
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 6 Issue: 4 106 -112

__

106

IJRITCC | April 2018, Available @ http://www.ijritcc.org
__

Predicting Software Reliability Using Ant Colony Optimization Technique with

Travelling Salesman Problem for Software Process – A Literature Survey

1
D. Hema Latha ,

2
Prof. P. Premchand

1
Research Scholar, Dept of Computer Science, Rayalaseema University, Kurnool, Andhra Pradesh, India

2
Professor, Dean, Faculty of Informatics, Dept of Computer Science and Engineering, UCE, Osmania University,

Hyderabad, TS, India

Abstract:-Computer software has become an essential and important foundation in several versatile domains including medicine, engineering,

etc. Consequently, with such widespread application of software, there is a need of ensuring software reliability and quality. In order to measure

such software reliability and quality, one must wait until the software is implemented, tested and put for usage for a certain time period. Several

software metrics have been proposed in the literature to avoid this lengthy and costly process, and they proved to be a good means of estimating

software reliability. For this purpose, software reliability prediction models are built. Software reliability is one of the important software quality

features. Software reliability is defined as the probability with which the software will operate without any failure for a specific period of time in

a specified environment. Software reliability, when estimated in early phases of software development life cycle, saves lot of money and time as

it prevents spending huge amount of money on fixing of defects in the software after it has been deployed to the client. Software reliability

prediction is very challenging in starting phases of life cycle model. Software reliability estimation has thus become an important research area

as every organization aims to produce reliable software, with good quality and error or defect free software. There are many software reliability

growth models that are used to assess or predict the reliability of the software. These models help in developing robust and fault tolerant

systems.

In the past few years many software reliability models have been proposed for assessing reliability of software but developing accurate

reliability prediction models is difficult due to the recurrent or frequent changes in data in the domain of software engineering. As a result, the

software reliability prediction models built on one dataset show a significant decrease in their accuracy when they are used with new data. The

main aim of this paper is to introduce a new approach that optimizes the accuracy of software reliability predictive models when used with raw

data. Ant Colony Optimization Technique (ACOT) is proposed to predict software reliability based on data collected from literature. An ant

colony system by combining with Travelling Sales Problem (TSP) algorithm has been used, which has been changed by implementing different

algorithms and extra functionality, in an attempt to achieve better software reliability results with new data for software process.

The intellectual behavior of the ant colony framework by means of a colony of cooperating artificial ants are resulting in very promising results.

Keywords: Software Reliability, Reliability predictive Models, Bio-inspired Computing, Ant Colony Optimization technique, Ant Colony

Optimization, Travelling Salesman problem and Quality Models.

___*****___

I. LITERATURE SURVEY

Literature survey is the most important step in software

development process. Before developing the tool it is

necessary to determine the time factor, economy and

company strength. Once these things are satisfied, then next

steps are to determine which operating system and language

can be used for developing the tool. Once the programmers

start building the tool the programmers need lot of external

support. This support can be obtained from senior

programmers, from book or from websites. Before building

the system the above consideration are taken into account

for developing the proposed system.

Considering the importance of software reliability in

software engineering, its prediction becomes a very

fundamental issue. Machine learning and soft computing

techniques [18],[19],[20] have been leading the statistical

techniques in last two decades as far as their applications to

software engineering are concerned. The related study of

this paper is as follows:

1).Shrivastava and Shrivastava (2014) propose applying GP

with Artificial Bee Colony (ABC). Experiments are

conducted on NASA data sets KC1 and PC1 as well as the

mushroom data set. The hybrid approach is compared to

neural gas, support vector machines (SVM) and symbolic

regression. The accuracy on testing is computed using 10-

fold cross validation. In KC1 and PC1, SVM out-beats all

other approaches by 4.65% and 2.19% respectively. The

hybrid GP-ABC obtains the best results on the mushroom

data set and outperforms others by 2.9% on average.

 2).A hybrid of ACO and GA is proposed by Maleki,

Ghaffari, and Masdari (2014) to optimize software cost

estimation utilizing the KLoC metric only. Ten NASA data

sets are used as benchmarks. The approach proves more

efficient than the COCOMO model (Boehm, 1981)

according to the Magnitude of Relative Error (MRE). 2.3.7

Artificial Bee Colony . Very little work exists using ABC

for software quality prediction models. Moreover, to the

best of the author‟s knowledge, no ABC approach has yet

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 6 Issue: 4 106 -112

__

107

IJRITCC | April 2018, Available @ http://www.ijritcc.org
__

been proposed for prediction of stability of classes in an OO

system.

