
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 130 - 133

__

130

IJRITCC | February 2016, Available @ http://www.ijritcc.org

Optimizing Test Cases for Object-Oriented Software

ChaitraM, Prakruthi M.K, Sarala N.R
Dept. of CSE,

SJB Institute of Technology,

Bangalore

e-mail: chaitram@sjbit.edu.in, prakruthimk@sjbit.edu.in , saralanr@sjbit.edu.in

Abstract - Testing object-oriented software is a challenging task. The inherent complexity in testing Object-oriented software is due to issues

like inheritance and polymorphism. The behavior analysis and testing of object oriented software is significantly complicated because the state

of the objects may cause faults that cannot be easily revealed with traditional testing techniques. This article proposes an improved technique for

generating optimal number of test cases using mathematical techniques. The technique uses Colored Petri Nets (CPN), which is an extended

version of Petri Nets. CPN‘s are usually used for system modeling and simulation. The proposed method explores the problem to generate test

cases that covers all instances of objects from different classes in the same hierarchy. It shows the effectiveness of technique by translating a

specification represented by UML (unified modeling language) state chart into a CPN. The main solution of our approach will be implemented

using CPN-tools.

Keywords—Colored Petri Nets (CPN), Object Oriented Software, Test cases, Software testing, UML

__*****___

I. INTRODUCTION

Software testing is done to guarantee the quality

and the reliability of the software. The cost for correcting an

error after software release is four times more than doing an

error found at testing phase, and even 50 times more than at

design phase [1, 2]. Object-oriented (OO) approach is used

to develop software efficiently. It enable us to reduce or

eliminate some typical problems of procedural software. At

the same time it may introduce new problems that can result

in classes of faults hardly addressable with traditional

testing techniques [3, 4]. The state dependent faults tend to

occur more frequently in OO software than in procedural

software. Almost all objects have an associated state, and

the behavior of member function invoked on an object

typically depends on the object's state. Such faults can be

very difficult to reveal because they cause failures only

when the objects are exercised in particular states [5].

The most important issues in the area of class

testing is test case generation, which generates a set of test

data from class specifications to ensure proper working of

Class implementations. Many object-oriented methods

recommend using a finite state machine to describe an

object‘s behavior. But most of them are based on Extended

Finite State Machine (EFSM) models [6]. These models are

used as a program verification technique. It produces an

event by observing a carefully chosen path in the EFSM to

confirm the correctness of the traversed transitions in the

path [7, 8]. A method for generating test cases that detects

the given faults is proposed in [9].

The main propose is to use an improved technique

for optimizing and minimizing the number of test cases by

Colored Petri Nets (CPN). In order to overcome state

explosion problem, pick the UML state chart rather than

state transition diagram (STD) [10]. The introduced rules

have special tokens named Object Token (OT) that covers

all objects instead of simple symbolic tokens.

II. CPN AND OBJECT ORIENTED CONCEPTS

 Petri-Nets, is one of the formal techniques that has

the ability to model concurrency of systems and the ability

to analyze concurrent behavior. The ordinary Petri nets are

highly dependent on the system and lack the modularity and

flexibility. So, in order to solve the complexity, Petri nets

are combined with Object-Oriented methods to set up the

Colored Petri Nets. In Colored Petri Nets (CPN), proposed

by Jansen, which is an extended version of Petri net the

tokens have values which are typed with ―color‖ and the

computation expressions on ―colors‖ are associated with

transitions. The attributes of tokens are defined with

―colors‖ as the types of the attribute value. The fundamental

ideas of CPN have token types, and each token type has

some data value associated with it [11]. Few researchers

have challenged to apply Petri Net and its family to

analyzing and testing concurrent software systems by using

some techniques for analyzing Petri-net. However if we

apply these techniques to objected-oriented software as they

are, petri-nets expressing objects are produced whenever

creating them during its being executed. It causes explosion

of increasing the number of nets. That is to say, as object-

oriented software is being executed, the structure of the

corresponding nets should be dynamically changed. The

existing Petri-net analysis techniques is impossible to be

applied to object-oriented software by this reason.

To solve this problem, a new technique of object-oriented

software analysis and testing by using Colored Petri

Nets(CPN)[5], which is an extended version of Perti Net is

proposed.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 130 - 133

__

131

IJRITCC | February 2016, Available @ http://www.ijritcc.org

Fig 1: Example of a CPN

Figure 1 illustrates its simple example. It contains

―places‖, ―transitions‖ and ―arcs‖, which are represented

with circles, rectangles and arrows respectively. Marking,

which is a map from places to tokens, expresses the state of

the system that is specified with a Petri net. The movement

of tokens denotes state transitions. More concretely, if each

of the input places to a transition has at least one token, the

transition ―fires‖ and the tokens move to the output places.

