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Abstract: This paper is  about result of a series of simulation which investigates the performance of AVL tree. AVL Tree is a program develops in 

C++ to create and arrange data in hierarchical manner. 

In computer science, an AVL tree is a self-balancing binary search tree, and it was the first such data structure to be invented. In an AVL tree, the 

heights of the two child sub-trees of any node differ by at most one. Lookup, insertion, and deletion all take O(log n) time in both the average and 

worst cases, where n is the number of nodes in the tree prior to the operation. Insertions and deletions may require the tree to be rebalanced by one or 

more tree rotations. 
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Objective: The implementation of AVL tree will provide the detail information about how to balance an unbalanced tree by examining balance 

Factors, height & proper rotations. 

Balancing The Unbalanced Tree: This algorithm will calculate the balance factor of every node in a tree while inserting or deleting a node in a tree 

and if tree get unbalanced then our system convert it into a balanced tree. 

User Friendly Interface For Balancing The Unbalanced Tree. 

__________________________________________________*****_________________________________________________ 

 

I. Introduction 

An AVL (Adelson-velskii and Landis) tree is a ‘height 

balanced tree’ invented since 1962. In 1962, many 

alternatives have been proposed, with the goal of simpler 

implementation or better performance or both. This paper 

empirically examines the computational cost of insertion, 

deletion, and retrieval in AVL trees. An AVL tree is any 

rooted, binary tree with every node having the property. 

Balanced tree structures are efficient ways of sorting 

information. It provides an excellent solution for the 

dictionary data structure problem. For n elements the 

operations find, insert and delete can be done in O(log N) unit 

if time. These tress are binary search trees in which the heights 

of two siblings are not permitted more than one. 

II. Height Balanced tree: 

 The Minimum height of the binary tree having n nodes can be 

log2 (n)+1.But creating such tree will be difficult, because in 

binary search  tree the data will decide the place as to where it 

should be attached and in binary trees it will be the users 

decision as where a node should be, when user decides the 

place of the node.  

 An empty tree is height balanced. A binary tree with 

hl and hr as height of left and right subtree respectively is 

height balanced if | hl - hr  |<= 1. A binary tree is height 

balanced if every subtree of the given tree is height balanced. 
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 Example: 

For binary search tree, if data is given in sequence 

10,20,30 then the tree will be created as follows 

 

 

 

 

 

But if we change the root, we may get the tree as follows  

 

 

 

 

For performing such jobs, we will have to take the decisions, 

as how to replace the nodes or which node will be the new 

root, etc.  

 

Instead of minimizing the height as such we may define a 

factor which is associated with each node of the tree, say a 

Balance Factor. 

 

III. Balance Factor: 

 The balance factor, BF(T) of node T in a binary 

search tree is defined as hl - hr  where hl and hrare the heights 

of the left and the right sub trees of T.A binary search tree 

with balance factors is shown in fig (a). 

 
 

Tree of Fig. (1) is not an AVL tree. The balance factor of the 

node with data 40 is+2. Tress of Fig (b) is AVL- trees . 

 

 

 

Balance Factor =Height(node left)- Height(temoright) 

 

 Consider the following search tree 

 

10 

20 

30 

10 

20 

30 

Fig. 1: A sample BST with balance factors 

Fig (2): AVL trees 
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Height of tree with root 100 

i.e.T100=1+maximum(height(T64),height(T200)) 

 height (T64)=1+height(T30) 

 height(T30)=1+maximum(height(T21),height(T35)) 

 height(T21)=1+height(T10) 

 height(T10)=1 

Therefore 

 height(T21)=1+1=2 

 height (T30)=1+max(2,1)=1+2=3 

 height (T64)=1+3 

 height(T200)=6 

height(T100)=1+max(4,6)=1+6=7 

Let us see the balance factor of all the nodes in the previous 

tree. 

All the leaf nodes have a balance factor of 0. 

B_Factor(21)=1-0=1 

B_Factor(30)=2-1=1 

B_Factor(64)=3-0=3 

B_Factor(182)=0-1=-1 

B_Factor(184)=2-1=1 

B_Factor(181)=0-3=-3 

B_Factor(175)=0-4=-4 

B_Factor(301)=1-1=0 

B_Factor(200)=5-2=3 

B_Factor(100)=4-6=-2 

Thus we can say that the tree is not balanced. Also when we 

find the height of the subtrees, it was defined as height of Null 

tree is 0 and for the other trees, it is 1+max height among its 

subtrees. Thus the function is recursive. 

 

 The recursive function can also be written as 

follows. 