3).Di Martino, Ferrucci, Gravino, and Sarro (2011) propose

a hybrid of GA and Support Vector Machines (SVM) for

inter-release fault estimation using the metrics of Chidamber

and Kemerer (1994). The GA‟s objective is to find a

suitable SVM parameter setting. The approach is compared

to six famous machine learning techniques namely Logistic

Regression, C4.5, Naïve Bayes, Multi-Layer Perceptrons,

K-Nearest Neighbor (K-NN) and Random Forest. Ten fold

cross validation is applied. The measurements for

comparison are accuracy, precision, recall and F-measure.

When tested on the jEdit PROMISE data set from

(Promise), the hybrid is found to be very effective especially

for inter-release fault estimation.

 4).Sarro, Di Martino, Ferrucci, and Gravino (2012) extend

the work of the hybrid approach proposed by Di Martino,

Ferrucci, Gravino, and Sarro (2011). In this study, the

approach is not only tested on six machine learning

techniques, but also on variants of SVM. It is validated on

several PROMISE data sets from (Promise): Log4j (versions

1.0, 1.1, 1.2), Lucene (versions 2.0, 2.2 and 2.4), POI

(versions 1.5, 2.0, 2.5 and 3.0), Xalan (versions 2.4, 2.5, 2.6

and 2.7), and Xerces (versions init, 1.2, 1.3 and 1.4). The

hybrid is shown to be effective even though it requires more

runtime than other models.

5). Farshidpour and Keynia (2012) propose training a multi-

layer perceptron (MLP) neural network using ABC for

software fault prediction. Their approach is compared to

MLP with back propagation. The authors conclude that

when the proper parameters are set to ABC, the neural

network can be effectively trained. Two approaches are

compared: MLP trained using ABC (MLP-ABC) versus

MLP trained using back propagation (MLP-BP).

Experiments are conducted on the NASA data sets CM1,

KC1, KC2. In terms of testing accuracy and testing

precision, MLP-ABC out-performs MLP BP on average by

1.4% and 1.8% respectively. Kayarvizhy, Kanmani, and

Uthariaraj (2014) propose optimizing the prediction

accuracy of artificial neural networks (ANN). They propose

training the ANN by using swarm intelligence techniques,

namely PSO, ACO, ABC and firefly. The aim is to obtain

the best parameters for the ANN, such as the number of

input neurons, number of hidden layers and hidden neuron,

number of output neuron, weights, etc. The authors compare

ANN-PSO, ANN-ACO, ANN-ABC and ANN-Firefly on

the following NASA data sets: Arc, Camel (versions 1.0,

1.2, 1.4 and 1.6), Intercafe and Tomcat. The authors

conclude that the best approach is ANN-PSO which reaches

the best results in 7 out of the 8 data sets. ANN-ABC is

ranked second best, reaching best results in 3 out of the 8

data sets.

6). Mohanty et al. (2010) [1], [2] the most recent state-of-

the-art review, by, justifies this declaration. In this paper,

the authors employed machine learning techniques [1],

specifically, Back propagation trained neural network

(BPNN), Group method of data handling (GMDH), Counter

propagation neural network (CPNN), Dynamic evolving

neuro–fuzzy inference system (DENFIS), Genetic

Programming (GP), TreeNet, statistical multiple linear

regression (MLR), and multivariate adaptive regression

splines (MARS), to accurately forecast software reliability.

 7). Rappos and Hadji constantinou (2004), in order to

design two-edge connected flow networks, use two types of

ant colonies sharing information about their pheromone

levels. This problem is about configuring a network in order

to satisfy demand nodes, provided that an extra arc is

considered to keep the network flowing in the case that one

of the arcs in the network fails.

The solution for this problem is constructed in two phases,

each of which solved by a different type of ants. One ant

colony is inhabited by flow ants and the other colony by

reliability ants.

The number of flow ants is the same as the number of

demand nodes and, although they all start constructing their

solution from the source node, each ant is assigned to reach

just one specific demand node. When all flow ants have

constructed their partial solutions, reaching their demand

node destination, the network is created. The next step

involves the reliability ants whose objective is to decide

upon the extra arc, called reliability arc, to be added to the

solution. For every flow ant a reliability ant is created and

associated with each arc visited by the flow ant. Therefore,

for each flow ant there is a set of reliability ants, as many as

arcs in the solution of the flow ant. The objective of a

reliability ant is to find an alternative path from the root

node to the same destination node of the flow ant as long as

it does not use a particular arc, from the ones used in the

solution of the flow ant. This ACO algorithm provides a

single feasible solution at each iteration, which is only

entirely defined when all partial solutions of the flow ants

have been assembled together, and the extra arc found by

the reliability ants is identified.

