
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 162 - 166

__

162

IJRITCC | February 2016, Available @ http://www.ijritcc.org

Comparison and Enhancement of Sorting Algorithms

Neha Gupta

Department of Information Technology

K.J Somaiya College of Engineering,

Mumbai, Maharashtra.

nehargupta05@gmail.com

Abstract— Some of the primordial issues in computer science is searching, arranging and ordering a list of items or information. Sorting is an

important data structure operation, which makes these daunting tasks very easy and helps in searching and arranging the information. A lot of

sorting algorithms has been developed to enhance and aggrandize the performance in terms of computational complexity, efficiency, memory,

space, speed and other factors. Although there are an enormous number of sorting algorithms, searching and sorting problem has attracted a

great deal of research and experimentation; because efficient sorting is important to optimize the use of other algorithms. This paper is an

attempt to compare the performance of seven already existing sorting algorithm named as Bubble sort, Merge sort, Quick sort, Heap sort,

Insertion sort, Shell sort, Selection sort and to provide an enhancement to these sorting algorithms to make the sorting through these algorithms

better. In many cases this enhancement was found faster than the existing algorithms available.

Keywords- Sorting, Complexity, Efficiency, Bubble sort, Selection Sort, Insertion Sort, Heap sort, Quick Sort, Merge Sort, Shell Sort.

__*****___

I. INTRODUCTION

Sorting algorithm is one of the most elementary research

fields in computer science. Sort is an essential operation in

computer programming. In computer programming, a

sorting algorithm is an efficient algorithm which performs a

cardinal task that puts elements of a list or array in a certain

order or arranges a collection of items into a particular

pattern or order. There is a huge number of sorting

algorithms in computer science and they differ from each

other on the basis of efficiency of the algorithm. Sorting

algorithms are usually adjudicated by their efficiency. In this

case, efficiency refers to the algorithmic efficiency that is

the behavior of the algorithm as the size of the input grows

large. Most of the algorithms in use have an algorithmic

efficiency of either O(n^2) or O(n*log(n)).

The processing time of a sorting algorithm is based on the

two important factors which involve processing speed of a

Processor and the internal memory (RAM) used by the

system. The two types of sorting algorithms with respect to

their algorithmic efficiency are O(n^2) (which comprises of

the bubble, selection, insertion, cocktail, gnome and shell

sorts) and O(n log n) (which includes the heap, merge, and

quick sort). Efficiency of an algorithm depends on some

major factors like CPU (time) usage, Computational

Complexity, speed, Memory usage, Disk usage, Network

usage. Most naïve sorting algorithms require two steps to

sort data which includes comparing two items followed by

swapping or copying. This process continues to execute over

and over until all the data or elements are sorted. Sorting

algorithms are classified in two categories according to the

place whether they are stored, that is, in the main memory or

auxiliary memory. One category is the internal sort which

stores the data elements in the main memory and another is

the external sort which stores the data in the hard disk. In

fact, we can convert external sort algorithms to internal sort

by utilizing the splitting and merging.

II. CRITERIA FOR COMPARISON

 Many algorithms that have the same efficiency do not

necessarily have the same speed and behavior on the same

input. First and the most important factor is, algorithms must

be judged based on their best case, average case and worst

case efficiency There are some algorithms that show

different behavior for different sets of input. Algorithms,

such as quick sort, perform exceptionally well for some

inputs, but horribly for others. And there are other

algorithms, such as merge sort, are unaffected by the order

of input data.

 The most crucial factor is the “big-O notation”. Sorting

algorithms are sometimes characterized by big O notation in

terms of the performances that the algorithms capitulate and

the amount of time that the algorithms take (where n is

integer). Big O notation describes the limiting behavior of a

function when the argument tends towards a particular value

or infinity, usually in terms of simpler functions. Big O

notation allows its users to simplify functions in order to

concentrate on their growth rates. The different cases that

are popular in sorting algorithms are: - O(n) is fair, the

graph is increasing in the smooth path. - O(n^2): this is

inefficient because if we input the larger data the graph

shows the significant increase. It means that the larger the

data the longer it will take. - O(n log n): this is considered as

efficient, because it shows the slower pace increase in the

graph as we increase the size of array or data [6].

 The second criterion is stability. A sorting algorithm is

considered to be stable if two objects with equal keys appear

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 162 - 166

__

163

IJRITCC | February 2016, Available @ http://www.ijritcc.org

in the same order in the sorted output as they appear in the

input list of elements to be sorted. Some sorting algorithms

are stable by nature like Bubble Sort, Insertion sort, Merge

Sort, etc. Most of the simple sorting algorithms preserve the

order of keys with equal values but advance algorithms like

heap sort, do not.