 

 typedef struct tree 

 { 

 intdat; 

struct tree *left, *right; 

 } 

int height(HBTR temp) 

{  

if (!temp) 

 return(0); 

return(1+max(height(templeft),height(tempright)

)); 

} 

 

Where max is a function which return the maximum of two 

values as follows. 

 

int max(inta,int b) 

{ 

if(a>b) 

 return(a); 

 return(b); 

} 

or it can also be written as 

int max(inta,int b) 

{ 

return(a>b?a:b) 

} 

 

or we can modify the height function as follows. 

 

int height(HBTR temp) 

{ 

if(temp) 

 {  

 p=height(templeft); 

 q=height(tempright); 

 return(1+(p>q?p:q)); 

 } 

return(0); 

} 

 

If we want to write a non-recursive function for 

finding the height of the tree, then we are required to follow 

the steps shown below. 

 

As we want to eliminate the recursion, we will have 

to use stack. But observe that the height of the function has 

been called and only one of these two values will be returned. 

Hence a single stack will not serve the purpose. Instead of this 

complicated way, we can very well go back to BFS, ehre we 

have written a function for finding number of levels. 
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IV. Structure of a Node in AVL Tree: 

Operations an AVL tree requires calculation of balance factor 

of nodes. To represent a node in AVL tree, a new field is 

introduced. This new field stores the height of the node. A 

node in AVL tree can be defined in the following way: 

typedef struct node 

{ 

 int data; 

 struct node *left,*right; 

 int height; 

}node; 

„C‟ Function for finding the Balance Factor of a node: 

 

int BF(node *T) 

{ 

intlh,rh; 

if(Tleft==NULL) 

 lh=0; 

else 

 lh=1+Tleftheight; 

if(Tright==NULL) 

 rh=0; 

else 

 rh=1+Trightheight; 

return (lh-rh); 

} 

/* the function height(), for finding the height of node is 

given below*/ 

 

int height(node *T) 

{ 

intlh,rh; 

if(Tleft==NULL) 

 lh=0; 

else 

 lh=1+Tleftheight 

if(Tright==NULL) 

 rh=0; 

else 

 rh=1+Trightheight 

if(lh>rh) 

 return(lh); 

return(rh); 

} 

 

 

 

V. Insertion of a Node into an AVL Tree: 

 

Insertion of a new data, say k into an AVL tree is carried out 

in two steps: 

 

1) Insert the new element, treating the AVL tree a 

binary tree. 

2) Update the balance factors (information, height) 

working upward from point of insertion to root. It 

should be clear that from point of insertion to the root 

may have their height altered. 

 

 The steps to insert a new element with value k into an 

AVL tree begins with comparing k with the value stored in the 

root. 

 If k is found to be larger than the value stored in T, 

then insertion is carried out into the right subtree else insertion 

is carried out into the left subtree. The recursion terminates 

when the left or right subtree to which insertion is to be made 

happens to be empty. 

 
 

 

 

 

 Consider the AVL tree from the given figure. Balance factor 

of each node is shown against the node. 

A new element with value 60 is inserted in a way we insert 

element in a binary search tree. After insertion of 60, the 

balance factor of root has become -2. Hence, it is no longer an 

AVL tree. The balance factor of the root has become -2, 

because the height of its right subtree rooted at (30) has 

increased by 1. 

 Rebalancing of the tree is carried out through rotation 

of the deepest node with BF=2 or BF= -2. 

 

 

(a)A sample AVL 

tree with balance 

factors 

(b) Tree of Fig(a) after 

insertion of 60. Tree is longer 

an AVL tree 

Fig. (3) 
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VI. Rotation: 

 

Fig.4 shows the rotation of tree of Fig.3. After 

rotation, the tree becomes an AVL tree. 

 

 Balance factor of node X in Fig.4(a) is -2. 

 Balance factor of -2, tells that the right subtree of X 

is heavier. 

 In order to rebalance the tree, the tree rooted at X 

(node with BF=-2) is rotated left. 

 

5.1     Rotate Left: 

 

 When a tree rooted at X is rotated left, the right child 

of X i.e Y will become the root. 

 The node X will become the left child of Y. 

 Tree T2 which was the left child of Y will 

become the right child of X. 

 

 

A program segment to rotate left a tree T, rooted at node X(as 

shown in Fig.5). 

node *temp; 

temp=Y left ; save the address of left child of Y. 

T=Yleft=X ; X becomes the left child of Y. 

Xright=temp; left child of Y becomes the right child of X. 

5.2 Rotate Right:  

 

  

  

 When a rooted at  

  

 

 When a rooted at X is rooted right, the left child of X 

i.e Y will become the root. 

 The node X will become the right child of Y. 

 Tree T2, which was the right child of Y will become 

the left child of X. 

