
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 40 - 47

__

40
IJRITCC | January 2016, Available @ http://www.ijritcc.org
__

AVL Tree Implementation

Prof. Meenal Jabde
1

Department of Computer Science,

Modern college, Ganeshkhind,

SavitribaiPhule University, Pune

meenal82@gmail.com

Prof. Mandar Upasani
2

Department of Computer Science

Maeer‟sArt‟s , Science & Commerce

college, Pune

mandar.upasani@gmail.com

Varsha A.Jadhav
3

Department of Computer Science,

Modern college, Ganeshkhind,

SavitribaiPhule University, Pune

vj444563@gmail.com

Lina P. Bachhav
4

Department of Computer Science,

Modern College, Ganeshkhind,

SavitribaiPhule University, Pune

lina100990@gmail.com

Abstract: This paper is about result of a series of simulation which investigates the performance of AVL tree. AVL Tree is a program develops in

C++ to create and arrange data in hierarchical manner.

In computer science, an AVL tree is a self-balancing binary search tree, and it was the first such data structure to be invented. In an AVL tree, the

heights of the two child sub-trees of any node differ by at most one. Lookup, insertion, and deletion all take O(log n) time in both the average and

worst cases, where n is the number of nodes in the tree prior to the operation. Insertions and deletions may require the tree to be rebalanced by one or

more tree rotations.

Keywords: AVL, Binary Tree, Balance Factor, Rotation, Subtree, Recursive Function

Objective: The implementation of AVL tree will provide the detail information about how to balance an unbalanced tree by examining balance

Factors, height & proper rotations.

Balancing The Unbalanced Tree: This algorithm will calculate the balance factor of every node in a tree while inserting or deleting a node in a tree

and if tree get unbalanced then our system convert it into a balanced tree.

User Friendly Interface For Balancing The Unbalanced Tree.

__*****___

I. Introduction

An AVL (Adelson-velskii and Landis) tree is a ‘height

balanced tree’ invented since 1962. In 1962, many

alternatives have been proposed, with the goal of simpler

implementation or better performance or both. This paper

empirically examines the computational cost of insertion,

deletion, and retrieval in AVL trees. An AVL tree is any

rooted, binary tree with every node having the property.

Balanced tree structures are efficient ways of sorting

information. It provides an excellent solution for the

dictionary data structure problem. For n elements the

operations find, insert and delete can be done in O(log N) unit

if time. These tress are binary search trees in which the heights

of two siblings are not permitted more than one.

II. Height Balanced tree:

 The Minimum height of the binary tree having n nodes can be

log2 (n)+1.But creating such tree will be difficult, because in

binary search tree the data will decide the place as to where it

should be attached and in binary trees it will be the users

decision as where a node should be, when user decides the

place of the node.

 An empty tree is height balanced. A binary tree with

hl and hr as height of left and right subtree respectively is

height balanced if | hl - hr |<= 1. A binary tree is height

balanced if every subtree of the given tree is height balanced.

http://www.ijritcc.org/
mailto:meenal82@gmail.com
mailto:mandar.upasani@gmail.com
mailto:vj444563@gmail.com
mailto:lina100990@gmail.com

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 40 - 47

__

41
IJRITCC | January 2016, Available @ http://www.ijritcc.org
__

 Example:

For binary search tree, if data is given in sequence

10,20,30 then the tree will be created as follows

But if we change the root, we may get the tree as follows

For performing such jobs, we will have to take the decisions,

as how to replace the nodes or which node will be the new

root, etc.

Instead of minimizing the height as such we may define a

factor which is associated with each node of the tree, say a

Balance Factor.

III. Balance Factor:

 The balance factor, BF(T) of node T in a binary

search tree is defined as hl - hr where hl and hrare the heights

of the left and the right sub trees of T.A binary search tree

with balance factors is shown in fig (a).

Tree of Fig. (1) is not an AVL tree. The balance factor of the

node with data 40 is+2. Tress of Fig (b) is AVL- trees .

Balance Factor =Height(node left)- Height(temoright)

 Consider the following search tree

10

20

30

10

20

30

Fig. 1: A sample BST with balance factors

Fig (2): AVL trees

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 40 - 47

__

42
IJRITCC | January 2016, Available @ http://www.ijritcc.org
__

Height of tree with root 100

i.e.T100=1+maximum(height(T64),height(T200))

 height (T64)=1+height(T30)

 height(T30)=1+maximum(height(T21),height(T35))

 height(T21)=1+height(T10)

 height(T10)=1

Therefore

 height(T21)=1+1=2

 height (T30)=1+max(2,1)=1+2=3

 height (T64)=1+3

 height(T200)=6

height(T100)=1+max(4,6)=1+6=7

Let us see the balance factor of all the nodes in the previous

tree.

All the leaf nodes have a balance factor of 0.