 The third criterion for judging algorithms is their space

requirement. It is decided on the basis that do they require

obliterate space or can the list of items be sorted in place

(without the need of additional memory except a few

variables)? Some algorithms never require extra space such

that only O(1) or O(log n) memory is needed beyond the

items being sorted, whereas some depends totally on

external space requirement (it is important to create

auxiliary locations to store data temporarily) and they are

most easily understood when implemented with extra space

(heap sort, for instance, can be done in place, but

conceptually it is much easier to think of a separate heap).

Space requirements may even rely on the data structure used

(for instance, merge sort on arrays versus merge sort on

linked lists) [9].

III. SUMMARIES OF POPULAR SORTING ALGORITHMS

A. Bubble Sort

 Bubble sort is the simplest and unfortunately the

worst sorting algorithm (keeping computational

complexity in mind). It makes the use of a sorting

method called exchange method. The name comes from

the fact that each element "bubbles" up to its own proper

position. This sort will do double pass on the data set

of elements and swap two values when necessary. So,

if we have 10 elements then the total number of

comparisons is 100. The algorithm continues the

process for each pair of adjacent elements until the

end of the data set. This leads to the algorithm being

extremely slow. This algorithm's average and worst case

performance is O(n^2). So, Bubble sort is rarely used to sort

large and unordered data sets. This causes larger values to

"bubble" to the end of the list while smaller values "sink"

towards the beginning of the list. Bubble sort can be used to

sort a small number of items (where its inefficiency is not a

high penalty) [10].

 Bubble sort has many of the same properties as insertion

sort, but it has slightly higher overhead as compared to

insertion sort. In the case of nearly sorted data, bubble sort

takes O(n) time, but it requires at least two passes through

the dataset whereas, insertion sort requires only more one

pass. The main advantage of Bubble Sort algorithm is the

simplicity and ease of implementation of the algorithm.

Another advantage is that the space complexity for Bubble

Sort is O(1) (because only single additional memory space is

required for temp variable). We can optimize bubble sort

algorithm by stopping the algorithm if inner loop didn’t

cause any swap. Thus Bubble sort algorithm will take

minimum time O(n)when elements in dataset are already

sorted (best case). Even though Bubble sort is slow it has

wide range of applications. For instance, in computer

graphics it is popular for its capability to detect a very small

error (like swap of just two elements) in almost-sorted

arrays and fix it with just linear complexity (2n). Bubble

Sort is also used in polygon filling algorithm, where

bounding lines are sorted by their x coordinate at a specific

scan line (a line parallel to x axis) and with incrementing y

their order changes (two elements are swapped) only at

intersections of two lines [7].

 Enhancement of Bubble sort algorithm: One of the

variations of bubble sort algorithm is Cocktail sort

algorithm. It is also known as bidirectional bubble sort. It is

both a stable algorithm and a comparison based sort. This

algorithm differs from bubble sort in the fact that it sorts in

both directions each pass through the dataset. The average

number of comparisons is slightly reduced by this approach

of Cocktail sort. This sorting algorithm is only marginally

more difficult than Bubble Sort to implement. In case of best

case we may conclude that Cocktail sort algorithm is the

best algorithm to be used with regard to worst case analysis

where the data elements are in reverse order it may be

concluded that the proposed algorithm can be very effective

for the small as well as large data sets. Another variation of

Bubble sort algorithm is Comb sort. Comb sort is an

improvement of bubble sort algorithm. The basic idea is to

eliminate small values near the end of the dataset, since in a

bubble sort these slow the sorting down tremendously [8].

B. Selection Sort

 Selection sort is among the most intuitive sort of all the

sorting algorithms. In this sort we find out the smallest

elements in each pass and place it at the appropriate

location. These steps are repeated until the dataset is sorted.

In this method, to sort the data in increasing order, the first

element is compared with all the elements in the dataset and

if the first element is greater than the smallest element than

the position of those two elements is swapped. So after the

first pass, the smallest element is placed at the first position.

The same procedure is repeated for every element until the

dataset gets sorted.

 The selection sort improves on the bubble sort by

making only one exchange for every pass through the

dataset. The advantage of selection sort algorithm is its easy

implementation along with O(1) space complexity.

Disadvantage of selection sort is its inefficiency for large

datasets. You may see that the selection sort algorithm

makes the same number of comparisons as the bubble sort

algorithm and is therefore also O(n^2). However, due to the

reduction in the number of exchanges, the selection sort

https://en.wikipedia.org/wiki/Bubble_sort

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 162 - 166

__

164

IJRITCC | February 2016, Available @ http://www.ijritcc.org

algorithm usually executes faster in benchmark studies.

