
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 238 - 249

__

238

IJRITCC | January 2016, Available @ http://www.ijritcc.org

 A Comprehensive Analysis of Literature A Comprehensive Analysis of

Literature Reported Software Engineering Advancements Using AHP

Jogannagari Malla Reddy
Research Scholar, Dept. of CSE

 Lingaya’s University

Faridabad, Haryana State, India

Email: jmrsdpt06@gmail.com

S.V.A.V. Prasad
Prof & Dean (R & D)

Lingaya’s University

Faridabad, Haryana State, India

Email: .prasad.svav@gmail.com

Samabasiva Rao Baragada
Head, Dept. of Computer Science

 Government Degree College

Khairatabad, Hyderabad, India

 Email: mrsambasivarao@yahoo.com

Abstract- The paper provides a various potential improvements in software engineering using analytic hierarchical processing (AHP). The

presented work could support in assessing the selection of process, project, methods and tools depending on various situations encounter during

software engineering. AHP belongs to Multi Criteria Decision making methods which seems to be a continuous research to solve critical and

complex scientific and software engineering applications. This paper discusses existing key research contributions and their advancements in the

areas of both software engineering and in combination of AHP with software engineering.

Keywords- software engineering,AHP, metrics

__*****___

I. HISTORY OF SOFTWARE

 Software is viewed as a set of instructions which are stored

in memory, produce required output when executed by the

processor. Ada Lovelace is identified as the first software

programmer during 19th century wrote a piece of software

(algorithm) for the planned Analytical Engine. Her efforts have

been supported by the theory of computation provided by Alan

Turing [1]. This combination of computer science and software

engineering gave rise to revolutionary developments in both the

fields of software engineering and computer science. Computer

science deals the problems theoretically and software works

with problems in a practical manner. Prior to 1940's, since there

is no stored program concept, electronic computing devices

during this time were hardwired.

Claude Shannon has provided an outline of converting

binary code into a software program. The process is a highly

complicated, resulting in the computer programmers to work

with a tedious mechanisms during loading the programs. After

the developments of software slowly raised, software was sold

to multiple customers as a free pack along with the hardware.

This is because of no sophisticated provision of pre-installation

of software with the hardware. This process gained popularity

of software in commercial market. Based on the positive

response, original equipment manufacturers like IBM etc,

started selling software separately which began the age of

commercial software. The paradigm shift also resulted in piracy

[2]. Unix was an early operating system conceived by Ken

Thompson which became widely popular and very influential,

and still exists today. Mac OS is one of the most popular

variant of Unix and Linux is a direct enhancement of Unix.

BASIC is the early type-in program published in Dr Dobbs

Journal in the year 1975. Young entrepreneurs like Bill Gates,

Steve Jobs etc, capitalized their innovative ideas started

capturing the market in a newer direction.

II. SOFTWARE ENGINEERING INCEPTION AND ITS SCOPE

The software engineering process has been started during

1940s and is still continuing in variety of newer directions.

Presently software engineering is a profession concerned with

the creation of a maximized quality of software. The term

Quality is coupled with several parameters like stability,

maintainability, testability, readability, size, cost, security,

speed, usability. Measurable parameters like the total number

of defects identified, user satisfaction and elegance are some

other features which also impacts the quality of software

product. Software engineering is also referred as the art of

writing software is always a controversial problem among

various experts which covering software design principles, so-

called "best practices" for writing code. The management of

team size, work culture, product in-time delivery procedure, out

sourcing etc are some of the key practices included in the

software design principles.

Software engineering became one of the bonafide

profession by the early 1980s to stand beside computer science

and traditional engineering [3]. During 1940's to 1960's men

are recruited to work for conventional engineering and women

are been delegated of writing software along with men. Grace

Hopper, Jamie Fenton are the first decade women software

engineers. The cost of software with respect to the hardware

has been hiked substantially for the last 50 years. Every year

almost one or two existing computers are becoming obsolete

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 238 - 249

__

239

IJRITCC | January 2016, Available @ http://www.ijritcc.org

and thus seed a provision to develop software for the new

machines. The name software engineering is coined during the

year 1965 by ACM president Anthony Oettinger [4][5] in his

letter to address a conference at MIT.

The four key directions of Software engineering

development include, aspects, agile, experimental and number

of product lines. Aspects deal with the quality parameters to

identify the bugs and removing them. Agile software

engineering guidelines helps in development of software

products which are comprised of drastic change in

requirements. Another branch of software engineering is the

experimental software engineering focused in conceptualization

of theories, laws based on the experiments. Software product

size is targeted in developing families of software systems.

Some of the early key contributors of software engineering

are, Charles Bachman (Databases), Laszlo Belady (Operating

systems), Fred Brooks (OS/360), Peter Chen (ER modeling),

Edsger Dijkstra (frame work for proper programming), David

Parnas (Information Hiding) and Michael A Jackson (JSP

design).

III. KEY RESEARCH CONTRIBUTIONS IN SOFTWARE

ENGINEERING

Software metrics are derived and estimated with the intent

of evaluating certain characteristics of the software developed.

Li and Cheung [6] have developed a Fortran static source code

analyzer, (FORTRANAL), was developed to analyze 31

metrics available in the literature during the year 1987. They

have also presented the analysis of a new hybrid metric

presented in this work. A database comprised of 255 student

assignments were taken as the sample data. The work has

presented the inter-comparison of metrics and found the

confirmation of internal consistency of some of these metrics

which belong to the same class. The proposed hybrid metric

has been developed which follows context sensitivity to the

structural attributes obtained from flow graph to overcome the

incompleteness limitation of existing metrics. The work

revealed that many volume metrics have similar performance

while some control metrics correlate well with typical volume

metrics in the test samples which is unexpected by the authors.

The proposed flexible class of hybrid metric has the ability to

incorporate both volume and control attributes in assessing

software complexity.

A technical report released by the William A Florac [7] of

Software Engineering Institute (SEI) in the year 1992 has been

taken as the prime framework for counting problems and

defects in software products. The report has been prepared by

huge number of software experts hailed from various

prestigious organisations from all over the world. Authors

proposed a framework that integrates and gives structure to the

identification, reporting, and measurement of software bugs

and defects found by the primary problem and defect finding

activities. The framework identifies and organizes measurable

parameters common to these activities. Authors show how to

use the attributes with checklists and presented supporting

forms for easier understanding of nomenclature.

The software Engineering Institute has developed a matured

framework into Capability Maturity Model for software during

the year 1997. A team of experts via. Paulk, Curtis, Chrissis,

and Weber presented the SW-CMM [8] comprised of

recommended practices in a number of key process areas that

have been identified to enhance the software process quality.