B_Factor(21)=1-0=1

B_Factor(30)=2-1=1

B_Factor(64)=3-0=3

B_Factor(182)=0-1=-1

B_Factor(184)=2-1=1

B_Factor(181)=0-3=-3

B_Factor(175)=0-4=-4

B_Factor(301)=1-1=0

B_Factor(200)=5-2=3

B_Factor(100)=4-6=-2

Thus we can say that the tree is not balanced. Also when we

find the height of the subtrees, it was defined as height of Null

tree is 0 and for the other trees, it is 1+max height among its

subtrees. Thus the function is recursive.

 The recursive function can also be written as

follows.

 typedef struct tree

 {

 intdat;

struct tree *left, *right;

 }

int height(HBTR temp)

{

if (!temp)

 return(0);

return(1+max(height(templeft),height(tempright)

));

}

Where max is a function which return the maximum of two

values as follows.

int max(inta,int b)

{

if(a>b)

 return(a);

 return(b);

}

or it can also be written as

int max(inta,int b)

{

return(a>b?a:b)

}

or we can modify the height function as follows.

int height(HBTR temp)

{

if(temp)

 {

 p=height(templeft);

 q=height(tempright);

 return(1+(p>q?p:q));

 }

return(0);

}

If we want to write a non-recursive function for

finding the height of the tree, then we are required to follow

the steps shown below.

As we want to eliminate the recursion, we will have

to use stack. But observe that the height of the function has

been called and only one of these two values will be returned.

Hence a single stack will not serve the purpose. Instead of this

complicated way, we can very well go back to BFS, ehre we

have written a function for finding number of levels.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 40 - 47

__

43
IJRITCC | January 2016, Available @ http://www.ijritcc.org
__

IV. Structure of a Node in AVL Tree:

Operations an AVL tree requires calculation of balance factor

of nodes. To represent a node in AVL tree, a new field is

introduced. This new field stores the height of the node. A

node in AVL tree can be defined in the following way:

typedef struct node

{

 int data;

 struct node *left,*right;

 int height;

}node;

„C‟ Function for finding the Balance Factor of a node:

int BF(node *T)

{

intlh,rh;

if(Tleft==NULL)

 lh=0;

else

 lh=1+Tleftheight;

if(Tright==NULL)

 rh=0;

else

 rh=1+Trightheight;

return (lh-rh);

}

/* the function height(), for finding the height of node is

given below*/

int height(node *T)

{

intlh,rh;

if(Tleft==NULL)

 lh=0;

else

 lh=1+Tleftheight

if(Tright==NULL)

 rh=0;

else

 rh=1+Trightheight

if(lh>rh)

 return(lh);

return(rh);

}

V. Insertion of a Node into an AVL Tree:

Insertion of a new data, say k into an AVL tree is carried out

in two steps:

1) Insert the new element, treating the AVL tree a

binary tree.

2) Update the balance factors (information, height)

working upward from point of insertion to root. It

should be clear that from point of insertion to the root

may have their height altered.

 The steps to insert a new element with value k into an

AVL tree begins with comparing k with the value stored in the

root.

 If k is found to be larger than the value stored in T,

then insertion is carried out into the right subtree else insertion

is carried out into the left subtree. The recursion terminates

when the left or right subtree to which insertion is to be made

happens to be empty.

 Consider the AVL tree from the given figure. Balance factor

of each node is shown against the node.

A new element with value 60 is inserted in a way we insert

element in a binary search tree. After insertion of 60, the

balance factor of root has become -2. Hence, it is no longer an

AVL tree. The balance factor of the root has become -2,

because the height of its right subtree rooted at (30) has

increased by 1.

 Rebalancing of the tree is carried out through rotation

of the deepest node with BF=2 or BF= -2.

(a)A sample AVL

tree with balance

factors

(b) Tree of Fig(a) after

insertion of 60. Tree is longer

an AVL tree

Fig. (3)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 40 - 47

__

44
IJRITCC | January 2016, Available @ http://www.ijritcc.org
__

VI. Rotation:

Fig.4 shows the rotation of tree of Fig.3. After

rotation, the tree becomes an AVL tree.

 Balance factor of node X in Fig.4(a) is -2.

 Balance factor of -2, tells that the right subtree of X

is heavier.

 In order to rebalance the tree, the tree rooted at X

(node with BF=-2) is rotated left.

5.1 Rotate Left:

 When a tree rooted at X is rotated left, the right child

of X i.e Y will become the root.

 The node X will become the left child of Y.

 Tree T2 which was the left child of Y will

become the right child of X.

A program segment to rotate left a tree T, rooted at node X(as

shown in Fig.5).

node *temp;

temp=Y left ; save the address of left child of Y.

T=Yleft=X ; X becomes the left child of Y.

Xright=temp; left child of Y becomes the right child of X.

5.2 Rotate Right:

 When a rooted at

 When a rooted at X is rooted right, the left child of X

i.e Y will become the root.

 The node X will become the right child of Y.

 Tree T2, which was the right child of Y will become

the left child of X.