This movement corresponds to a state transition of the

system.

In CPN, we can attach some attributes so called

―colors‖ to places. The attributes of tokens are defined with

―colors‖ as the types of the attribute values. In the figure, the

place ―Call‖ has exactly one token and the token has the

value―1‖ whose ―color‖ is ―Thread‖ (int:integer). The

readers can find the colors associated with a place. They

denote which colors of tokens can be accepted at the place.

For example, the place ―Call‖ can only receive the tokens of

the color ―Thread‖. Expressions can be attached to arcs

which connects transitions with places. The expressions

restrict the tokens that can flow on the arcs. In this figure,

the expression ―1‗i‖ associated with the arc between place

―Call‖ and transition ―Operation‖ represents that exactly one

token can flow on it. The attribute value of the flowing

token is assigned to the variable ―th‖, whose color is

―Thread‖, occurring in the expression. We can describe a

―Guard‖ on a transition to control firing the transition. In the

figure, ―Guard‖ is represented ―[i = 1]‖ which means that if

the value of a token from ―Argument‖ place is 1, then the

guard condition is satisfied.

A transition in a CPN is fireble if the following conditions

hold.

1. Each of the places input to the transition has at least one

token.

2. The expressions attached to the input arcs to the transition

hold for the tokens in the input places.

3. The guard attached to the transition hold.

1.Relationship between OO concepts and CPNs

Object-oriented paradigms have the properties like

class abstraction, inheritance, polymorphism and message

passing. A class is a set of objects having common

properties, i.e. attributes (instance variables) and methods

(services).Classes also have relationships such as

aggregation and generalization. A specification of OO

software is constructed by using some kinds of object-

oriented analysis and design method. UML is used to write

specification. UML state diagram [12] models the behavior

of a single object. It also specifies the possible abstract

states of the instances of a class.

In OO software, objects in a software are

concurrently executed, i.e the states of the object are being

concurrently and independently changed. The behavior

analysis of OO software becomes complicated due to the

dynamic changes of state transition diagrams, and hence the

existing techniques for analyzing state transition diagrams

cannot be applied. Using CPN technique, problems can be

solved by representing an object with a colored token and

the behavior of all the objects belonging to the same class

can be expressed by a single net. In this technique, the

attribute value of a token is used for identifying the

corresponding object. This is the major reason why we

haven‘t used usual Petri net but Colored Petri net.

Optimization is used to optimize an objective function

subject to constraints. The constraints are the demands

necessary to satisfy a criterion. The objective function is to

minimize the number of test cases for object-oriented

software.

2.Analysis and Testing

First of all, we should clarify the relationship between our

approach, i.e. translating OO software to CPN, and testing.

We can classify three levels of testing based on our

technique as shown in Figure 2i.erelation between our

approach and testing.

1) Testing in Specification Level (prototyping) :

Simulation

We assume that a specification of OO software is

constructed by using some kinds of Object-oriented

Analysis and Design Method. As we mentioned, we use

UML to write a specification. Applying our approach to

object diagrams and state transition diagrams, we can get a

CPN that simulate the behavior of the specified system. By

executing the CPN, we can use our approach as one of

prototyping. We have an analysis tool called Design/CPN

and we can analyze various kind of property of the CPN

such as deadlock-detection and reach ability of specific

states.

Furthermore we developed the efficient algorithm

of generating test cases from a CPN. Thus we can

systematically test a UML specification by using the

generated test cases with large coverage.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 130 - 133

__

132

IJRITCC | February 2016, Available @ http://www.ijritcc.org

2) Testing in Program Level : Debugging

Programs written in an object-oriented language

such as Java can be translated into a CPN. The same

analyses as UML specifications can be done by using

Design/ CPN and the test-case generation is also available to

test the OO programs.

 3) Validating OO programs satisfy their OO

specifications

We apply our test-case generation technique to a

CPN into which a UML specification is translated so that we

could have a set of test cases. We execute OO programs by

using the generated test cases and we systematically check if

the behavior of the programs satisfies the test cases.

To achieve three levels of testing, our translation technique

should be independent of programming languages and

analysis/design methods. Thus we focus on the common

concepts of OO and on how to translate them to a CPN. In

the successive sections, we use a UML description as an

example to explain how the OO concepts can be translated

into a CPN. The technique shown in this example can be

essentially applicable to the transition of even Java program

swith out any extension.

(1) Testing in Spec. Level(prototyping) Simulation:

(2) Testing in Prog. Level: Debugging

(3) Validating OO programs satisfy their OO

specifications

Fig 2: Relation between our approach and testing

III. TEST DESIGN

Test design tells how test specifications and test

cases are created – inherently determines the success of

testing. However, test design techniques are not always

properly applied, leading to poor testing. Test design

describes the phase in a process, where test specifications

are written, and a resulting test procedure or test cases are

created.

