research 

concentrated on developing a methodology framework that  combines static-verification, dynamic-verification, and fault-tolerant concepts for 

verifying safety-critical software systems.  
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1. INTRODUCTION 

 

 Ensuring the correctness of computer systems is a complex 

task of paramount importance, especially when such systems 

control and monitor life-critical operations. The verification of 

industrial computer systems is particularly difficult due to 

their size and complexity. The most frequently used methods, 

simulation and testing, are not exhaustive and can miss 

important errors. While the use of both methods can increase 

the reliability of the application, they cannot fulfill the 

verification needs of  modern complex safety-critical systems. 

Formal methods are an additional methodology to tackle this 

problem. Formal verification tools allow an exhaustive search 

to be automatically performed on the state space of the 

system, avoiding the shortcomings of both simulation and 

testing. 

 

The increase in software-controlled systems is due to many 

factors such as cost, flexibility, and reliability. Research in 

software safety falls into two categories: (1) improving 

software safety before releasing the product by using 

verification techniques and (2) improving software safety after 

releasing the product by using fault-tolerant techniques. For 

verification techniques, most researchers concentrate on static 

methods, which analyze a software system‟s safety without 

executing it, and ignore dynamic  methods, which analyze a 

system‟s safety by executing it. This research concentrated on 

developing a methodology framework that combines static-

verification, dynamic-verification, and fault-tolerant concepts 

for verifying safety-critical software systems. 

 

This research‟s methodology combines software-safety 

methods into a comprehensive whole for the purpose of 

verifying safety-critical software systems. For clarification 

purposes, this document treats the words approach, technique, 

and method as having synonymous definitions. A 

methodology brings structure, guidance, and specific 

techniques all together in order to improve a given process - in 

this case, the process is software-safety verification. This 

research deals with Safety Verification and validation  

Methodology (SVVM). Below diagram represents Standard 

phases for System development showing general exit and 

entry conditions. 

 

Deficiencies within software safety: As normal for relatively 

new fields, software-safety methods and practices have 

deficiencies in many areas. Within software engineering, 

researchers have been looking into safety-related issues for 

approximately the past decade. Their research focused mainly 

on techniques for statically verifying and modeling safety-

critical software systems and providing standards for 

developing such systems. However, safety standards are often 

too vague and have few and scattered guidelines. 

 

This  Safety Verification and Validation Methodology 

(SVVM) Framework includes the following Activities: 

 

1) Identify appropriate life-cycle phases  

 

2)  Define entry and exit criteria for each phase  

 

3) Define activities to occur during each  phase (inner-phase 

activities)  

 

4)  Specify techniques for doing each inner-phase activity   

 

5) Specify documentation approaches for each inner-phase 

activity 
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2. PRELIMINARY SOFTWARE HAZARD ANALYSIS 

 

Requirement Separation: The first activity that occurs during 

the system-design phase is separating hardware- and software-

related  requirements by using the system specification and 

design since these documents specify which components are 

software controlled. Requirement separation is necessary in 

order to identify software components, divide up the work 

load, and enable a systematic means for safety analysis - 

analogous activities take place for hardware. 

 

Software Hazard Analysis:As Figure shows, preliminary 

software hazard analysis involves several activities. Before 

introducing these activities, this paragraph examines the 

safety problem (i.e., what developmental areas cause the most 

hazards). The main causes for safety  problems are 

specification errors. In fact, many errors trace back to 

specification documents according to current research. 

Furthermore, Jaffe and Leveson point out that most software 

failures are due to specification incompleteness.Therefore, in 

order to improve system safety, preliminary software hazard 

analysis attempts to insure a complete, precise, and correct 

software-safety specification. 

 

Identification: To reduce specification errors, hazard 

identification becomes a crucial first step when developing 

and analyzing safety-critical systems. Naturally, there are 

other reasons for hazards occurring, but the fact remains that 

engineers cannot protect a system against unidentified hazards 

with any realistic confidence level. Some feel that hazard 

identification is a "relatively easy" process;** however, this 

categorization over simplifies the hazard-identification 

process, which is an area that still needs further research. 

 

In order to identify software hazards, engineers must consider 

all informational sources relating to the individual software 

components such as system specifications, historical data, 

system-level hazard lists, hardware-interface specifications, 

human experts, and system prototypes and models.  

 

Categorization: After identifying a software hazard, the 

developer must determine the hazard‟s categorization (i.e., 

severity). A hazard‟s categorization represents the worst-case 

consequence that it can cause. A software hazard‟s 

categorization along with other factors determines the rigor 

necessary during development to insure that the event will not 

occur.  

 
Resolution: For each software hazard, the analysis team 

determines if they can or should eliminate the hazard 

altogether. Hazard elimination can occur in two ways: (1) 

move the hazard or (2) remove the hazard‟s consequence. 