8).Baykasoglu et al (2006) solve a dynamic facility layout

problem, where each ant has to decide, for each period t, the

location of the n departments considered. The authors use a

string with size t × n to represent the final solution, where

the first n consecutive values identify the department

locations for the first period; the second n consecutive

values give the locations for the second period, and so on.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 6 Issue: 4 106 -112

__

108

IJRITCC | April 2018, Available @ http://www.ijritcc.org
__

Therefore, to construct a solution, all an ant has to do is to

choose t × n elements of the type department location,

accordingly to the pheromone levels, and provided that,

within a time period, no department location is repeated,

thus guaranteeing the construction of a feasible solution.

9).Crawford and Castro (2006), Solved partitioning and

covering problems by ACO algorithms. In this case, given a

set of columns and rows, the objective is to choose a subset

of columns covering all rows while minimizing cover costs.

The solution is represented by a subset of columns. This

implies a different approach, from the ones we have been

mentioning before, because the solution components are

represented by nodes and not by arcs, a fact that simplify the

calculations. The construction is straightforward. Each ant

starts with an empty set of columns. Then, the ant adds

columns one at the time, based on pheromone values, until

all rows are covered. Solutions constructed in this way, can

be unfeasible in the partitioning case because a row may be

covered by more than one column. That is why post

processing procedures, that will try to eliminate redundant

columns, are added afterwards in order to turn unfeasible

solutions into feasible ones.

10).Chen and Ting (2008) The Single Source Capacitated

Facility Location Problem deals with the location of a set of

facilities, with a limited capacity on the supply, and the

allocation of a single facility to each customer so as to

satisfy customer demands and minimize total costs propose

an algorithm to solve it which integrates an Ant Colony

System with two types of ants, location ants and assignment

ants.

11). The first work to propose Genetic Programming (GP) in

software engineering in general is that of Khoshgoftaar,

Evett, Allen, and Chien (1998) and Evett, Khoshgoftaar,

Chien, and Allen (1998). GP approach is introduced

specifically for reliability enhancement of software

modules. The GP is based on definitions by Koza (1994).

The metrics used are related to lines of code, operator and

cyclomatic complexity (McCabe, 1976). The metrics are

proved to be associated with reliability estimation according

to Fenton and Pfleeger (1993) . In this study, the evaluation

of the GP relies on Pareto‟s law which implies that “20% of

the modules will typically account for about 80% of the

faults.” The approach is found to be robust as opposed to

random model when tested on two large industrial projects:

Ada-written Command Control and Communications

System (CCCS) and Pascal-written legacy

telecommunication system.

 Another GP approach is proposed by Liu and Khoshgoftaar

(2001) to predict fault-proneness and change-proneness

using large Windows-based applications written in C++

programming language. Accounting for over-fitting, GP

only uses a random subset selection of the data. GP is then

tested on the entire data set given product and process

metrics. The proposed GP is novel in the sense that it

integrates prior probability as well as misclassification cost

into its fitness function. It is demonstrated that, when

compared to logistic regression, GP achieves better results

in terms of Type-I and Type II errors. GP also obtains an

average of 9% improved accuracy over logistic regression.

 12).Yongqiang and Huashan (2006) propose GP for

predicting software reliability based on Mean Time Between

Failures (MTBF). When compared to some statistical

 5 This is simply a variation of the GP proposed by

(Montana, 1995) models as well as Neural Networks, GP

gives more accurate results and hence is shown to be a

reliable model for this problem.

 13).Khoshgoftaar and Liu (2007) [10] also use multi-

objective fitness functions for their proposed GP. However,

in their case, the first objective is minimizing their newly

proposed measure called “Modified Expected Cost of

Misclassification” (MECM), while the second objective is

to optimize the number of fault-prone modules. The

problem at hand is that of fault-proneness estimation using

four product metrics related to the number of lines and one

process metric related to the “number of times the source

file was inspected prior to system test.” Results show how

the newly proposed approach can give acceptable

performance without much deterioration in accuracy

(between 1% and 18%), Type-I misclassification rate

(between 1% and 3%) and Type-II misclassification rate

(between 1%and 4%) on testing data sets.