Selection sort has a quite important application because each

item is actually moved at most once.

C. Insertion sort

 Insertion sort is a simple sorting algorithm that is

relatively efficient for small dataset and mostly for nearly

sorted dataset. It is often is used as a part of more

sophisticated algorithms. The insertion sort works like

playing cards in which each card is placed at its proper place

while playing in hands of a person. Sorting a hand of

playing card is one of the real examples of insertion sort

[11]. It works by taking elements from the dataset one by

one and inserting them in their correct location into a new

sorted dataset. In arrays, the new dataset and the remaining

elements of the dataset can share the array's space, but

insertion is costly as it requires shifting of all the following

elements over by one. Advantages of Insertion sort is that it

use O(1) auxiliary space. Generally, the Computational

Complexity is O (n^2), but incase if the list is already sorted

(best Case) complexity is O(n). It sorts the element of small

dataset very quickly but in sorting the elements of large

dataset it takes very long time. Insertion sort algorithm can

take different running time to sort two input sequences of

dataset of the same size depending upon how nearly they

already sorted. Shell sort is a variant of insertion sort that is

more efficient for larger dataset.

 Enhancement of Insertion sort: An enhancement to the

Insertion Sort algorithm can be in difference of approach as

it compares with the very first element in the dataset, which

in fact is the smallest element in the dataset at instant, after

comparing (i)th element with (i-1)th . This is called as hit

method; more we get hit more the efficiency increases.

Basically sometimes we have element which gets sorted

after (n-1) comparisons i.e at first place of dataset in

insertion sort. So for reducing these useless comparison,

why not we compare the element to be sorted with the very

first element in the part of the dataset, which is already

sorted i.e. before (i)th element, which we know is the

smallest element up till now. Further list is divided,

selecting a middle element and comparing to part on its left

or right based on the condition for middle comparison and

then comparing after leaving one element in that particular

part, hence reducing the number of comparisons. The

technique is more efficiently suitable for large dataset and

efficiency increases when the (i)th is less than first element

of dataset which gives O[n] in worst case. This work focuses

to provide an enhancement in insertion sort and making

enhanced insertion sort more efficient for larger datasets as

it gives less than O(n^1.585) complexity in worst case and

reduces near about half comparison. It does not requires

scanning all elements, because of its hit method it provides a

boost to sorting, also reduces the number of comparisons

while sorting an array as compared to O(n^2) complexity of

insertion sort, in fact it is O(n) in best as well as sometimes

in average case. Basically the complexity of this algorithm

varies from O(n) to O(n^1.585) [12].

D. Heap sort

 Heapsort is a comparison-based sorting algorithm.

Heapsort is an in-place algorithm, but is not a stable sort.

Heap sort algorithm is a much more efficient version of

selection sort algorithm. Like selection sort, it also works by

finding the largest or the smallest element of the dataset and

placing that at the end or the beginning of the dataset, then

continuing with the rest of the dataset. The difference

between the two is that Heap sort accomplishes this task

efficiently by using the heap data structure. Heap is a special

type of binary tree. Once the dataset has been converted into

a heap, the root node is guaranteed to be the largest or the

smallest element. When the root node is removed and placed

at the end of the dataset, the heap is rearranged so the largest

element remaining moves to the root. Using the heap data

structure, finding the next largest element takes O(log n)

time, instead of O(n) for a linear scan as in the case of

selection sort. This permits Heap sort to run in O(n* log n)

time.

 The best part of using Heap sort is its worst case

complexity which is O(n*logn) much better than Selection

sort algorithm. The advantages of Heap sort is its time

complexity and auxiliary space requirement which is O(1).

Although Heap sort is somewhat slower in practice on most

machines than a well-implemented quicksort, it has the

advantage of a more favorable worst case O(n*log n)

runtime. Thus, in-space and non-recursive makes it a good

choice for large data sets. Heap sort has two major

disadvantages that includes its slower speed than other such

Divide and Conquer sorts that also have the same O (n*log

n) time complexity due to cache behavior of Heap sort and

other factors. The other disadvantage is Heap sort is unable

to work when dealing with linked lists due to non-

convertibility of linked lists to heap structure [5].

 Enhanced Heap Sort: A new variant of Heap Sort is

modified heap sort. Basic idea of this new Heap sort

algorithm is similar to the classical Heap sort algorithm but

it builds heap in a different way. This new algorithm

requires nlogn-0.788928n comparisons for worst case and

n*logn-n comparisons for average case. This algorithm uses

only one comparison at each node. With one comparison we

can decide which child of node contains larger element. This

child is directly promoted to its parent position. In this way

the algorithm walks down the path until a leaf is reached.