Moving a software hazard involves making the hardware (or 

other system component) solely responsible for the respective 

system requirement and requires a specification change. 

Reasons for moving a hazard can be due to cost issues, safety 

issues, or both. Removing a hazard‟s consequence involves 

eliminating system functionality and requires at least a 

specification change. If hazard elimination is not appropriate, 

then the developer must ensure that the likelihood of the 

hazard occurring is sufficiently low. 
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Documentation:For every hazard , the developer must 

document all information relating to the hazard such as its 

severity, consequences, and description. This documentation 

provides necessary information for adjusting the system 

design, preparing the software requirements, and verifying the 

system. High-severity software hazards, without considering 

other safety measures, require rigorous development and 

verification in order to insure that they do not occur.  

 

Review:  After completing the preliminary software hazard 

analysis, the developer must review the process and resulting 

documentation in order to insure that the process was 

complete, correct, and precise. The review process by nature 

depends almost entirely on human skill; therefore, human 

error and oversight is always a possibility.  

 

Component Isolation:An issue related closely to partitioning 

critical and non-critical components is physical isolation, 

which should be a part of the hardware and software 

requirements (i.e., the output from the system-design phase). 

Physical isolation deals with separating critical and non-

critical components not in documentation terms, as 

partitioning does, but in design terms. For example, keeping 

critical software on a board by itself so that it has its own 

processor, memory, etc.  

 

3. HIGH LEVEL DESIGN HAZARD ANALYSIS 

 

Developing the High-Level Design: After choosing a design 

technique, the design team develops the high-level design. 

Figure  shows a process diagram for the high-level-design 

activities, which may vary slightly depending on the actual 

design technique that the team chose. The first activity 

involves identifying all modules and data objects: A module, 

for example, can be a subroutine, function, task, or ada 

package. The second activity concentrates on developing 

module specifications while the third activity analyzes the 

safety considerations for each module and data object. Finally, 

the last activity modifies the design in order to adjust it for the 

safety considerations. 

 

Module Identification: A main activity when developing a 

high-level design is to identify all modules and data objects. 

Each design technique has its own method for module 

identification and classification, so this chapter does not cover 

these details. Data objects can be external inputs or outputs as 

well as internal data items such as flags, structures, 

parameters, etc. For large systems, module and object 

identification can become a difficult task, so the design team 

should break up large systems into individual components or 

sub-systems. Then, the design team can proceed with the 

module identification process. Remember that design is 

usually an iterative process (i.e., most design teams will not 

identify all modules correctly on the first pass). 

 

Module Specification: During or after module identification, 

the design team must specify each module and data object. 

For modules, these specifications describe their functionality 

(purpose), input and output parameters, returned values for 

functions, and all preconditions and postconditions. For data 

objects, the specification describes their meaning, type, range, 

constraints, and other relevant information that the specific 

design technique might require. Module parameters are data 

objects that require extra information such as their position in 

the parameter list; whether they are input, output, or input and 

output parameters; and whether or not they are optional 

parameters. Once again, due to iterative development, these 

specifications may require multiple passes before they are 

complete, correct, and precise. 

 

If the software specification document does not stipulate the 

method for module and object specification, then the design 

team must adopt a specification method. There are two broad 

methods for specifying modules and their objects: (1) 

informal and (2) formal. An informal module-specification 

method might use natural-language text, diagrams, pseudo 

code, or a combination of these items. Formal methods, 

however, use mathematical notations such as algebraic or 

lambda-calculus equations: two such methods, which are 

common in Europe, are VDM and z A Furthermore, formal 

methods should contain informal descriptions too in order to 

help support their meaning. Natural-language descriptions are 

also useful for those individuals who are not familiar with 

formal methods. Whatever technique the design team chooses, 

it should allow for correct and precise module specifications 

so that no ambiguities arise. 

 

Safety Considerations: After identifying all the modules and 

developing their specifications, the design team should 

analyze the safety considerations for each module. Figure 

outlines the safety-consideration process, which involves (1) 

refining the safety-verification documents, (2) identifying 

modules that should have fault tolerance, (3) determining and 
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assigning specific fault-tolerant techniques to these modules, 

and (4) determining and assigning other safety design issues 

to these modules. For this section, a module may be an Ada 

package, task, subroutine, or function. In addition to modules, 

data objects require safety analysis as well in order to insure 

system safety. 

 
Refine safety documents:  Before the design team can 

recommend specific modules for fault-tolerant designs and 

before they can effectively assign dynamic-verification 

requirements, the safety documentation must be up to date. 

Updating the safety documentation involves identifying 

modules that can cause software hazards, describing the 

causes, identifying the relationships between causes, 

identifying the phases for which a cause is relevant, 

describing the consequences for each cause, and determining 

the severity for each cause. In order to determine the modules 

that can cause software hazards, safety engineers can identify 

critical data objects in the high-level design and then those 

modules that create, reference, or transform the data objects.  

