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Abstract. In a distribution network, locating a facility such as supplier  is important to decide that could  impact not only the profitability of an 

organization but the ability to serve customers in short time. This paper considers the integrated Location-Allocation-Routing problem such that 

to minimize the overall cost by simultaneously selecting a subset of candidate facilities and constructing a set of delivery routes that satisfy some 

restrictions. In this paper we impose restrictions on route, i.e., distance and  forbidden route. We use integer programming model to describe the 

problem. A feasible neighbourhood search is proposed to solve the result model.  
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I.  INTRODUCTION  

The design of a distribution system involves a decision to 

select and find the best locations for  facilities and  to allocate 

customers to the selected facilities. These decision problem 

can be solved using location-allocation models. The 

objective of such models is to select the optimal locations of 

facilities from a list of candidate   such that the total 

transportation cost from facilities to customers is minimized 

and an optimal number of customers have to be allocated in 

an area of interest in order to satisfy the customer demands. 

Therefore determining the locations of facilities within a 

distribution network is an important decision that impacts not 

only the profitability of an organization but the ability to serve 

customers. The term allocation implies rules which specify 

how demands are allocated to the candidate locations. There 

are three primary components in the location-allocation 

models, viz., the customer (or demand) locations, the list for 

candidate location, and a distance or travelling time between 

facilities and customer locations. 

 Facility location problems have attracted many researchers  

and have been applied to many real world problems.  At the 

beginning , facility location problem is proposed  by [1]. He 

introduced, what is called, a Weber facility location problem,  

to decide  location of  a warehouse in such a way to minimize  

the distance traveled between the warehouse and its customers. 

[2]  used facility location model to improve geographical 

accessibility to public schools in rural area in India. Location-

allocation models play important roles for designing health 

facilities such as locating the best sites for service facilities in 

a new area, evaluating the efficiency of the past location 

decisions and improving existing location patterns [3]. The 

authors provide an excellent review of location-allocation 

literature that employed location-allocation models in planning 

health care systems in developing nations. [4] also used this 

model to locate the primary health care centers in the city of 

Lujan, Argentina. [5] integrate location-allocation model with 

accessibility in order to improve the spatial planning of public 

health services. 

A basic method which is usually used for location-allocation 

models is the P-median problem. This problem identifies the 

median points among the potential facility points such that 

total cost is minimized [6]. Another method used for location-

allocation problem mentioned much  in literature is covering 

problem. This objective of this problem is to find location of 

facilities which provide customers the access to facility 

services within a specified distance.  

In location modeling deliveries are made on out-and-back 

routes visiting a single customer or most frequently the 

customer who travel individually to the facility site. The 

consequence is, the cost of delivery is independent of other 

deliveries made. In many contexts, however, deliveries are 

made along multiple stop routes visiting two or more 

customers; in this case, the cost of delivery depends on the 

other customers on the route and the sequence in which they 

are visited. In order to capture accurately the cost of multiple 

stop routes within a location model, the routing problem must 

be solved at the same time as the location problem. This type 

of problem is called location-routing problem. 

Generally, the objective of the location-routing problem 

(LRP) is to select location from  a subset of candidate facilities 

and to construct a set of delivery routes that satisfy:  

i. Customer demands without exceeding vehicle or 

facility capacities. 

ii. The number of vehicles, the route lengths and 

the route durations and  

iii. Each route begins and ends at the same facility 

 

Location-routing problems are clearly related to both the 

classical location problem and the vehicle routing problem. 

In fact, both of the latter problems can be viewed as special 

cases of the LRP. If we require all customers to be directly 

linked to a depot, the LRP becomes a standard location 

problem. If, on the other hand, we fix the depot 

locations, the LRP reduces to a VRP. From a 

practical viewpoint, location-routing forms part of 

distribution management, while from a mathematical point 

of view, it can usually be modeled as a combinatorial 

optimization problem. We note that this is an NP-hard 
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problem, as it encompasses two NP-hard problems 

(facility location and vehicle routing). Since a number of 

problem versions exist, we cannot reproduce all the 

formulations here. In the first instance, the reader is 

referred to [7] for an excellent review of various 

formulations. 
Most of the research to date has focused on heuristic 

methods since LRPs merge two NP-hard problems. The 

heuristics generally decompose the problem into its three 

components, facility location, customer allocation to facilities 

and vehicle routing, and solve a series of well-known 

problems such as p-median, location-allocation and vehicle 

routing. Exact methods have been developed for a small 

number of LRP models that are derived from two-index flow 

formulations for the vehicle routing problem (VRP). [8] solve 

a single depot model by a constraint relaxation method. 