The CMM guides software organizations in gaining the control

of their processes for developing and maintaining software.

CMM also drives to toward a culture of software engineering

and management excellence. Maturity level can be represented

a plateau toward achieving a matured software process. The

five levels of software maturity process are initial, repeatable,

defined, managed and optimized. Level 1 being the capability

is as a characteristic of the individual not of the organization.

Establishing of appropriate management processes and policies

reach level 2 for an organization. Level 3 is based on a

common, organization-wide understanding of the activities,

roles and responsibilities in a well defined software process. In

level 4 the software process is measured and operates within

pre-established quantitative limits. Level 5 eradicates the bugs

in the software products and sometimes referred as the rework.

Software quality conforms with the degree of attainment of

certain attributes to the developing software product. The

nature of attributes and their combination in terms of

assessment should be clearly defined. A methodology has been

prepared by IEEE-SA standards board for establishing quality

parameters and elicitation, implementation, analyzing, and

validating the process and product software quality metrics is

defined [9]. The methodology covers entire software life cycle.

Ron Burback [10] in the year 1998 presented a thesis to

Stanford University, defining a novel software engineering

methodology aka the WaterSluice methodology. The proposed

WaterSluice borrowed both properties like the the iterative

nature of the cyclical methodology and steady progressive

nature of the sequential methodology. The tasks are prioritized

in this methodology giving more advantageous by completing

the non-conflicting tasks bit earlier. Several theorems are

presented in the thesis to support the methodology for its

strengths. The limitations are also verified by comparing this

methodology with sequential and cyclical methodologies like

paradigms (Noema), architecture (DADL), component

composition (CHAIMS), and environments (DCE) available in

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 238 - 249

__

240

IJRITCC | January 2016, Available @ http://www.ijritcc.org

the literature. However, the methodology presented revised and

enhanced software engineering practices..

Fenton and Neil [11] have carried a critical literature review

of numerous software metrics and statistical models during

their time. This review helps several software organizations in

predicting the number of defects (faults) in software systems,

prior to their deployment. Size and complexity metrics are the

major parameters to estimate the bugs in the software product.

Their review identified that the many empirical

experimentations available in the literature are state-of-the-art.

However, authors found that there are a number of serious

theoretical and practical problems in many studies. This is

because of the lack of proper correlation between defects and

failures. Many prediction models tend to model only part of the

underlying problem and ignore the prime components. Authors

analyzed the Goldilock's conjecture to illustrate an optimum

module size inherent in current defect prediction approaches,

and found that conjecture lacks support and that some models

are misleading. Finally the work recommended holistic models

for software defect prediction, using Bayesian belief networks,

as alternative approaches to the single-issue models available at

the time. The theory of software decomposition is to be further

studied and refined in order to test hypotheses about defect

introduction and supports construction of a better science of

software engineering.

Parallel to the survey conducted in the work [11], Kuilboer

and Ashrafi [12] have attempted a survey in New England

region to find out the impacts of using SPI techniques on

product quality and productivity based on 67 collected

responses. Authors have found an anecdotal evidence

comprised of both supporting and opposing the benefits of SPI

methodologies. The survey reveals that using SPI doesn't

necessarily leads to quality software product at reduced cost or

delivery time. The use of SPI methodologies just creates a

perception of quality leading to end user satisfaction. The

sample space is small and confined with a particular

geographical extent cannot be drawn for generalization.

However, such a kind of surveys are always needed to enhance

the standards over the time.

Maria et al [13] have pursued a research to reevaluate the

one of the first widely accepted software quality model

presented by Boehm et al. [14]. The established hierarchy given

by Boehm et al. [14] is organized into a framework of user

priorities in the re-evaluatoin work of Maria et al. [13]. The

main aim of [13] is to identify the important factors in software

quality for different users. Authors have conducted a survey of

software users comprised of technical and non-technical

personnel working in corporate companies. The study identifies

the mental or cognitive models of software quality held various

professional groups.

Quality attributes can't be generic and can be seen as

assumptions, constraints or goals of end users. Brito, Anna, and

Araujo [15] presented a process to identify and specify quality

attributes and to assemble them with functional requirements.

Authors found that the crosscutting nature or ignoring of some

of the quality attributes like reusability and traceability

negatively influences with the overall quality. Authors

proposed a template to specify quality attributes at the

requirements stage in order to minimize the influence. The

work presented use cases and sequence diagrams to specify the

integration of those attributes with functional requirements to

support the inferences.

Moody [16] presented the empirical evaluation of a set of

proposed metrics for evaluating the quality of data models. The

work comprised of a total of twenty nine candidate metrics

which were originally proposed, measured each metric with a

different aspect of quality of a data model. The research was

leveraged to evaluate the usefulness of the metrics in 5

application development projects going on in two private sector

companies. Three metrics survived the empirical validation

process out of originally proposed ones, and the work

discovered two new metrics. In total a set of 5 metrics are felt

manageable by the participants in real-time use. Subjective

ratings of quality and qualitative descriptions of quality issues

seem to be much more useful than the metrics which is an

unexpected finding of the work. The results of this study might

indicate that it is not quite so useful in practice, but still the idea

of using metrics to quantify the quality of data models perceive

good in theory leaving a biased conclusion.

Souheil and Horgon [17] carried research work by

identifying the metrics and measurement approaches that can

be used in very large information systems which requires high

degree of parallelism involving large and complex processing

elements. The work investigated the factors which are relevant

to the parallel class following the standard way used for

sequential and parallel/distributed architectures. The approach

presented in the work allows the specification of benchmarks

against which achieved quality levels can be evaluated, and

guides for building quality into software for parallel systems.

With the use of Relationship chart and polarity profiles the

feasibility of quality goals is controlled. Until unless the

changes are not defined the system seems to be static but still,

the approach is not static; if project stakeholder changes occur,

or project requirements change, the Relationship Charts and

Polarity Profiles can be updated in order to reflect these

changes. Authors developed a set of formal guidelines for

identifying the Essential Views, despite their importance to the

proposed approach.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 238 - 249

__

241

IJRITCC | January 2016, Available @ http://www.ijritcc.org

The process of improving the internal structure without

changing its external structure in an object oriented system is

said to be refactoring. Both restructuring and refactoring have

the main intent of improving the quality interms of

extensibility, modularity, reusability, complexity,

maintainability, and efficiency. Mens and Tourwe [18]

presented a paper which provides an extensive overview of

existing research in the field of software refactoring in the year

2004. The work is compared and discussed with respect to a

number of different criteria like, supporting refactoring

activities, techniques and formalisms which are used to support

these activities, software artifacts and their kinds that are being

refactored, key issues which are considered while building

refactoring tool support, and the impact of refactoring on the

software process. A Document Class with three subclasses is

taken as a running example to discuss and illustrate the

proposed concepts. Authors indicated important open issues

that remain to be solved in each of the 5 criteria. An urgent

need for preparing formalisms, processes, methods and tools

which address refactoring in a more consistent, generic,

scalable and flexible way is identified by the authors. Research

in the areas of software restructuring and refactoring continues

to be very active, and is also to unleash and address the

limitations of these tools.