 

Selecting module fault tolerance: After identifying the safety-

critical modules in the high-level design, the design team must 

determine and assign appropriate fault-tolerant techniques. If 

the specification document does not outline the procedure for 

doing this activity, then the design team must determine the 

procedure. Currently, there is little research relating fault-

tolerant techniques to problem classes. Furthermore, there is 

no research that says one fault-tolerant technique is better than 

another. 

 

Adjust High-Level Design: After determining the different 

safety considerations, the design team must update any 

affected parts o f the high-level design. The various safety 

considerations might require changes in parameters, module 

specifications, and pre- and post-conditions. These 

considerations might also result in more modules and 

adjustments to the safety-verification documents. 

 

4. DETAILED DESIGN 

Detailed-design and code-level hazard analysis involves five 

activities: (1) generating the detailed design and code, (2) 

adjusting the design and code for safety considerations, (3) 

design and code hazard analysis, (4) adjusting the design and 

code for dynamic verification, and (5) a design and code 

review. Developing the detailed design is just a further 

refinement of the high-level design and involves applying the 

selected design technique at the next level of detail. For 

object-oriented designs, this refinement means expanding 

objects to include more detail (i.e., more objects and 

transformations). For functional-oriented designs, this 

refinement means expanding actions to include more detail 

(sub-functions and their data). The refinement process 

continues until the detailed design is at a low enough level to 

facilitate coding. While developing the detailed design, the 

designer may need to create additional modules that are not 

present in the high-level design. 

 5. DYNAMIC SAFETY VERIFICATION 

 

After static safety verification and general reliability testing, 

software engineers must dynamically verify the software‟s 

safety (i.e., safety testing). As previous chapters mentioned, 

dynamic safety verification tests the software‟s safety features 

by executing the software.  
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Even if the developer uses rigorous formal techniques to show 

the software‟s safety, safety faults may still exist in the system 

since these techniques do not 1 9 produce 100% reliable 

software. ‟ For these reasons, safety testing is important and 

attempts to show that the software conforms to the safety 

documentation (e.g., fault trees, event trees, failure modes and 

effects, etc.), which represent the input-output oracles for the 

safety-testing process. 

 

6. CASE STUDY DESIGN PROCESS 

 

Railroad Crossing Control System (RCCS) 

Crossing gates on a full-size railroads are controlled by a 

complex control system that causes the gates to be lowered to 

prevent access to the crossing shortly before a train arrives 

and to be raised to allow access to resume after the train has 

departed. This requires the detection of approaching trains or 

the manual actuation of the crossing gates by an operator. 

RCCS is a prototype, real-time, safety-critical railroad 

crossing control system of limited complexity. It is composed 

of several software-controlled hardware components.  

 

RCCS System Functions: 

 

• Control the overall operation of train on the track circuit. 

• Control the opening and closing of Gate 1 and 2 at the 

railroad intersections  

• Control the track lever to change the track route from the 

outer to the inner loop  

• Check the internal health of all the subsystems  

• Control the train operation at the Signal Lights 

• Monitor all the sensors on the track circuit  

 

RCCS System Operations: 

When RCCS is first switched on, the controller does a 

preliminary check of the normal working status of all the 

subsystems involved – the driver circuitry, the sensors, the 

gate assemblies, and the train signals. If all the components 

are found to be in normal working condition, it executes the 

code related to normal operation. Initially, the train starts from 

the platform location and  is programmed to run on the outer 

track. After it completes this cycle, it changes direction and 

runs on the inner track. This change is facilitated by the track-

change level which is present at the intersection of the outer 

track and inner track. Along the track, the two gates Gate 1 

and Gate 2 are automatically lowered when the train nears the 

railroad intersection and raised when the train leaves the 

intersection. Whenever the signal lights display Red, the train 

comes to a halt and resumes running only after a Green signal 

is given. Whenever the train detects any physical obstacle on 

the track, the train comes to a halt.  

 
 

train passes Sensor2 positioned prior to gate, a signal is sent to 

the controller indicating the approaching train. The controller 

then sends a signal to the gates assembly, causing the gate 

arms on either side of the road to close. When the train finally 

has passed Sensor3, which is positioned just beyond the gate 

crossing section, a corresponding signal is sent to the 

controller, which in turn triggers both the gate arms to open 

simultaneously. 

 

7.  SAFETY ANALYSIS AND RESULTS 

 
The safety analysis of RCCS software functions takes place in 

three sequential steps.  