14). Tsakonas and Dounias (2008) apply GP to four NASA

data sets, namely CM1, KC1, KC2 and PC1 to predict

software defect. They use the metrics of Halstead (1977)

and McCabe (1976). The approach is compared to that of

Menzies, DiStefano, Orrego, and Chapman (2004) and

Menzies, Greenwald, and Frank (2007) using the Probability

of Defect (PD) and Probability of Failure (PF) measures. It

is found to be competitive in terms of its simplicity and

accuracy.

 15).Sheta and Al-Afeef (2010) use the developed lines of

code and methodology metrics only in order to predict

effort. GP is applied to NASA data sets presented by Bailey

and Basili (1981). When compared to other models such as

fuzzy logic, Halstead, Walston-Felix, Bailey-Basili, and

Doty models, the GP shows a higher efficiency.

 16).Bouktif, Sahraoui, and Antoniol (2006) use Simulated

Annealing (SA) and Bayesian Classifiers (BC) to predict

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 6 Issue: 4 106 -112

__

109

IJRITCC | April 2018, Available @ http://www.ijritcc.org
__

software stability. Their approach takes the BC as an input

and adapts it using SA. The approach is found to be superior

to the results of the best initial expert used built using

Bayesian Classifiers (BC).

17). Another SA approach is that of Uysal (2008) for

software component effort estimation. The approach is

compared to that of Sheta (2006) and found to be a better

estimation model.

 18).Vandecruys et al. (2008) suggest the use of Ant Colony

Optimization (ACO) for software fault-estimation. The

proposed model, called Ant Miner+, uses a graph

implementation of the classification rules. Each metric is a

node. The path that the ant takes is considered to be the

classification itself. For testing purposes, three open-source

data sets of NASA software projects were used: PC1, PC4

and KC1. The approach is found to be competitive with

techniques like C4.5, logistic regression and SVM,

especially in the case of intuitiveness and comprehensibility.

 Azar and Vybihal (2011) propose an adaptive approach

which takes as input already existing models and adapts

them to new unseen data. An ACO is built for this purpose.

Here also, the approach is tested on stability of classes in an

Object-Oriented system. Experimental results prove the

superiority of the proposed model over C4.5 and random

guessing.

19). Cai et al. (1991) presented a review on software

reliability modeling. The review discussed different types of

probabilistic software reliability models and their

shortcomings.

20).Karunanithi et al. (1991) [5] employed the BPNN to

predict the software reliability and found that the NN

models were consistent in prediction and their performance

is comparable to that of other parametric models.

21). Karunanithi et al. (1992b) [5] predicted software

reliability using a new connectionist approach which offers

easy construction of complex models and estimation of

parameters as well as good adaptability for different dataset.

They used dataset collected from different software systems

to compare the models. Based on the experiments, they

found that the scaled representation of input–output

variables provided better accuracy than the binary coded (or

grey coded) representation. The experimental result

obtained by them showed that the connectionist networks

had less end point prediction errors than parametric models.

22).Karunanithi et al. (1992a) [6] ,[15] presented a solution

to the scaling problems in which they used a clipped linear

unit in the output layer.

 23).Khoshgoftaar et al. (1992) [7], [8] explored the use of

NN for predicting the number of faults in a program. They

used static reliability modeling and compared its

performances with that of regression models. They used

dataset obtained from Ada development environment for the

command control of a military data line communication

system. They found that the absolute relative error of NN is

less compared to regression model. Two decades as far as

their applications to software engineering.

24).Khoshgoftaar and Szabo (1994) [9], [10], [16] used the

principal component analysis (PCA) on NN for improving

predictive quality. They used regression modeling and NN

modeling.

 25).Okamura and Dohi introduced a method by using

Expectation-maximization (EM) principal. This paper

considers an EM (expectation-maximization) based scheme

for record value statistics (RVS) models in software

reliability estimation. The RVS model provides one of the

generalized modeling frameworks to unify several of

existing software reliability models described as non-

homogeneous Poisson processes (NHPPs). The proposed

EM algorithm gives a numerically stable procedure to

compute the maximum likelihood estimates of RVS models.

II. PROPOSED METHODOLOGY

A. Ant Colony Optimization Technique

Ant Colony is one of the techniques of bio inspired

computing. The main concept of this is technique is that the

self-organizing rules which allow the highly synchronized

behavior of real ants can be utilized to manage populations

of artificial agents that cooperate to solve computational

problems. Various distinctive attributes of the behavior of

ant colonies have inspired different kinds of ant algorithms.