Coupling and cohesion in an object-oriented system has a

great scope in preserving an object-oriented system external

quality. Aine Mitchell [19] presented a doctoral thesis titled An

empirical study of run-time coupling and Cohesion software

metrics to National University of Ireland Maynooth during the

year 2005. The work is the largest empirical study that has been

performed on the run-time analysis of Java programs. During

the study she found that various proposed static coupling and

cohesion metrics using empirical investigations available in the

literature never considered the run-time properties of a program

into account. Static metrics mostly fail to quantify all the

underlying dimensions of coupling and cohesion, since the

behavior of a program can be represented as a function of its

operational environment and code complexity. Based on these

influences, software designer need to acquire more

comprehensive understanding of the quality of key components

of a developing software system. Author believe that any

measurement of such attributes should include changes that

take place during run-time. Because of this reason, author using

empirical evaluation of a selection of run-time measures for

these properties has addressed the utility of run-time coupling

and cohesion complexity. A comprehensive set of Java

benchmark programs and some real-world programs are chosen

for the study. Two case studies are included in the work. The

first case study investigates the impact of instruction coverage

on the relationship between static and run-time coupling

metrics. The second case study establishes a new run-time

coupling metric that can be used to study object behaviour and

investigates the ability of measures of run-time cohesion to

predict such behavioral nature. Author finally investigated the

nature of run-time coupling metrics for being good predictors

of software fault-proneness in comparison to standard coverage

measures.

As mentioned in the work of [18], refactoring is to make

software easier to understand and to improve software design.

Still potential validations claiming the statement is not

available in the literature. Bart Du Bois [20] presented a

dissertation with an extensive contributions to such validation

experiments. The work initially presented a validation of two

existing reengineering patterns which are used in compressing

the program. The work later discusses the results of formal

analysis of the conditions in which known refactorings could

improve coupling and cohesion as criteria for a good attempted

object-oriented design. The results of the experiments confirm

that the claimed benefits based on the selection of quality

characteristics and improvement of internal design. The work

finally opined that the integration of produced results in today’s

refactoring tools help a lot to the software maintainers in

assessing which and where refactorings could be applied and

ultimately reducing the human effort of transforming towards

an optimal solution.

Girish, Jiang, and Clain [21] empirically studied the impact

of the CMM on selected critical factors like software quality

and project performance. Authors have concluded that a

significant impact has been found on software quality and

project performance during implementation. Implementation

strategies like prototyping and developer commitment drives

both software quality and project performance. Prior training to

the developer effects only on software quality and the

parameter simplicity effects on over project performance.

Radharaman and Juang [22] using defect density data have

analyzed the quality of an ongoing software maintenance

project before and after release changes. Their aim is to obtain

the significance of certain factors like expertise of developer,

change complexity and its proportional size with respect to the

defect density of a particular change. Design and coding are the

two major phases are studied in their work. Authors have

developed regression equations to evaluate the impact of

factors with respect to change complexity. Expertise of

developer and change of requirements found to be significant

with the project cost and schedule during design phase.

However, no factor is found significant in coding phase. This

could be because of high variability in software development.

The work provides a conventional project manager to monitor

the process performance and respond accordingly to any

abnormalities.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 238 - 249

__

242

IJRITCC | January 2016, Available @ http://www.ijritcc.org

Software development productivity management is a key

component in software organizations. New strategies are

always been investigated to cater the business demands for

shorter time-to-market preserving high product quality force.

Productivity modeling should focus on crucial and limited

factors which has the most significant impact on productivity.

Adam Trendowicz, Jürgen Münch [23] presented a

comprehensive overview of productivity factors considered by

software practitioners in recent times. The study has been

carried by reviewing of 126 publications as well as

international experiences of the Fraunhofer Institute, comprised

of the most recent 13 industrial projects, 4 workshops, and 8

surveys on software productivity. The work opposes the

traditional belief that software reuse is the key to productivity

improvements. This situation can best be explained when a

plethora of factors is considered in order to gain the expected

benefits from reuse. A loss in productivity can be found if

adhoc reuse is applied without any reasonable cost-benefit

analysis and proper investments to create a reuse environment.

The aggregated results of the work concluded that the

productivity of software development processes still has a

profound impact on the capabilities of software developers as

well as on the tools and methods they use.

Forselius and Kakola [24] found that there is relatively little

research on software Project Estimation and Measurement

Systems (PEMS). The major limitation in the Commercial

PEMS is that they vary in functionality and effectiveness. The

users of these commercial PEMS users do not know what to

expect from PEMS and how to evaluate them. Authors have

presented a paper which creates an information system design

product theory to overcome the limitations of PEMS by

prescribing the meta-requirements, the meta-design, and

applicable theories for all products within the class. Project

estimation and measurement literature are been used to derive

meta-requirements. The work also use past empirical

experimental experiences carried by Finnish Software

Measurement Association during last 10 years to derive the

meta-requirements.

Understanding the attacker mindset is one the key

requirement to preserve security. The identification of

vulnerable code areas is always a challenging task and such a

task should be thoroughly performed by the Security experts.

Shin et. al [25] have investigated to find out the importance of

software metrics obtained from source code and development

history could be used as discriminative and predictive of

vulnerable code locations. Authors categorized the

investigating metrics into three categories: complexity, code

churn, and developer activity metrics. Two empirical case

studies were pursued using Mozilla Firefox web browser and

the Red Hat Enterprise Linux kernel. Experimental results

indicate that out of 28, 24 metrics are found to discriminative

of vulnerabilities for both projects. The proposed models based

on the three metrics classes have predicted over 80% known

vulnerable files with false alarms less than 25% in both the

projects. The work also proceeded by by considering a arbitrary

selection of files for inspection and testing, these models found

a reduced prediction but still with an accepted value of 71%

with a false alarm rate of 28% in both the projects. The work

majorly could be used by security experts as a prediction to

prioritize security inspection and testing efforts.