[9] develops an equivalent model and also extends the 

model to the case where the number of vehicles used is a 

variable in the model. [10] solve a multi-depot problem in 

which at most p facilities are located. The largest problems 

solved have seven candidate facilities and 40 customers. [11] 

solve a multi-depot capacitated LRP using a constraint 

relaxation method. In their work, the largest problem solved to 

optimality has eight candidate facilities and 20 customers. [11] 

use a branch and-bound procedure to solve asymmetric LRPs 

that include as many as three candidate facilities and 80 

customers. [14] use two Meta-Heuristic algorithms of Genetic 

and Tabu Search algorithm. Since the performance of these 

heuristic algorithms is significantly influenced by their 

parameters, Taguchi Method is used to set the parameters of 

developed algorithms.  

Forbidden route involving pairs of edges occur frequently 

and can occur dynamically due to rush hour constraints, lane 

closures, construction, etc. Longer forbidden subpaths are less 

common, but can arise, for example if heavy traffic makes it 

impossible to turn left soon after entering a multi-lane 

roadway from the right. If we are routing a single vehicle it is 

more natural to find a detour from the point of failure when a 

forbidden path is discovered. 

In this paper we address the integrated model for Location-

Allocation-Routing problem. We impose another restrictions, 

i.e., distance and forbidden route. The integrated problem can 

be formulated as a large-scale  integer programming model. 

We solve the model using an exact method called Feasible 

Neighborhood Search Approach. 

The rest of this paper is organized as follows. In the next 

Section we present the location-allocation model. In Section 3 

we address the location-routing problem. Section 4 describes 

the definition of Forbidden Route. In Section 5, we introduce 

the mathematical model for the location-allocation-routing 

problem which consider distance and forbidden route. The 

meaning of Neighborhood Search is mentioned in Section 6. 

In Section 7, we propose the algorithm. We conclude the paper 

in Section 8. 

II. LOCATION-ALLOCATION MODEL 

The basic forms of  location-allocation models for private 

sector is the P-median problem. The model is to minimize the 

total of travel distances between the customer points and the 

nearest servicing facilities. 

We define set of  Notations as follows. 

Set 

I      Set of customer nodes 

J      Set of potential facility sites 

M    Number of customer points in the considered area 

N     Number of potential facility locations 

Parameters 

ai     Demand at node  

dij     Distance between node   and   

Q      Number of facilities to be located 

Variables 

Xij     Binary variable whether customer  is assigned to a 

facility  

The model can be formulated as follows. 

The objective is to minimize the total distance or travel time 

between customer node i and facility site node j. 

ij ij ij

i I j J

Minimize a d x
 

                                                     (1)     

There are constraints need to be satisfied. 

In order to make sure that every customer (or demand) is 

assigned to one and only one facility, we need the following 

expression. 

  1,ij

j J

x i I


                                 (2)    

, ,ij jjx x i I j J                                                 (3) 

The next equation is to limit the number of facilities to be 

located 

  
jj

j J

x Q


                                                                          (4)                                                                    

III. LOCATION-ROUTING MODEL 

Next, we present a formulation of the LRP based on set-

partitioning  with distance constraints. The objective is to 

select a set of locations and to construct a set of associated 

delivery routes in such a way as to minimize facility costs plus 

routing costs. The set of routes must be such that each 

customer is visited exactly once by one route and that the 

length of each route does not exceed the maximum distance.  
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The model developed in this paper is based on  [12]. Let I be 

the set of customer location nodes  and  J  be the set of 

candidate facility location nodes. We define the graph 

G=(N,A), where  is the set of nodes and A=N×N is the set of 

arcs. We let dij for all (i, j) A be the distance between nodes i 

and j. The distances satisfy the triangle inequality. The 

distances satisfy the triangle inequality. For applications in 

which the distance constraint applies to the length of the route 

to the last customer instead of the length of the return trip to 

the depot, we set to 0 for all (i, j) with   i I and j  J. We 

define a feasible route k associated with facility j as a simple 

circuit that begins at facility j, visits one or more customer 

nodes and returns to facility j and that has a total distance of at 

most the maximum distance, denoted M. Then, we let jP  

denote the set of all feasible routes associated with the facility 

j for all j  J. The cost of a route jk P    is the sum of the 

costs of the arcs in the route. The cost of an arc (i, j)  A is 

proportional to the distance ijd   to reflect distance related with 

operating costs. 