Examples are foraging, distribution of labor, issue sorting,

and cooperative transport. Ants coordinate their activities

via stigmergy, a form of implicit interaction mediated by

changes in the environment. For example, a foraging ant

deposit a chemical on the ground which raises the

probability that other ant will follow the same path.

Biologists have presented that many colony-level behaviors

witnessed in social insects can be described through

relatively simple models in which only stigmergic

communication is present. In other words, biologists have

shown that it is often sufficient to consider stigmergic,

indirect communication to explain how social insects can

attain self-organization. The notion behind ant algorithms is

to use a form of artificial stigmergy to coordinate societies

of artificial agents. One of the most effective examples of

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 6 Issue: 4 106 -112

__

110

IJRITCC | April 2018, Available @ http://www.ijritcc.org
__

ant algorithms is known as „„ant colony optimization‟‟, or

ACO. ACO is motivated by the foraging behavior of ant

colonies, and targets discrete optimization problems. The

ants may deposit a pheromone on the ground while

returning back to their nests. The ants follow with high

probability pheromone trails their sense on the ground.

Each Ant evaluates the next move to another vertex based

on Gambardella et al., [21], [22],[23]

p

k
ij is the probability for a worker K to move to vertex “ij”

ij τ is the amount of pheromone deposited on edge to “ij”

η is the inverted distance, describes how fast ants select their

path.

The tour cost of each ant is given by di j the tour cost from

the city i to city j (edge weight) is calculated and hence the

shortest path is found. This is applied to the Travelling Sales

Person Problem and optimized solutions are obtained using

The amount of pheromone deposited by each ant is given by

B. Algorithm for Ant Colony Optimization with

travelling salesman concept

The ACO algorithm which has been proposed based on the

study that real ants are skilled in finding the shortest path

from a food source to the nest without using visual signals.

From the originating point the ants start the tour selecting

randomly any path. The ACO algorithm is as follows:

1. Set the initial parameters.

2. Initialize pheromone trails.

3. Calculate the maximum specific ways in which the

ants can travel.

4. Loop //iteration

5. Each ant is positioned at a given node randomly

selecting the node according to some distribution

strategy (each node has at least one ant)

6. For k=1 to m do //steps in a loop

7. The first step: move each ant in a different route

8. Repeat //till all the nodes are visited

9. Select node j to be visited next // the next node

must not be an already visited node

10. Apply local updating rule

11. Until ant k has completed a tour

12. End for

13. Apply sub tour that is sub Local search // to

improve tour

14. Apply global updating rule

15. Compute entropy value of current pheromone trails

16. Update the heuristic parameter

17. Until End_condition

18. End

C. Flow chart for Ant Colony Optimization

The flow chart for Ant Colony Optimization (ACO)

algorithm with travelling salesman problem is shown in fig

(1)

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 6 Issue: 4 106 -112

__

111

IJRITCC | April 2018, Available @ http://www.ijritcc.org
__

Figure. 1. Flow chart of the ACO algorithm with travelling

salesman problem

III. CONCLUSION

In this paper the authors discussed about the literature

review for predicting software reliability and the proposed

methodology.

The algorithms employed in this work are inspired by an

observation emphasizing on real ants nature i.e. foraging

and searching abilities that can provide good answers to

genuine and real time optimization and software reliability

solutions.

The exploration is still in progress as many of the facets of

ACO algorithm are still to be unraveled. It is expected that

this study stimulates further discussion for better reliability

solutions.

REFERENCES

[1] R. K. Mohanty, V. Ravi, and M. R. Patra, “Hybrid

intelligent Systems for predicting Software reliability,”

Elsevier, Applied Soft Computing, vol. 13, No. 1, pp.

189-200, 2013.

[2] R. K. Mohanty, V. Ravi, and M. R. Patra, “Application

of Machine learning Techniques to Predict software

reliability,” International Journal of Applied

Evolutionary Computation, vol. 1, No.3, pp. 70-86, 2010.

[3] K. Cai, C. Yuan, and M. L. Zhang, “A critical review on

software reliability modeling,” Reliability engineering

and Systems Safety, vol. 32, pp. 357-371, 1991.

[4] T. Dohi, Y, Nishio, and S. Osaki, “Optional software

release scheduling based on artificial neural networks,”

Annals of Software engineering, vol. 8, pp. 167-185,

1999.