 

• Software Failure Mode and Effects Analysis (SFMEA):  

This analysis is performed in order to determine the top events 

for lower level analysis. SFMEA analysis will be performed 

following the list of failure types. SFMEA will be used to 

identify critical functions based on the applicable software 

specification. The severity consequences of a failure, as well 

as the observability requirements and the effects of the failure 

will be used to define the criticality level of the function and 

thus whether this function will be considered in further deeper 

criticality analysis. The formulation of recommendations of 

fault related techniques that may help reduce failure criticality 

is included as part of this analysis step.  

 

• Software Fault Tree Analysis (SFTA)  

After determining the top-level failure events, a complete 

Software Fault Tree Analysis shall be performed to analyse 

the faults that can cause those failures. This is a top down 

technique that determines the origin of the critical failure. The 

top-down technique is applied following the information 

provided at the design level, descending to the code modules . 

SFTA will be used to confirm the criticality of the functions 
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(as output from SFMEA) when analyzing the design and code 

(from the software requirements phase, through the design and 

implementation phases ) and to help:  

- Reduce the criticality level of the functions due to software 

design and / or coding fault-related techniques used ( or 

recommended to be used)  

 

       - Detail the test-case definition for the set of validation test 

cases to be executed.  

 

         • Evaluation of Results :The evaluation of the results will be 

performed after the above two steps in order to highlight the 

potential discrepancies and prepare the recommended 

corrective measures. Recommendation can be given to design 

and coding rules. 

 

SFMEA Analysis of RCCS  

The SFMEA, a sample of which is shown in the Table 2 

below presents some software failure modes defined for 

RCCS. The origin and effects of each failure mode are 

analyzed identifying the top level events for further 

refinement, when the consequence of this failure could be 

catastrophic for this system. Three top events were singled out 

for further analysis of failure mode Gate not closed as train is 

passing through railroad intersection. 

Failure 

Mode  

Possible 

Causes  

Effect  Sever-

ity of 

risk  

Prevention  

And  

Compensati

on  

Gate 

not 

closed 

as train 

is 

passing 

through  

a) sensor 

not 

detected 

by s/w  

b) gate 

motor 

mechanis

m is 

defective  

c) s/w 

gives 

wrong 

command  

d) s/w 

gives 

right 

command 

at wrong 

time  

Train 

collision 

with passing 

road traffic 

leading to 

accidents  

Critica

l  

Software first 

checks the 

working 

status of 

gates each 

time the train 

is about to 

cross the 

gates  

Track 

change 

lever is 

not 

a) sensor 

is not 

detected 

by s/w  

Train fails 

to change its 

path from 

the outer 

Critica

l  

Software first 

checks the 

working 

status of the 

acti-

vated 

to 

change 

train 

route  

b) track 

lever 

motor 

mechanis

m is 

defective  

c) s/w 

gives 

wrong 

command 

to lever  

d) s/w 

gives 

right 

command 

at wrong 

time  

e) s/w 

fails to 

give a 

command 

to acti-

vate lever  

track circuit 

to the inner 

track circuit 

leading to 

accident  

track lever 

each time the 

train is about 

to enter the 

inner track 

loop  

Control 

progra

m 

softwar

e is 

corru- 

pted  

a) logic 

fault  

b) 

interface 

fault  

c) data 

fault  

d) 

calculatio

n fault  

e) 

memory 

fault  

Unpredictab

le sequence 

of opera-

tion leading 

to accident  

Critica

l  

or  

Catast

-

rophic  

Algorithm 

logic is 

verified for 

accuracy.  

Data 

Structures 

and Memory 

overflow is 

checked.  

 

SFTA Analysis of RCCS  

The fault tree is a graphical representation of the conditions or 

other factors causing or contributing to the occurrence of the 

so-called top event, which normally is identified as an 

undesirable event. A systematic construction of the fault tree 

consists in defining the immediate cause of the top event. 

These immediate cause events are the immediate cause or 

immediate mechanism  for the top event to occur. From here, 

the immediate events should be considered as sub-top events 

and the same process should be applied to them. All 

applicable fault types should be considered for applicability as 

the cause of a higher level fault. This process proceeds down 

the tree until the limit of resolution of tree is reached, thereby 

reaching the basic events, which are the terminal nodes of the 

tree. 
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8.  CONCLUSION 

 

Verifying safety-critical software is an important activity 

during safety-related software development. Unfortunately, 

there are no methodology frameworks for carrying out this 

activity; therefore, this research developed a methodology 

framework for statically and dynamically verifying safety-

critical software systems.  

 

 The methodology follows a life-cycle approach to 

verification by supplying methods and guidelines for 

preliminary hazard analysis, high-level-design hazard 

analysis, detailed-design hazard analysis, and code-level 

hazard analysis. Furthermore, the methodology contains 

several testing and coverage techniques along with guidelines 

for dynamic verification, which is an area that research largely 

ignores in spite of its importance.  
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