The biggest challenge in software engineering is to deliver

a customer satisfied product within the time deadline. Complex

and large systems are now built within very short span of time

and such systems need a good maintenance and to be improved

according to the changing user requirements. Systems which

are built in a short span of time tend to deteriorate in terms of

quality. But the internal qualities (eg. Maintainability, etc.) are

equally important as the others, and none of them should be

ignored during the life-cycle of the software system. Short-term

goals like quality should not be compromised for at the expense

of long-term goals like maintainability. Istvan SiketIn [26] has

presented a thesis comprised of a thorough study of applying

software product metrics in software Maintenance to the

University of Szeged in the year 2010. The work principally

concerned with software maintenance, including testing and

identifying a software system’s bugs. The crucial part of the

software development is to deliver a bug free product with the

aid of testing and maintenance. Author have identified that

there is a correlation between the defects and the metrics of an

object-oriented system and the same is positively confirmed

with several earlier researchers [27, 28, 29]. with a systematic

and regular measurement and analysis of object-oriented

metrics, an efficient system comprised of proper maintenance

could be developed. This could lead to a best practice in

software development. Experimental conclusions obtained with

reference to the small and medium-sized system cannot be

validated with a complex system. Deriving and estimating the

metrics for a complex system is always a tedious and

challenging role. These are two major difficulties addressed by

the author. The proposed work has presented a solution for both

these problems. A novel technology called Columbus

Technology has been conceived to analyze and derive the

metrics from a large and complex system. The Columbus

framework has the ability to do automatically analyze and

extract information from an arbitrary software system without

no alterations in its source code. The validation of metrics has

been done on seven version of Mozilla and the detailed

hierarchical bug report is prepared. The work has extended the

metrics presented by Chidamber and Kemerer [30] and are

positively included in the proposed experimentation. This

enhancement helped in examining metric categories rather than

identification of metrics themselves. The work later constructed

metric-based quality models to support the software

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 238 - 249

__

243

IJRITCC | January 2016, Available @ http://www.ijritcc.org

development. A opinion survey over the software developers

has been carried to draw the practical aspect of metrics and

about the relationship between four metrics and software

comprehension & testing. This survey identified that a prior

proper training in using metrics is mandatory before the

practical use of metrics. The survey also supported in

improving the metrics-based quality models.

Raed Shatnawi and Wei Li [31] found that the evidence

available in the literature to support the belief software

refactoring improves quality factors such as understandability,

flexibility, reusability is not adequate and pursued an empirical

experiment with an aim to confirm such beliefs using a

hierarchal quality model. Authors observed the effect of

software refactoring on software quality and presented the

work in the form a heuristics for better understanding to

software programmers. The work presented the validation of

the proposed heuristics in an empirical setting on two open-

source systems. The work concluded that the majority of

refactoring heuristics do improve quality; still some heuristics

do not have a positive impact on all software quality factors.

Based on the impacts, the measures are classified into two

kinds i.e high and low impacted measures. These categories

drives in chosing the best measures that can be used to identify

refactoring candidates. The experimental findings are validated

on two open-source systems—Eclipse and Struts. For both

systems, authors found consistency between the heuristics and

the actual refactorings.

One of the major goal in performing software engineering

is the prediction of software module complexity (a qualitative

concept) using automatically generated software metrics

(quantitative measurements). Nick John Pizzi [32] attempted to

achieve the goal in a novel fashion by combining the problem

with the science of pattern classification. Here the pattern could

be a set of metrics for a software module, estimating the level

of complexity to which the module belongs. Author presented a

classification strategy to find the mapping between metrics and

complexity, stochastic metric selection, to find the subset of

software metrics which act as best predictors with respect to

module complexity. The work empirically evaluated the

publicly available medical imaging datasets with the proposed

methodology and concluded that the proposed work is effective

and strategic by comparing the prediction results against

several classification system benchmarks.

An empirical assessment of metrics to predict the quality

attributes is essential in order to deliver high software

reliability. This problem is worked out in a new fashion by

Ruchika Malhotra and Ankita Jain [33] by considering the task

as a machine learning problem which is a similar paradigm

presented in [32]. The work presented by Ruchika and Ankita

[33] proposes a new model to estimate fault proneness using

Object Oriented CK metrics and QMOOD metrics. Authors

applied one statistical method and six machine learning

methods to predict the proposed models. Datasets collected

from Open Source Softwares are been chosen for validating the

proposed models. Analysis of results is carried based on the

two parameters via. Receiver Operating Characteristics (ROC)

and Area Under the Curve (AUC). Based on the results it is

observed that the proposed model predicted is superior with

other models while using the random forest and bagging

methods. Finally authors strongly supported that quality models

have a significant impact with Object Oriented metrics and that

machine learning methods have a comparable superior

performance with statistical methods.

The extension of works presented in [32] and [33] has been

pursued by many researchers with the intent of brining out a

novel combination of using soft computing techniques with

software engineering process. One such work is presented by

Indu Sharma, ParveenBano [34] which proposes a fault

prediction model using reliability relevant software metrics and

fuzzy inference system. The work developed fuzzy profile of

software metrics which are assumed to be more relevant for

software fault prediction. The work predicts the density of

faults at each phase of software process with the support of

software metrics. This scenario is continued until the testing

phase to estimate the total number of faults in developing

product. Results of the proposed model are validated with the

datasets collected using PROMISE Software Engineering

Repository dataset and found that this proposed model will be

suitable choice for both project managers and software

programmers to optimally allocate resources and gain more

reliable software within the time and cost constraints.

IV. RESERCH CONTRIBUTIONS IN SOFTWARE ENGINEERING

USING AHP

 The approach of selecting project management tool unlike

other approaches is done in an adhoc manner. Such approach

seems to be a non-rigorous which leads to erroneous result.

Ahmad and Laplante [35] have introduced a rigorous model for

selecting a software project management tool using the

analytical hierarchy process (AHP). AHP is considered for its

uniqueness in flexible, systematic, and repeatable evaluation

procedure while selecting the appropriate software project

management tool by decision maker. A list of factors and their

significance scores has been provided by the commercial off-

the-shelf solutions (COTS). The proposed work references

these scores in opting factors as the selection criteria in ranking

the software project management tools. The work also

establishes a framework for cross comparison made across

projects, project managers, organizational groups, and

organizations.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 238 - 249

__

244

IJRITCC | January 2016, Available @ http://www.ijritcc.org

The selection of appropriate reliability metrics in software

engineering is very crucial and could never be ignored at any

compromise. Haifeng Li et al. [36] proposed a framework for

selecting software reliability metrics based on analytic

hierarchy process (AHP) and expert opinion. The method of

identifying appropriate criteria and their metrics is presented.