A test case is the result of applying a test (design)

technique to a specific software system. The test technique

delimits the type of test cases that can be created, according

to a concept, approach or selection. The test case includes

all needed information which is executable similar to the test

procedure. It should be repeatable by anyone (yielding the

same result) and measurable such that it should be possible

to determine if the test passed or failed.

The test case template based on IEEE standard 829[13,

14] consist of:

 Test Case Specification Identifier;

 Test Items; (references for traceability)

 Input specifications & Output specifications

 Environmental needs;

 Special procedural requirements;

 Inter-case dependencies.

IV. CONCLUSION

1. The goal is to establish a test technique for the

behavior of OO software and to make the technique

independent of specific languages, specification

and design methods using CPN. The software

application is translated into a CPN and is

analyzed, tested and simulated as a prototype.

2. The main objective is to use an improved

technique for optimizing number of test cases by

Colored Petri Nets (CPN).

3. Future work will focus on the improvement of

generalization relationship between classes by

using mathematical techniques. The relationship

between classes includes association, aggregation

and generalization.

4. Design, develop and experiment a improved

technique/method that can be used to cover

association and aggregation relationship based on

the extended version of Petri Nets.

5. For analyzing the behavior and optimizing the test

we should generate State Space Graph(SSG) from

the CPN. The SSG expresses traces of the marking

of a CPN, i.e. tokens on places. SSG can be

automatically generated and analyzed by using

tools such as CPN-Tools.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 2 130 - 133

__

133

IJRITCC | February 2016, Available @ http://www.ijritcc.org

REFERENCES

[1] R. S. Pressman, ‖Software Engineering – A

Practitioner’s Approach Fifth Edition”, McGraw-Hill,

2001

[2] H. Zhu, P. Hall, and 1. May, "Software Unit Test

Coverage and Adequacy", ACM Computing Surveys,

April, 1997,pp.366-427.

[3] S. Barbey and A. Strohmeier, "The Problematic of

Testing Object-Oriented Software", In Proceedings of the

Second Conference on Software Quality Management,

Edinburgh (Scotland, UK), vo1.2, July, 1994, pp. 411-

426.

[4] A. Orso and S. Silva, "Open Issues and Research

Directions in Object-Oriented Testing". In Proceedings

of the 4th International Conference on "Achieving

Quality in Software: Software Quality in the

Communication Society" (AQUIS'98), Venice, April,

1998.

[5] V. Martena, A. Orso and M. Pezze, "Interclass Testing of

Object-Oriented Software", In Proceedings of the 8th

IEEE international Conference on Engineering of

Complex Computer Systems (ICECCS'02), 2002.

[6] J. 1. Li and W. E. Wong, "Automatic Test Generation

from Communicating Extended Finite State Machine

(CEFSM)-Based Models", In Proceedings of the Fifth

IEEE International Symposium on Object-Oriented

Real¬Time Distributed Computing (ISORC.02),2002.

[7] R. M. Hierons, T. H. Kim and H. Ural, "Expanding an

Extended Finite State Machine to Aid Testability", In

Proceedings of the 26th Annual International Computer

Software and Applications Conference (COMPSACp02),

2002, pp. 1-6.

[8] A. Y. Duale and M. Uyar, "A Method Enabling Feasible

Conformance Test Sequence Generation for EFSM

Models", IEEE Transactions on Computers, Vol.53,

No.5, 2004,pp.614-627

[9] H. F. Gong and J. Li, "Generating Test Cases of Object-

Oriented Software Based on EDPN and Its Mutant ",

Proceedings - IEEE The 9th International Conference for

Young Computer Scientists ,Hunan ,Nov,2008, ICYCS,

pp.1112-1119.

[10] H. Watanabe, H. Tokuoka, W. Wu, M. Saeki, "A

Technique for Analyzing and Testing Object-Oriented

Software Using Colored Petri Nets," apsec, pp.182, Fifth

Asia-Pacific Software Engineering Conference

(APSEC'98), 1998

[11] EsmaeilMirzaeian, S. G Mojaveri, H. Motameni, A.

farahi, ―An optimized approach to generate object

oriented software test case by Colored Petri Net‖, IEEE

2nd International Conference on Software Technology

and Engineering(ICSTE) ,2010.

[12] A.A.Bokhari and W.F.S.Poehlman, "Formalization of

UML State-Charts: Approaches for Handling Composite

States", Department of Computing & Software,

McMaster University, Technical Report CAS 2005-07-

SP (October, 2005), 10 pp.

[13] IEEE Std. for Software Test Documentation 829-1998 &

2008

[14] Beizer, B. Software Testing Techniques, Int. Thomson

Computer Press, 2nd ed., Boston, 1990

http://www.ijritcc.org/