Parameters 

1, if route k associated with facility  visits customer , , ,

0, otherwise

j i i I j J k Pj
a
ijk

     





 

jkc   cost of route k associated with facility 

, , jj j J k P      

jf    fixed cost associated with selecting facility ,j j J    

  α     object weighted factor 

Decision Variables 

1,  if facility  is selected, 

0, otherwise
j

j j J
X

 
 


 

1,  if route  associated with facility  is selected, ,

0, otherwise

j

jk

k j j J k P
Y

   
 
  

The objective is to minimize cost 

Minimize  .
j

j j jk jk

j J j J k P

f X c Y
  

                            (5) 

s.t.        1
j

ijk jk

j J k P

a Y i I
 

                                            (6)  

           
0 ,j jk jX Y j J k P                                       (7) 

           
{0,1}jX j J                                                    (8) 

           
{0,1} ,jk jY j J k P                                       (9)  

The objective function (1) seeks to minimize the weighted 

sum of the facility costs and the routing costs. Constraints (2) 

are the set partitioning constraints that require each customer i 

be served by exactly one of the selected routes. Constraints (3) 

require that facility j be selected if a route k associated with 

facility j is selected. Constraints (4) and (5) are standard binary 

restrictions. The LRP with distance constraints is NP-hard. By 

placing very large costs on the arcs connecting two customer 

nodes, we obtain a special case of the model in which the 

selected routes contain exactly one customer.  

 

As presented, the formulation LRP potentially contains an 

exponential number of variables  and an exponential 

number of constraints (6). Thus, for instances of practical size, 

enumerating all of the feasible routes and solving the resulting 

integer program is unlikely to be effective. Instead, we will 

use feasible neighbourhood search for solving the model.  

IV. FORBIDDEN ROUTE 

We are given an directed graph G(V, A) with n = |V| vertices 

and m = |A| edges where each edge e  A has a positive weight 

denoting its length. We are also given a source vertex s  V , a 

destination vertex t  V , and a set X of forbidden route in G. 

The graph G together with X models a vehicle routing network 

in which a vehicle cannot follow any route in X because of the 

physical constraints . We want to find a shortest route from s 

to t that does not contain any route in X as a subpath—we 

make the goal more precise as follows. A route is a sequence 

of vertices each joined by an edge to the next vertex in the 

sequence. Note that we allow a route to visit vertices and 

edges more than once. If a route does not visit any vertex more 

than once, we explicitly call it a simple route. A simple 

directed route from vertex v to vertex w in G is called a 

forbidden route or an exception if a vehicle cannot follow the 

route from v to w because of the physical constraints. Given a 

set X of forbidden route, a route (v1, v2, v3, . . . , vl) is said to 

avoid A if (vi, vi + 1, . . ., vj)  A for all i, j such that 1 ≤ i < j ≤ 

l.  

V. LOCATION-ALLOCATION-ROUTING PROBLEM WITH 

DISTANCE AND FORBIDDEN ROUTE  

A. Problem formulation 

Given a set of products L need to be distributed to a set of 

suppliers. The company has determined a list of candidate as 

potential suppliers (J). There is a set of customer nodes I with 

given demands spread across the city. A set of vehicle (M) is 

available to deliver the product. Each vehicle has a maximum 

capacity, Q. As mentioned in the problem description of 

location-routing model, we define a feasible route r associated 

with facility j as a simple directed graph that begins at facility 

j, visits one or more customer nodes and returns to facility j. 

with maximum distance of travelling N. Then, we let 

denote the set of all feasible routes associated with the 

facility j for all j  J. Unfortunately, due to physical 

constraint, there are forbidden route in which a vehicle cannot 

pass by. 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                                       ISSN: 2321-8169 
Volume: 4 Issue: 1                                                                                                                                                                             184 - 188 

_______________________________________________________________________________________________ 

187 
IJRITCC | January 2016, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

The Model 

The Location-Allocation-Routing Problem can be formulated 

mathematically as follows. 

Notations used.  

Sets 

L       Set of product 

J        Set of potential suppliers 

I        Set of customers’ nbode 

M     Set of vehicles 

R      Set of feasible route 

X      Set of forbidden route 

Parameters 

ia      Demand at node i I   

ijd     Distance from node i I  to node j J   

Q      Maximum weight capacity of a vehicle 

ijrmq      Weight demand of customer i delivered from location 

j of vehicle m using route r 

,      Costs 

l

ijrm      Cost of transportation of vehicle m to deliver product l 

from supplier j to customer i        using route r 

Variables 

ijx        Binary variable whether supplier j will serve customer 

i 

l

jy        Binary variable if product l is located to supplier j  

l

ijrmz      Binary variable if product l will be delivered to 

customer i from supplier j through route r using vehicle m 

The objective function of this model is to minimize total cost. 

,

l l l

j ij i ij ijrm ijrm

j J l L i I j J i I j J r R r X l L

y d a x z  
        

     
     

(10) 

Subject to constraints 

The following expression is to make sure that every customer 

is assigned to one and only one supplier. 