Based on the experts guidance each criteria is graded with

metrics qualitatively, and then analyzed synthetically to

compute the weights of metrics using AHP. Metrics of high

rank are analyzed critically. The proposed approach is further

evaluated for its sensitivity and consistency by comparing the

selection of criteria with other conventional methods, the

method presented in this paper can be used to choose

appropriate metrics correctly, stably and systemically. Finally,

authors concluded that the work produced results are

accordant with engineering experience, and using the metrics

recommended will enhance software reliability evaluation

more efficient and effective.

Reusability found to more beneficial in software

development compared to other evolutionary concepts which

reduces development time and cost, also improve quality, in

developing a large, complex software system. To support this

statement, the task of selection of potential software

components, assigning them with appropriate score should be

done during the process of requirements engineering process.

Chung L et al. [37] have presented a technique for identifying

requirements using a model which drives in evaluation of

software components for their reuse. The evaluation process is

comprised of verifying several models of software

components. The proposed model-driven evaluation technique

primarily intended to map the components of stakeholder with

its corresponding matching component model. The process is

also referred as component-aware requirements engineering

(CARE). The proposed technique could be used in variety of

search problems like keyword-based search, case-based

reasoning (CBR) and analytic hierarchy process (AHP). The

work has been experimented on a home appliance control

system (HACS) example.

Value-neutral process is to be focused in the present

software engineering practice. Several value-based

architectural evaluation techniques and cost benefit analysis

method (CBAM) are found in the literature and are widely

used to increase return on investment (ROI). The limitations of

the present available techniques are uncertainties from several

subjective errors and the heavyweight process (complex),

which involved in cumbersome steps and expert participation.

Chang-Ki Kim et al. [38] with the intent of supporting a multi-

criteria decision-making process, proposed a lightweight

value-based architecture evaluation technique, called

LiVASAE, using analytic hierarchy process (AHP). This

proposed technique can help overcome the certain major

limitations like uncertainities occurred because of subjective

decision found in the existing conventional techniques.

LiVASAE presents an effective way in three simple simplified

evaluation steps to measure the uncertainty level using AHP

consistency rate. Further, the LiVASAE presents a framework

to assist decision makers to draw technical decisions

connected with with business goals like cost, time-to-market,

and integration with legacy system.

Formal modeling and quantitative modeling are the two

base requirements in engineering. Metrics acts as the base to

perform quantizing management in software management. The

role of metrics is partial in quantification of software

engineering. In order to make the process a complete, the

factors that affect schedule, cost and quality of software

development should be properly estimated. Yong Cao and

Qing-xin Zhu [39] established a model to quantify the factors

and introduced distance to compare the metric indicators. Their

work is carried based on the maximum entropy principle

presented by Jaynes [40][41]. Authors identified that the

metric estimation tree comprising nodes as software attributes

mapped with their corresponding evaluation values can aid in

developing the proposed model. The method of dynamic

feedback in the software processing is combined with AHP

(analytic hierarchy process), for entire learning and analyzing

the project and process of development.

The significance of Multi criteria decision making

(MCDM) methods to decision is well discussed in the

literature. MCDM assists decision makers to make preference

decision over the variety of available alternatives. The software

engineering tasks via. Evaluation and selection of the software

packages categorized as a MCDM problem. AHP is well

known for its selection and evaluation in several fields.

Weighted scoring is also a widely used method for evaluation

and selection of the software packages. Jadhav and Sonar [42]

found a new approach called Hybrid knowledge based system

(HKBS) approach for evaluation and selection of the software

packages. Authors pursued an experimentation to analyze and

the compare the performances of HKBS, AHP and WSM with

respect to the task of evaluation and selection of software

package. Authors observed that the comparison indicate HKBS

approach comparatively better than AHP and WSM for

evaluation and selection of the software packages in terms of

computational efficiency, flexibility in problem solving, reuse

of knowledge.

Requirements gathering should be done in the early stages

of software engineering. Several cases exist where

requirements keep on changing and the best completed

requirements specification still misses the implicit

requirements. Sadiq, M et al. [43] have presented an

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 238 - 249

__

245

IJRITCC | January 2016, Available @ http://www.ijritcc.org

algorithmic approach to identify the software requirements and

their priority using analytic hierarchy process (AHP).

Software analysts mostly concentrate on delivering the

functionality of the developing software product and postpone

the quality concerns to the final stages of development. This

practice would be expensive since the fixing of defects in later

stages is tedious and cumbersome. That is, the concern of

quality should be considered in the early configuration stages

of requirement gathering. The identification of a feature for its

quality is based on its impact on the overall product.

Limitations like lack of quantitative measurements, valid

products, expertise in assessing the human effort are the major

barriers of existing approaches. Guoheng Zhang et al. [44]

have presented a new approach of using Analytic Hierarchical

Process (AHP) to estimate the relative importance of each

functional variable feature on a quality attribute. The level of

quality attributes of a product configuration could be assessed

with reference to the impact of each functional variable feature

of quality attribute. Authors have experimented their proposed

approach on the Computer Aided Dispatch (CAD) software

product line for clear demonstration.

The development of benchmarking methodology is quite a

challenging role and is categorized as a continuous and

consistency task. The assertion is getting slowly negated with

the rapid development of software industry. One of the major

benefits of benchmarking methodology is to evaluate domain-

specific software product quality. Sun Haifang et al. [45] have

proposed domain-specific software benchmarking

methodology. Evaluation model is also combined with the

work using fuzzy set theory and AHP (FAHP). FAHP helps in

reducing uncertainness and vagueness, and also minimizes the

role expert experience. The work is discussed with OA

software as a case study.

Analytical Network Process seems to be another promising

approach compared to approaches like AHP, decision support

systems, fuzzy approach, AHP-GP etc. during locating the best

software architecture style. Babu et al. [46] have presented a

method which could do more precise and suitable decisions

during selection of architecture styles with the help of Analytic

Network Process (ANP) inference to assist the software

architects while drawing decisions of in order to exploit

implicit properties of styles in a simple and feasible way to

optimize the design of software architecture. The frame work

designed by authors is used to choose criteria within cluster

criteria and alternatives from cluster of alternatives according

to the requirements. During this process, the framework uses

feedback, loops and also assign weights provided from various

stake holders like users and domain experts to find the

alternative in an efficient manner. Some of the key findings

listed by authors are i) quality attributes which satisfy with the

same software architecture interact each other ii) The

identification of strengths and weaknesses with the support of

criteria interaction during selection of architecture helps in

making precise decisions.