E. Quick Sort

Quick Sort is an in-place, massively recursive, divide

and conquer sorting algorithm. It relies on a partition

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 162 - 166

__

165

IJRITCC | February 2016, Available @ http://www.ijritcc.org

operation to partition an array an element called a pivot is

selected. All the elements that are smaller than the pivot are

moved before it and all the greater elements are moved

after it. This can be done efficiently in linear time and in-

place. Efficient implementations of quick sort (with in-

place partitioning) are typically unstable sorts and

somewhat complex, but are among the fastest sorting

algorithms in practice [2].

The most complicated issue in quick sort algorithm is

choosing a good pivot element; consistently poor choices of

pivots can result in drastically slower O(n²) performance, if

at each step the median is chosen as the pivot then the

algorithm works in O(n* log n). Finding the median

however, is an O(n) operation on unsorted dataset and

therefore exacts its own penalty with sorting.

The quick sort is by far the fastest of the all the known

sorting algorithms because Quicksort runs in O(n*log n) on

the average case and in O(n^2) for the worst case. There are

many versions of Quicksort algorithm. They are, using

external memory, using in-place memory and using in-

place memory with two pointers. The best part of Quicksort

algorithm is its efficiency and fast processing. The

disadvantage of Quicksort lies in the horrible results it

shows for already sorted dataset.

F. Merge Sort

 Merge sort was invented by John von Neumann and it

belongs to the family of comparison-based sorting. Merge

sort algorithm is very effective sorting technique when

dataset is considerably large. It is an example of the divide-

and conquer paradigm, that is, it breaks the data into two

halves and then sorts the two half datasets recursively, and

finally merges them to obtain the complete sorted list. The

best part of Merge sort algorithm is that it has the time

complexity of O(n*log n) for every case including worst,

best and average case. Its worst-case running time has a

lower order of growth than insertion sort.

 Merge sort takes advantage of the ease of merging

already sorted lists into a new sorted list. It starts by

comparing every two elements and swapping them if the

first element should come after the second element. It then

merges each of the resulting dataset of two into datasets of

four, and then merges those datasets of four, and so on; until

at last two datasets are merged into the final dataset. Of the

algorithms described here, this is the first algorithm that

scales well to very large dataset, because its worst-case

running time is O(n*log n).

Merge sort has seen a relatively recent escalation in

popularity for practical implementations, as it is being used

for the standard sort routine in the programming languages

like Perl, Python and Java. The greatest advantage of merge

sort is that it is well suited for large data set. Another strong

point is that it is marginally faster than the heap sort for

large datasets and it is often the best choice for sorting a

linked list because the slow random access performance of a

linked list makes it perform poorly for algorithms such as

Quicksort and Heapsort. On the other hand, Merge sort can

efficiently sort a linked list Disadvantage of merge sort is

that it requires at least twice the memory requirements than

other sorting algorithms because of its recursive nature. This

is the biggest cause for concern in Merge sort as its space

complexity is very high. Merge sort requires about a O(n)

auxiliary space for its working.

G. Shell Sort

 Shell sort is a generalization of Insertion sort, named

after its inventor, Donald Shell. It is an improvisation of

bubble sort and insertion sort by moving out of order

elements more than one position at a time. One

implementation can be described as arranging the data

sequence in a two-dimensional array and then sorting the

columns of the array using insertion sort [2]. It belongs to

the family of in-place sorting algorithms but is regarded to

be unstable.

Shell sort improves Insertion sort by comparing elements

separated by a gap of several positions. Shell sort exploits

the fact that insertion sort algorithm works efficiently on

dataset that is already almost sorted. This algorithm is an

example of an algorithm that is simple to code but difficult

to analyze and understand theoretically. Although sorting

algorithms exist that are more efficient, Shell sort remains a

top and preferable choice for moderately large files and

datasets because it has good running time and it is easy to

code.

 Enhancement of Shell Sort: An enhancement of Shell

sort is Shaker sort. It is a variant of Shell sort that compares

each adjacent pair of items in a dataset in turn, swapping

them if necessary, and alternately passes through the list

from the beginning to the end then from the end to the

beginning. The algorithm stops when a pass does no swaps.

The complexity of the algorithm is O(n^2) for arbitrary data,

but it approaches O(n) if the dataset is nearly in order at the

beginning. Enhanced shell sort algorithm provides a

powerful solution to decrease the number of comparisons as

well as number of swaps to a minimum level in shortest

possible time, thus decreasing the CPU execution time as

well as saving the system memory. Enhanced shell sort

algorithm offers least number of swaps on any size of data.