 Balance factor of+2, tells that the subtree of X is

heavier. In order to rebalance the tree, the tree rooted at X

(node with BF=2) is rotated right;

 A program segment to rotate right a tree, rooted at

node X(as shown in Fig.6).

node *temp;

temp=Yright; save the address of right child of Y.

T=Y; Node Y becomes the root node.

Yright=X; X becomes the right child of Y.

Xleft=temp; right child of Y becomes the left child of X.
(a) Tree with

BF=-2 at

node X

(b)Tree after

rotation

(a) Tree with

BF=2 at

node X

(b) Tree after

rotation

T3
Fig.6

T3

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 40 - 47

__

45
IJRITCC | January 2016, Available @ http://www.ijritcc.org
__

5.3 Single Rotation and Double Rotation:

5.3.1 Single Rotation:

 LL: Let X be the node with BF equal to +2 after

insertion of the new node A.

New node A is inserted in the left subtree of X. Balance nature

of the tree can be resyored through single right rotation of the

node X. It is shown in Fig.7

 RR: Let X be the node with BF equals to -2, after the

insertion of new node A.

New node A is inserted in the right subtree of the right subtree

of X. Balance nature of the tree can be restored through single

left rotation of the node X is shown in Fig.7.2.

5.3.2 Double Rotation:

 LR: Let X be the node with Bf equal to +2, after

insertion of the node. A balance factor of the node Y,

the left child of the node X becomes -1 after insertion

of A.

New node A is inserted in the right subtree of the left subtree

of X. Balance nature of the tree can be restored through

double rotation.

(a) node Y is rotated left (b) node is

rotated right

It is shown in fig.7.3

 RL: Let X be the node with BF==-2, after insertion of

the new node A. Balance factor of the node Y, the child

of the node X becomes +1 after insertion of A.

New node A is inserted in the left subtree of the right subtree

of X. Balance nature of the tree can be restored through

double rotation.

(a) Node Y is rotated right. (b) Node X is

rotated left. It is shown in fig.7.4

5.4 ‘C’ Function for insertion of an element into an AVL

Tree:

typedef struct node

{

Fig.7.1: Situation known as LL(left of leaf)

Fig.7.2: Situation known a RR (Right to right)

Fig.7.3: Situation known a LR (Right to Left)

Fig.7.4: Situation known a RL (Left to right)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 40 - 47

__

46
IJRITCC | January 2016, Available @ http://www.ijritcc.org
__

int data;

struct node *left,*right;

intht;

}node;

node *insert(node *T,int x)

{

if(T==NULL)

{

 T=(node*)malloc(sizeof(node));

 Tdata=x;

 Tleft=NULL;

 Tright=NULL;

}

else

 if(x>Tdata) // insert in right subtree

 {

 Tright=insert(Tright,x);

 if(BF(T==-2))

 if(x>Trightdata)

 T=RR(T);

 else

 T=RL(T);

 }

else

 if(x<Tdata)

 {

 Tleft=insert(Tleft,x);

 if(BF(T==2))

 if(x<Tleftdata)

 T=LL(T);

 else

 T=LR(T);

 }

 Tht=height(T);

 return(T)

}

5.5 ‘C’ Function to Find Height of AVL Tree:

int height(node *T)

{

 intlh,rh;

 if(Tleft==NULL)

 lh=0;

 else

 lh=1+Tleftheight;

 if(Tright==NULL)

 rh=0;

 else

 rh=1+Trightheight;

 if(lh>rh)

 return(lh);

 return(rh);

}

5.6 ‘C’ Function to Rotate Right:

node *rotateright(node *x)

{

node *y;

y=xleft;

xleft=yright;

yright=x;

xht=height(x);

yht=height(y);

return(y);

}

5.7 ‘C’ Function to Rotate Left:

node *rotateleft(node *x)

{

node *y;

y=xright;

x right =yleft;

yleft=x;

xht=height(x);

yht=height(y);

return(y);

}

5.8 ‘C’ Function to RR:

node *RR(node *T)

{

T=rotateleft(T);

return(T);

}

5.9 ‘C’ Function to LL:

node *LL(node *T)

{

T=rotateright(T);

return(T);

}

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 40 - 47

__

47
IJRITCC | January 2016, Available @ http://www.ijritcc.org
__

5.10 ‘C’ Function to LR:

node *LR(node *T)

{

Tleft=rotateleft(Tleft);

T=rotateright(T);

return(T);

}

References

[1] “Data Structures, Files and Algorithms” by A.K.

Abhyankar, Lecturer, Sinhgad college of Engineering.

[2] “Data Structures and Algorithms” by Dilip Kumar Sultania,

B.Tech(hons.) Computer Science and Engineering.

[3] “Data Structures and Program Design in C” by Kruse

Robert L .

[4] “Data Structures and Algorithm Analysis in C” by Mark

Allen Weiss.

[5] Adelson-Velskii, G.M and E.M. Landis, “An algorithm for

the Organization of information”

[6] Introduction to computer Organization and Data Structures

by Stone,H.S. McGraw-Hill from New York.

http://www.ijritcc.org/