Vijayalakshmi et al. [47] have devised a new architecture

selection method based on multicriteria decision analysis called

Multiplicative AHP (MAHP) combined with Weighted Product

Mode (WPM). This methodology uses multiplication to rank

software architectures rather than using addition. The proposed

method is an efficient, simple and helps in performing accurate

decision making for selection of software architectural style.

The developed method is validated using stock market

management system. Authors with the intent of improving the

earlier methodology presented by Zayaraj [48][49] listed out

the disadvantages. The validation of the proposed method has

also been considered using a suitable case study. It is inferred

that the proposed method more advantageous and gives more

importance to the stakeholders’ preferences and views. The

completed methodology and evaluation procedure is explained

using mathematical analysis.

Assessing the software security is a mandatory job to be

done in all the phases of software life cycle, and to attain this

task several factors should be considered like development

environment, risks, and development documents. Zhuobing

Han et al. [50] found that there is no solid methodology

available in the literature in evaluating software security

systematically. With the intent of establishing a solid

methodology, Zhuobing Han et al. [50] have proposed a

comprehensive model for evaluating the software security with

three orthogonal and complementary concepts via. Technology,

Management and Engineering. ISO/IEC15408 provides the

guidelines for the technological dimension with 7 security

levels based on Evaluation Assurance Levels (EALs). The

management dimension primarily looks for the management of

software infrastructures, development documents and risks.

The third dimension (engineering) is sub categorized on 5

stages of software development lifecycle. Evidences drawn by

experts from these three dimensions provide necessary

assessments for software security. During the process of

preparing assessments, advanced decision systems like

Analytic Hierarchy Process (AHP) and Dempster-Shafer

Evidence Theory are been leveraged. These assessments are

again combined with the experts experience to obtain a score

which presents the security degree of software. The work has

been illustrated with a case study presenting the detailed

discussion of the proposed approach to evaluate security of

their system.

Sustainability and reusability have great significance in

engineering learning domain. In this concern, metadata helps in

supporting reusability and effective use of Learning Objects

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 238 - 249

__

246

IJRITCC | January 2016, Available @ http://www.ijritcc.org

(LOs). Sometimes searching in LO repository based on

metadata consumes more time. Required LO could never be

filtered if the chosen criteria do not exactly match the metadata

values. This situation could be overcome with the multi-criteria

decision making (MCDM) method. Yigit et al. [51] have

carried a study and developed the SDUNESA software. With

the support of AHP, this software allows for the selection of a

suitable LO from the repository using MCDM method. AHP

aids in selecting the necessary parameters prior to the process

of searching. The software is developed using Web 2.0

technologies like AJAX, XML, SOA servies. Experimental

results show that the combination of AHP to the MCDM

method picks the most reliable learning object that meets the

criteria.

Assessment and sensitivity are the two crucial analysis of

software engineering reliability. Chen Qu et al. [52] have

presented a research article which established the evaluation

attributes of comprehensive categorical, and analysis

assessment evidence based on the inferences of existing

literature and computational logic by AHP. The work is

experimented on a power plant information management

system involved in analyzing the domain software reliability

by the proposed method, and pursued the attribute sensitivity

analysis based on relative data. Authors finally inferred that

the work can analyze and evaluate the domain software

reliability unambiguously, and efficient sensitivity analysis.

A complete requirements engineering can be used as a half

job done and if decision support system is combined in

requirements engineering then the resulting document is totally

with all possibile conflicts. Vinay et al. [53] have proposed

Goal Oriented Requirements Engineering (GORE) methods

and have addressed improved aspects which are helpful in

decision support. They have also proposed a combined method

called IGAPE (GORE method – Integrating Goals after

Prioritization and Evaluation). This method is designed as

semi-formal to ensure active stakeholder participation. The

knowledge derived by IGAPE is supplied as input to AHP

supported decision system. A technique is developed for Order

of Preference by Similarity to Ideal Solution (TOPSIS) is

combined with decision system. Authors found that the

integrated system (IGAPE with AHP and TOPSIS) will provide

improved decision making compared to other works during

requirements engineering phase. The proposed method is

analyzed and illustrated with the help of an ecommerce

application and is evaluated by expert analysis approach.

The concept of cloud computing drastically increased the

computing services and such a system could be perceived as a

dynamic allocation of information systems according to the

cloud demands selecting the best mix of compute services and

processing virtual machines. This situation strong requires

evaluating whether existing web applications could work with

the same quality at reduced cost when migrated to cloud

machines. Also application engineers who develop these web

applications should consider several crucial criteria like

heterogeneous nature, complexity, etc. which are hard to solve

manually. Menzel et al. [54] have previously developed a

framework to support cloud system of single-component web

applications. The migration process for web applications

distributed over various locations is enhanced by the authors

with intent of identifying the most important criteria relevant to

the selection problem. This enhancement is categorized as a

multi-criteria-based selection based on Analytic Hierarchy

Process (AHP). A genetic algorithm is developed by the

authors to cope with the exponential solution space in growing

cloud market. The proposed system CloudGenius is evaluated

for its applicability using adequate use case example proofs.

The proposed work also developed a prototype of selection

algorithm called CumulusGenius to conduct experimentation.

Genetic algorithm is to deploy on hadoop clusters for selection.

The work has presented the experiments with CumulusGenius

and clearly discussed on the time complexities and the quality

of the genetic algorithm.

V. SUMMARY

 AHP is primarily leveraged as a multiple criteria decision-

making tool. This process follows an eigen value approach to

the pair-wise comparisons. The process also provides a

methodology to calibrate the numeric scale for both

quantitative and qualitative performances. An attempt has been

made in this paper to analyze and present a comprehensive

review of AHP in software engineering. Majority of the

reviewed articles listed in this work belongs to one of the

following combinations via. engineering and selection, social

and selection, and personal and decision making. This

identifies the nature of AHP to use as a decision making tool in

engineering as well as in social sector. The positive side of

AHP increased the confidence of the researchers began

experimenting the combination of AHP with other techniques

like linear programming, artificial neural network, fuzzy set

theories, etc. Still AHP is considered in multi-criteria decision

making in a stand-alone mode. Thomas L Saaty being

identified as one of the early researchers worked in decision

making. The modified versions of AHP show drastic

improvement and during the process several authors have

converted the Saaty 0's 9-point scale into convenient 5-point

scale. Louis G Vargas presented critical analysis of using

decision making in various fields like business, health, energy

and transportation. Ian Sommervillie has made a textbook

included with all the available research articles of software

engineering. H F Li, John Pierrie, Daniel Moody, Aine

Mitchell, Lionel and Raed Shatnawi some potential researchers

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 238 - 249

__

247

IJRITCC | January 2016, Available @ http://www.ijritcc.org

who employed software engineering using empirical approach.