 

 Balance factor of+2, tells that the subtree of X is 

heavier. In order to rebalance the tree, the tree rooted at X 

(node with BF=2) is rotated right; 

 A program segment  to rotate right a tree, rooted at 

node X(as shown in Fig.6). 

 

node *temp; 

temp=Yright; save the address of right child of Y. 

T=Y; Node Y becomes the root node. 

Yright=X; X becomes the right child of Y. 

Xleft=temp; right child of Y becomes the left child of X. 
(a) Tree with 

BF=-2 at 

node X 

(b)Tree after 

rotation 

(a) Tree with 

BF=2 at 

node X    

(b) Tree after 

rotation 

T3 
Fig.6 

T3 
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5.3 Single Rotation and Double Rotation: 

5.3.1 Single Rotation: 

 LL: Let X be the node with BF equal to +2 after 

insertion of the new node A. 

 

 
 

 

New node A is inserted in the left subtree of X. Balance nature 

of the tree can be resyored through single right rotation of the 

node X. It is shown in Fig.7  

 RR: Let X be the node with BF equals to -2, after the 

insertion of new node A. 

 

 

New node A is inserted in the right subtree of the right subtree 

of X. Balance nature of the tree can be restored through single 

left rotation of the node X is shown in Fig.7.2. 

 

5.3.2 Double Rotation: 

 LR: Let X be the node with Bf equal to +2, after 

insertion of the node. A balance factor of the node Y, 

the left child of the node X becomes -1 after insertion 

of A. 

 

New node A is inserted in the right subtree of the left subtree 

of X. Balance nature of the tree can be restored through 

double rotation. 

(a) node Y is rotated left    (b)  node is 

rotated right 

It is shown in fig.7.3 

 

 RL: Let X be the node with BF==-2, after insertion of 

the new node A. Balance factor of the node Y, the child 

of the node X becomes +1 after insertion of A. 

 

 

 

New node A is inserted in the left subtree of the right subtree 

of X. Balance nature of the tree can be restored through 

double rotation. 

(a) Node Y is rotated right.   (b)  Node X is 

rotated left.    It is shown in fig.7.4 

5.4  ‘C’ Function for insertion of an element into an AVL 

Tree: 

typedef struct node 

{ 

Fig.7.1: Situation known as LL(left of leaf) 

Fig.7.2: Situation known a RR (Right to right) 

Fig.7.3: Situation known a LR (Right to Left) 

Fig.7.4: Situation known a RL (Left to right) 
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int data; 

struct node *left,*right; 

intht; 

}node; 

node *insert(node *T,int x) 

{ 

if(T==NULL) 

{ 

 T=(node*)malloc(sizeof(node)); 

        Tdata=x; 

             Tleft=NULL; 

 Tright=NULL; 

} 

else 

 if(x>Tdata) // insert in right subtree 

 { 

  Tright=insert(Tright,x); 

  if(BF(T==-2)) 

  if(x>Trightdata) 

   T=RR(T); 

  else 

   T=RL(T); 

 } 

else 

  if(x<Tdata) 

 { 

  Tleft=insert(Tleft,x); 

  if(BF(T==2)) 

  if(x<Tleftdata) 

   T=LL(T); 

  else 

   T=LR(T); 

 } 

 Tht=height(T); 

 return(T) 

} 

 

5.5  ‘C’ Function to Find Height of AVL Tree: 

 

int height(node *T) 

{ 

 intlh,rh; 

 if(Tleft==NULL) 

  lh=0; 

 else 

  lh=1+Tleftheight; 

 if(Tright==NULL) 

  rh=0; 

 else 

  rh=1+Trightheight; 

 if(lh>rh) 

   return(lh); 

  return(rh); 

} 

 

5.6  ‘C’ Function to Rotate Right: 

 

node *rotateright(node *x) 

{ 

node *y; 

y=xleft; 

xleft=yright; 

yright=x; 

xht=height(x); 

yht=height(y); 

return(y); 

} 

 

5.7  ‘C’ Function to Rotate Left: 

 

node *rotateleft(node *x) 

{ 

node *y; 

y=xright; 

x right =yleft; 

yleft=x; 

xht=height(x); 

yht=height(y); 

return(y); 

} 

 

5.8  ‘C’ Function to RR: 

 

node *RR(node *T) 

 

{ 

T=rotateleft(T); 

return(T); 

} 

 

5.9   ‘C’ Function to LL: 

 

node *LL(node *T) 

 

{ 

T=rotateright(T); 

return(T); 

} 
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5.10  ‘C’ Function to LR: 

node *LR(node *T) 

{ 

Tleft=rotateleft(Tleft); 

T=rotateright(T); 

return(T); 

} 
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