  

1,ij

j J

x i I


                                                       (11) 

  , ,ij jjx x i I j J                                             (12) 

The next constraint is to guarantee that product l L  is only 

located at supplier j J   

1,l

j

j J

y l L


                                                     (13) 

Eq. (14) presents the requirement that each customer i is 

served exactly by one of the selected routes but not the 

forbidden routes. 

,

1, ,l

ijrm ijrm

i I j J r R r X

b z l L m M
   

              (14) 

Constraints (15) state that supplier j be selected if a route r, as 

long as r X , associated with supplier j is selected. 

 

              (15) 

Constraints (16) guarantee that vehicle capacities are respected 

in weight. 

                                    

,r X

,l

ijrm ijrm m

i I j J r R

q z Q l L m M
   

                 (16) 

  , , {0,1}l l

ij j ijrmx y z              

, , , ,i I j J m M r R l L                              (17) 

The model is a large scale Integer programming problem. 

We develop the following method for solving the model.  

 

VI. NEIGHBOURHOOD SEARCH 

It should be noted that, generally, in integer programming the 

reduced gradient vector, which is normally used to detect an 

optimality condition, is not available, even though the 

problems are convex. Thus we need to impose a certain 

condition for the local testing search procedure in order to 

assure that we have obtained the ―best‖ suboptimal integer 

feasible solution. 

Scarf (1986) has proposed a quantity test to replace the 

pricing test for optimality in the integer programming 

problem. The test is conducted by a search through the 

neighbours of a proposed feasible point to see whether a 

nearby point is also feasible and yields an improvement to the 

objective function. 

Let  be an integer point belongs to a finite set of 

neighbourhood  We define a neighbourhood system 

associated with  that is, if such an integer point satisfies 

the following two requirements 

 

1.  

2.  

 

With respect to the neighbourhood system mentioned 

above, the proposed integerizing strategy can be described as 

follows. 

 

Given a non-integer component, xk, of an optimal vector, 

xB. The adjacent points of xk, being considered are [xk] dan [xk] 
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+ 1. If one of these points satisfies the constraints and yields a 

minimum deterioration of the optimal objective value we 

move to another component, if not we have integer-feasible 

solution. 

Let [xk] be the integer feasible point which satisfies the 

above conditions. We could then say if [xk] + 1 N([xk]) 

implies that the point [xk] + 1 is either infeasible or yields an 

inferior value to the objective function obtained with respect to 

[xk]. In this case [xk] is said to be an ―optimal‖ integer feasible 

solution to the integer programming problem. Obviously, in 

our case, a neigbourhood search is conducted through 

proposed feasible points such that the integer feasible solution 

would be at the least distance from the optimal continuous 

solution. 

                          VII. THE ALGORITHM 

First we solve the relaxed problem, the procedure for 

searching a suboptimal but integer-feasible solution from an 

optimal continuous solution can be described as follows. 

Stage 1. 

Step 1. Get row i* the smallest integer infeasibility, such that  

*
min{ ,1 }

i i i
f f     

              (This choice is motivated by the desire for minimal 

deterioration in the objective function, and clearly 

corresponds to the integer basic with smallest integer 

infeasibility). 

Step 2. Do a pricing operation  

 
1

* *

T T

i i
v e B


  

Step 3. Calculate 
*

T

ij i j
v   

 With  corresponds to 

min
j

ij

jd



  
 
  

 

Calculate the maximum movement of nonbasic j at 

lower bound and upper bound. 

 Otherwise go to next non-integer nonbasic or 

superbasic j (if available). Eventually the column j* is 

to be increased form LB or decreased from UB. If 

none go to next i*. 

Step 4. 

  Solve  Bj* = j*  for  j* 

Step 5. Do ratio test for the basic variables in order to stay 

feasible due to the releasing of nonbasic j* from its 

bounds. 

Step 6. Exchange basis  

Step 7.   If row i* = {} go to Stage 2, otherwise 

 Repeat from step 1. 

Stage 2. Pass1 : adjust integer infeasible superbasics by 

fractional steps to reach complete integer feasibility. 

              Pass2 : adjust integer feasible superbasics. The 

objective of this phase is to conduct a highly 

lovalized neighbourhood search to verify local 

optimality. 

 

VIII. CONCLUSIONS 

This paper presents a Location-Allocation-Routing 

problem  model in which we consider the distance and  there 

are some forbidden route. The framework of the model stems 

from Location-Allocation problem,  Location-Routing 

problem and VRP with time windows with forbidden route. 

Then we exclude the forbidden route from the previous 

assigned route.  We solve the model using a feasible 

neighbourhood search. 
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