Babu, vijaya lakshmi and Vinay are some contemporary

researchers who worked in software engineering using AHP

and other decision making combinations.

REFERENCES

[1] Hally Mike, ―Electronic brains/Stories from the dawn

of the computer age‖, London: British Broadcasting

Corporation and Granta Books. p. 79., 2005.

[2] ―Tying Arrangements and the Computer Industry:

Digidyne Corp. vs. Data General‖, JSTOR 1372482.

(https://en.wikipedia.org/wiki/JSTOR) last accessed

on 18.07.2015.

[3] Sommerville Ian, ―Software engineering has recently

emerged as a discipline in its own right‖, Software

Engineering. Addison-Wesley, 1985. ISBN 0-201-

14229-5.

[4] Meyer, Bertrand, ―The origin of software

engineering, 2013‖.

(https://bertrandmeyer.com/2013/04/04/the-origin-of-

software-engineering) last accessed on 18.07.2015.

[5] Tadre, Matti, ―The Science of Computing‖, CRC

Press. pp. 121. ISBN 9781482217704.

[6] H F Li, W K Cheung, ―An Empirical Study of

Software Metrics‖, IEEE Transactions on Software

Engineering, Vol SE 13, No. 6, pp. 697 – 708, June

1987.

[7] William A Florac, ―Software Quality Measurement: A

Framework for Counting Problems and Defects‖,

Technical Report, CMU/SEI-92-TR-022, ESC-TR-92-

022, Software Engineering Institute (SEI), September

1992.

[8] M C Paulk, B Curtis, M B Chrissis, C V Weber,

―The Capability Matured Model for Software‖, IEEE

Journal of Software Engineering, pp. 427 – 438, 1997

[9] IEEE Standards Board, IEEE Standard for a Software

Quality Metrics Methodology, December 1998

[10] Ron Burback, ―Software Engineering Methodology:

The Watersluice‖, Doctoral Thesis Submitted to the

Stanford University, 1998.

[11] Fenton N E, Neil M,‖A critique of software defect

prediction models‖, IEEE Transactions on Software

Engineering, Vol. 25, No. 5, pp. 675 – 689, 1999

[12] John Pierrie Kuilboer, Noushin Ahsrafi,‖ Software

Process Improvement Deployment – An empirical

Perspective‖, Journal of Information Technology

Management, Volume X, No: 3- 4, 1999

[13] Maria Sverstuk, June Verner, Jeffry Hand,‖Software

Quality: What is really important and Who Says So‖,

International Conference NIMESTIC 2000, 11 – 13

September 2000

[14] Boehm B W, Brown J R, Lipow M, ―Quantitative

Evaluation of Software Quality‖, Proceedings of

Second International Conference of Software

Engineering, pp 592 – 605, 1976.

[15] Isabel Brito Ana , Ana Moreira , João Araújo, ―A

Requirements Model for Quality Attributes, Aspect-

Oriented Requirements Engineering and Architecture

Design‖, 2002.

[16] Daniel L Moody, ―Measuring the quality of data

models: an empirical evaluation of the use of quality

metrics in practice‖, ECIS 2003: 1337-1352, 2003.

[17] Souheil Khaddaj, G Horgan, ―The Evaluation of

Software Quality Factors in Very Large Information

Systems‖, Electronic Journal of Information Systems

Evaluation, Vol. 7, No. 1, pp. 43 – 48, 2004.

[18] Tom Mens, Tom Tourwe, ―A Survey of Software

Refactoring‖, IEEE Transactions on Software

Engineering, Vol. XX, No. Y, 2004.

[19] Aine Mitchell, ―An empirical study of run-time

coupling and Cohesion software metrics‖, Doctoral

Thesis, Submitted to the Dept. of Computer Science,

National University of Ireland Maynooth, 2005

[20] Bart Du Bois, ―A Study of Quality Improvements By

Refactoring‖, Doctoral Thesis submitted to the

University of Antwerp, Belgium, 2006

[21] Girish H Subramanian, James J Jiang, Gary Klein,

―Software quality and IS project performance

improvements from software development process

maturity and IS implementation strategies‖, The

Journal of Systems and Software, pp. 616 – 627, Vol.

80, 2007

[22] R. Radharamanan, Jeng-Nan Juang, ―Determining

Significant Factors and their effects on Software

Engineering Process Quality‖, ASEE publications,

Fall-2009.

[23] Trendowicz, Jürgen Münch, ―Factors Influencing

Software Development Productivity - State of the Art

and Industrial Experiences, Advances in Computers‖,

Elsevier, Vol. 77, pp. 185 – 241, 2009.

[24] Forselius, P.; Kakola, T., "An Information Systems

Design Product Theory for Software Project

Estimation and Measurement Systems," System

Sciences, 2009. HICSS '09. 42nd Hawaii International

Conference on , vol., no., pp.1-10, 5-8 Jan. 2009.

doi:10.1109/HICSS.2009.65.

[25] Yonghee Shin, Andrew Meneely Laurie Williams,

―Evaluating Complexity, Code Churn, and Developer

Activity Metrics as Indicators of Software

Vulnerabilities‖, IEEE Transactions on Software

Engineering, Vol. 37, No. 6, pp. 772 – 787, 2010.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 238 - 249

__

248

IJRITCC | January 2016, Available @ http://www.ijritcc.org

[26] Istvan Siket, ―Applying Software Product Metrics in

Software Maintenance‖, Doctoral Thesis submitted to

the Department of Software Engineering, University

of Szeged, 2010

[27] Victor R. Basili, Lionel C. Briand, and Walc ́elio L .

Melo. ―A Validation of Object-Oriented Design

Metrics as Quality Indicators‖. In IEEE Transactions

on Software Engineering, volume 22, pages 751–761,

October 1996.