The efficiency and working of this algorithm improves as

the size of data grows.

IV. PERFORMANCE ANALYSIS

 In order to compare and analyze the performance of

the various Sorting algorithms above, we use a desktop

computer (Intel Dual Core Processor @ 2.4GHz, 2GB

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 162 - 166

__

166

IJRITCC | February 2016, Available @ http://www.ijritcc.org

RAM, Windows 7 operating system) to do a serial

experiments.

 Under VS2008, using C language, the programs test

the performances of various algorithms from input scale

size by utilizing random function call and time function

call [1]. The times taken by the CPU at execution for

different inputs are shown in the table.

 Results shows that for all small datasets the

performance of all the techniques is almost same, but for

the large datasets Quicksort is the most preferable

algorithm followed by Shell sort and Merge sort

algorithms.

TABLE I.

Sort Algorithms Time Cost Under Negative Input Sequence

Data

size

Bub

ble

Insert

ion

Select

ion
Quick

Mer

ge
Shell

1K 0.01 0.002 0.003 0.0003 0.02 0.0006

50K 12.7 2.824 4.064 0.0095 1.17 0.0004

70K 26.1 5.746 8.444 0.0136 1.64 0.0005

99K 0.82 11.01 15.71 0.0193 2.31 0.0683

V. CONCLUSION

 Every sorting algorithm has some advantages and

disadvantages. In the above analysis we had tried to show

the strengths and weakness of popular and most commonly

used sorting algorithms on the basis of their order, stability,

memory usage, data type and computational complexity. To

determine a good sorting algorithm, speed is the topmost

priority but other factors like additional space requirements,

handling various data types, length and complexity of code,

worst-case behavior, caching, stability, and behavior on

already-sorted or nearly-sorted data, consistency of

performance cannot be ignored. In this paper, we got into

sorting problem and investigated different solutions for

comparison based sorting algorithms. From the discussion it

can be deduced that every sorting algorithm can undergo a

fine tuning with the intelligence aspects that are discussed so

as to gain significant reduction in complexity values. We

have also showed that the choice of sorting algorithm is not

a straight forward topic, as a number of issues and factors

must be considered as per the dataset.

REFERENCES

[1] D.T.V Dharmajee Rao , B.Ramesh ,“Experimental Based

Selection of Best Sorting Algorithm”, International Journal of

Modern Engineering Research (IJMER) ,Vol.2, Issue.4, July-

Aug 2012.

[2] https://en.wikipedia.org/wiki/Sorting_algorithm

[3] Pankaj Sareen ,”Comparison of Sorting Algorithms (On the

Basis of Average Case)”, International Journal of Advanced

Research in Computer Science and Software Engineering

(IJARCSSE), Volume 3, Issue 3, March 2013.

[4] http://www.cprogramming.com/tutorial/

[5] Sonal Beniwal , Deepti Grover, “Comparison Of Various

Sorting Algorithms: A review,” International Journal of

Emerging Research in Management &Technology ,Volume-

2, Issue-5, May 2013.

[6] P. Dhivakar, G. Jayaprakash ,“Dual Sorting Algorithm Based

on Quick Sort ,“ International Journal of Computer Science

and Mobile Applications(IJCSMA), Vol.1 Issue. 6,

December- 2013.

[7] http://geeksquiz.com/bubble-sort/

[8] V. Mansotra, Kr. Sourabh, “Implementing Bubble Sort Using

a New Approach,” Proceedings of the 5th National

Conference; INDIACom-2011, March 10 – 11.

[9] Jariya Phongsai, Prof. Lawrence Muller, “Research Paper on

Sorting Algorithms”,

http://www.eportfolio.lagcc.cuny.edu/,October 26, 2009.

[10] Basit Shahzad,Muhammad Tanvir Afzal, “Enhanced Shell

Sorting Algorithm”, International Journal of Computer,

Electrical, Automation, Control and Information Engineering

Vol:1, No:3, 2007.

[11] Ashutosh Bharadwaj, Shailendra Mishra, “Comparison of

Sorting Algorithms based on Input Sequences”, International

Journal of Computer Applications (0975 – 8887), Volume 78

– No.14, September 2013.

[12] Tarundeep Singh Sodhi ,Surmeet Kaur , Snehdeep Kaur,

“Enhanced Insertion Sort Algorithm”,International Journal of

Computer Applications (0975 – 8887),Volume 64– No.21,

February 2013.

https://en.wikipedia.org/wiki/Sorting_algorithm
http://geeksquiz.com/bubble-sort/
http://geeksquiz.com/bubble-sort/
http://geeksquiz.com/bubble-sort/