[5] N. Karunanithi, Y. K. Malaiya, and D. Whitley, “The

scaling problem in neural networks for software

reliability prediction,” In Proceedings of the Third

International IEEE Symposium of Software Reliability

Engineering, Los Alamitos, CA, pp. 76- 82, 1992a.

[6] N. Karunanithi, D. Whitley, and Y.K. Malaiya,

“Prediction of software reliability using connectionist

models,” IEEE Transactions on Software Engineering,

vol. 18, pp. 563-574, 1992b.

[7] T. M. Khoshgoftaar, D. L. Lanning, and A. S. Pandya,

“A neural network modeling for detection of high-risk

program,” In Proceedings of the Fourth IEEE

International Symposium on Software reliability

Engineering, Denver, Colorado, pp. 302-309, 1993.

[8] T. M. Khoshgoftaar, and P. Rebours, “Noise elimination

with partitioning filter for software quality estimation,“

International Journal of Computer Application in

Technology, vol. 27, pp. 246-258, 2003.

[9] T. M. Khoshgoftaar, A.S. Pandya, and H.B. More, “A

neural network approach for predicting software

development faults,” In Proceedings of the third IEEE

International Symposium on Software Reliability

Engineering, Los Aiamitos, CA, pp. 83- 89, 1992.

[10] T. M. Khoshgoftaar, E. B. Allen, and J.P. Hudepohl, S.J.

Aud, “Application of neural networks to software quality

modeling of a very large telecommunications system,”

IEEE

[11] Transactions on Neural Networks, vol. 8, No. 4, pp. 902-

909, 1997.

[12] T. M. Khoshgoftaar, E.B. Allen, W. D. Jones, and J. P.

Hudepohl, “Classification –Tree models of software

quality over multiple releases,” IEEE Transactions on

Reliability, vol. 49, No. 1, pp. 4-11, 2000.

[13] J. R. Koza, “Genetic Programming: On the Programming

of Computers by Means of Natural Selection”.

Cambridge, MA: The MIT Press, 1992.

[14] J. D. Musa, Iannino, A., and K. Okumoto, “Software

Reliability, Measurement, Prediction and Application,”

McGraw-Hill, New York, 1987.

[15] J. D. Musa,”Software reliability data,” IEEE Computer

Society- Repository, 1979.

[16] N. Karunanithi, D. Whitley, and Y.K. Malaiya,

“Prediction of software reliability using neural

networks,” International Symposium on Software

Reliability, pp. 124-130, 1991.

[17] T.M. Khoshgoftaar, and R.M. Szabo, “Predicting

software quality, during testing using neural network

models: A comparative study,” International Journal of

Reliability, Quality and Safety Engineering, vol. 1, pp.

303-319, 1994.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 6 Issue: 4 106 -112

__

112

IJRITCC | April 2018, Available @ http://www.ijritcc.org
__

[18] L. Tian, and A. Noore, “Evolutionary neural network

modeling for software cumulative failure time

prediction,” Reliability Engineering and System Safety,

vol. 87, pp. 45-51, 2005b.

[19] N. Rajkiran, and V. Ravi. “Software Reliability

prediction by soft computing technique,” The Journal of

Systems and Software, vol. 81, No.4, pp. 576-583, 2007.

[20] N. Rajkiran, and V. Ravi, “Software Reliability

prediction using wavelet Neural Networks,” International

Conference on Computational Intelligence and

Multimedia Application (ICCIMA, 2007), pp. 195-197,

2007

[21] V. Ravi, N. J. Chauhan, and N. RajKiran., “Software

reliability prediction using intelligent techniques:

Application to operational risk prediction in Firms,”

International Journal of Computational Intelligence and

Applications, vol.8, No. 2, pp. 181-194, 2009.

[22] L. M. Gambardella, E. D. Taillard, and M. Dorigo, “Ant

Colonies for the Quadratic Assignment Problem,”

Journal of the Operational Research Society, The Journal

of the Operational Research Society, vol. 50, No.2, pp.

167-176,1999.

[23] L. M. Gambardella, E. D. Taillard, and G. Agazzi,

“MACSVRPTW: A multiple ant colony system for

vehicle routing problems with time windows,” In D.

Corne, M. Dorigo, and F. Glover, editors, New Ideas in

Optimization, pp. 63–76. Hill, London, UK, 1999.

[24] L. M. Gambardella, E. D. Taillard, and M. Dorigo, “Ant

colonies for the quadratic assignment problem,” Journal

of the Operational Research Society, vol.50, No.2,

pp.167–176, 1999.