[28] Lionel C . Briand and Jurgen W ̈ust . ―Empirical

Studies of Quality Models in Object- Oriented

Systems. In Advances in Computers‖, volume 56,

September 2002

[29] Ping Yu, Tarja, ― System Predicting Fault-Proneness

using OO Metrics: An Industrial Case Study. In Sixth

European Conference on Software Maintenance and

Reengineering‖, (CSMR 2002), pages 99–107, March

2002

[30] S.R. Chidamber and C.F. Kemerer, ―A Metrics Suite

for Object-Oriented Design‖. IEEE Transactions on

Software Engineering 20,6(1994), pages 476–493,

1994

[31] Raed Shatnawi , Wei Li, ―An Empirical Assessment

of Refactoring Impact on Software Quality Using a

Hierarchical Quality Model‖, International Journal of

Software Engineering and Its Applications, Vol. 5 No.

4, October, 2011

[32] Nick John Pizzi, ‖Mapping Software Metrics to

Module Complexity: A Pattern Classification

Approach‖, Journal of Software Engineering and

Applications, Vol. 4, pp. 426-432, 2011.

[33] Ruchika Malhotra and Ankita Jain, ―Fault Prediction

Using Statistical and Machine Learning Methods for

Improving Software Quality‖, International Journal of

Information Processing Systems, Vol.8, No.2, June

2012

[34] Indu Sharma, ParveenBano, ―A Combined Approach

of Software Metrics and Software Fault Analysis to

Estimate Software Reliability‖ IOSR Journal of

Computer Engineering (IOSR-JCE) Vol. 11, No. 6,

pp. 01-14, 2013.

[35] Ahmad, N.; Laplante, P.A, ―Software Project

Management Tools: Making a Practical Decision

Using AHP‖, 30th Annual IEEE/ Software

Engineering Workshop, pp. 76 – 74, 2006.

[36] Haifeng Li; Minyan Lu Qiuying Li, ―Software

Reliability Metrics Selecting Method Based on

Analytic Hierarchy Process‖, IEEE Sixth International

Conference on Quality Software, (QSIC), pp. 337 –

346, 2006.

[37] Chung, L.; Weimin Ma; Cooper, ― Requirements

elicitation through model-driven evaluation of

software components‖, IEEE Fifth International

Conference on Commercial-off-the-Shelf (COTS)-

Based Software Systems, pp. 10, 2006.

[38] Chang-Ki Kim; Dan Hyung Lee; In-Young Ko;

Jongmoon Baik, IEEE Eighth ACIS International

Conference onSoftware Engineering, Artificial

Intelligence, Networking, and Parallel/Distributed

Computing, (SNPD), pp. 646 – 649, 2007

[39] Jaynes, E. T, ―Information Theory and Statistical

Mechanics‖, Physical Review. Series II 106 vol. 4, pp.

620–630, 1957.

[40] Jaynes, E. T,‖Information Theory and Statistical

Mechanics ―, Physical Review. Series II 106 vol. 4,

pp. 620–630, 1957.

[41] Jaynes, E. T ―Information Theory and Statistical

Mechanics II (PDF)‖, Physical Review. Series II 108

vol. 2, pp. 171–190, 1957.

[42] Jadhav, A. and Sonar, ― A Comparative Study‖, 2nd

IEEE International Conference on Emerging Trends

in Engineering and Technology (ICETET), pp. 991-

997, 2009.

[43] Sadiq, M.; Ghafir, S.; Shahid, M. , ―An Approach for

Eliciting Software Requirements and its Prioritization

Using Analytic Hierarchy Process‖ , IEEE

International Conference on Advances in Recent

Technologies in Communication and Computing, pp.

790 – 795, 2009

[44] Guoheng Zhang; Huilin Ye; Yuqing Lin,‖ Quality

Attributes Assessment for Feature-Based Product

Configuration in Software Product Line‖, IEEE 17th

Asia Pacific Software Engineering Conference

(APSEC), pp. 137 – 146, 2010

[45] Sun Haifang; Cai Lizhi; Liu Xiaoqiang; Song Hui;

Yang Genxing; Liu Zhenyu; Meng Zhiming,

―Domain-Specific Software Benchmarking

Methodology Based on Fuzzy Set Theory and AHP‖,

IEEE International Conference on Computational

Intelligence and Software Engineering (CiSE), pp. 1-

4, 2010

[46] Babu, D., K., Rajulu, G., P., Reddy, R., A., Kumari,

A., A., N., ―Selection of Architecture Styles using

Analytic Network Process for the Optimization of

Software Architecture‖, International Journal of

Computer Science and Information Security, Vol. 8,

No. 1, April 2010.

[47] Vijayalakshmi, S., Zayaraz. G., Vijayalakshmi. V.,

2010. ―Multicriteria Decision Analysis Method for

Evaluation of Software Architecture. 2010‖,

International Journal of Computer Applications (0975

- 8887) Vol.1, No. 25, 2010

[48] Zyaraz . G, Dr. P. Thambidurai, ―Quantitative Model

for the Evaluation of Software Architectures‖, Journal

of Software Quality Professional, American Society

for Quality, Vol.9, no.3, pp. 28-40, June 2007.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 238 - 249

__

249

IJRITCC | January 2016, Available @ http://www.ijritcc.org

[49] Zayaraz .G and Dr. P. Thambidurai, ―Software

Architecture Selection Framework Based on Quality

Attributes‖, Proceedings of the IEEE Conference

INDICON, pp. 67-170, Dec. 2005

[50] Zhuobing Han; Xiaohong Li; Ruitao Feng; Jing Hu,

―A Three-Dimensional Model for Software Security

Evaluation‖, IEEE Theoretical Aspects of Software

Engineering Conference (TASE), pp. 34 – 41, 2014

[51] Yigit, T.; Isik, A.H.; Ince, M, ―Web-based learning

object selection software using analytical hierarchy

process Software‖, IEEE IET, Volume: 8, Issue: 4 pp.

174 - 183, 2014.

[52] Chen Qu; Bao Tie; Zheng Wanbo; Lian Wei, ―IEEE

Workshop on Advanced Research and Technology in

Industry Applications (WARTIA)‖, pp. 502 – 505,

2014.

[53] Vinay S, Shridhar Aitha and Sudhakara Adiga,

―Integrating Goals after Prioritization and Evaluation –

A Goal Oriented Requirements Engineering Method‖,

International Journal of Software Engineering &

Applications (IJSEA), Vol. 5, No. 6, 2014.

[54] Menzel, M.; Ranjan, R.; Lizhe Wang; Khan, S.U., ―A

Hybrid Decision Support Method for Automating the

Migration of Web Application Clusters to Public

Clouds‖, IEEE Transactions on Computers, Vol. 64,

No. 5, pp. 1336 – 1348, 2015

