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Abstract—Speech Recognition is correctly transcribing the spoken utterances by the machine. A new area that is emerging for the representation 

of the sequential data, such as Speech Recognition is Deep Learning. Deep Learning frameworks such as Recurrent Neural Networks(RNNs) 

were successful in replacing the traditional speech models such as Hidden Markov Model and Gaussian mixtures. These frameworks boosted the 

recognition performances to a large context. RNNs being used for sequence to sequence modeling, is a powerful tool for sequence labeling. End-

to-End methods such as Connectionist Temporal Classification(CTC) is used with RNNs for Speech Recognition. This paper represents a 

comparative analysis of RNNs with End-to-End Speech Recognition. Models are trained with different RNN architectures such as Simple RNN 

cells(SRNN), Long Short Term Memory(LSTMs), Gated Recurrent Unit(GRUs) and even a bidirectional RNNs using all these is compared on 

Librispeech corpse. 
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I.  INTRODUCTION  

Speech is the basic form in which a human passes the 

information in voice form. Now-a-days, due to increase in 

use of electronic gadgets, recognizing the speech through 

machine has become an important aspect. Many physically 

challenged and visually impaired people can make use of 

such system. With the help of speech as an input, such people 

can use the technology and become expertise. However, 

speech recognition has to face challenges such as speech 

classes, speech styles, vocabulary, transducers, illness and 

channels; due to all this constraints the noise factor in 

automatic speech recognition is high[1]. 

Speech recognition involves analysis of speech signals to 

correctly identify the spoken words with the used of training 

its features. Speech signals are 1-D vector representation. 

Few of algorithms to extract the features from Artificial 

neural networks (ANN) are, linear prediction cepstrum 

coefficients (LPCC), Mel Frequency cepstrum coefficients 

(MFCC), combination of Linear Prediction coefficients and 

Mel Cepstrum coefficients (LPCMCC), the Support Vector 

Machine (SVM); combination of HMM and SVM etc [2]. 

One of the commonly used method to extract the feature from 

speech signal is Mel Frequency Cepstral Coefficient 

(MFCC). Being this a supervised system, text transcriptions 

along with speech signals are also passed in the form of 

input. 

The flow chart of end-to-end system is shown in figure 1. 

This paper describes the comparison of RNN methods for 

end-to-end systems. The organization of this paper is as 

follows: Section I is the introduction for the topic. Section II 

is the literature survey for preprocessing method and 

Recurrent Neural Networks. Section III and Section IV is the 

introductory paragraphs for Connectionist Temporal 

Classification (CTC) and Decoding method used 

respectively. Section V is the comparatively analysis for 

different RNN architectures described in literature survey. 

Section VI is the future work followed by Section VII, which 

is conclusion for the paper.     

II. LITERATURE SURVEY 

Speech Recognition is transforming different speech 

signals into feature arrays, and these arrays are later supplied 

to the RNNs for training the model. 
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Figure 1. Algorithm 

A. Method 

1) Data 

       Librispeech corpse is English Speech corpse of 1000 

hours derived from audio books that are part of the 

LibriVox project, and contains 1000 hours of speech 

sampled at 16kHz[3]. 

 

2) Framing or Windowing 

         Audio signals are non-stationary i.e. the properties 

changes very quickly. It is necessary to split them into frames 

where these are assumed to be stationary. This is known as 

windowing or framing. A window of 10ms is used in our 

project. 

 

3) Feature Extraction 

           In this paper, the feature extraction technique call Mel 

Frequency Cepstral Coefficients (MFCC) is used. The 

general procedure of mel-cepstrum extraction actually 

involve, dividing the signal into frames, to obtain the power 

of spectrum, to convert the melspectrum and lastly uses the 

Discrete Cosines Transform (DCT) to get the cepstrum 

coefficient[4]. 

 

B. Recurrent Neural Networks (RNNs) 

There are two kinds of neural networks, namely, feed-

forward and feed-backwards. Feed-forwards are the networks 

where the data flows in forward direction i.e. from input to 

output and there are no backward connections. Feed-

backwards are the networks where there are backward 

connections i.e. the current input data depends on the 

previous output. 

RNNs are a type of feed-backward neural network. The 

output of the current timestamp depends on previous 

timestamp. There is memory assigned to every cell of RNN. 

This memory keeps the track of previously computed outputs. 

Thus, long term dependencies are taken care of.   

  

 
Figure 2. Recurrent Neural Networks 

 

1)    Simple Recurrent Neural Network(SRNN) 

Simple RNN consists of three layer, input, output 

and hidden layer. All the information from the current 

timestamp is passed as current output and the input to the 

next timestamp. 

Figure 3 shows the way weights are assigned to 

SRNN. There are two output equations, which are 

involved in SRNN.  

First, the information from the previous 

timestamp(t-1) to next hidden unit in the next 

timestamp(t). 

 
Figure 3. Simple Recurrent Neural Network 

 

h(t) = gh(WxX(t)
  
+ Whh(t-1) + bh)  

 

Thus, current hidden layer is a summation of current input 

multiplied by its weights, plus info from the hidden layer of 

previous timestamp plus biases, applied by the activation 

function. Second, the output at that particular timestamp 

 

Y(t) = gy(Wyh(t) + bh) 

 

Thus, it is the summation of current hidden layer 

multiplied by its weights, plus biases, applied by the 

activation function. Where, W and b are weights and biases 

respectively, and g is the activation function. 

Although Simple RNNs are capable of learning sequential 

time series patterns, they have vanishing and exploding 

gradient problem that affects their performance. Also, they 

can’t carry out long term dependencies of sequential data. 
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2)  Long Short Term Memory(LSTM) 

        The problem of vanishing and exploding gradient is 

solved by LSTMs. The idea behind is the short term memory, 

which has to last for a long time. LSTM is the abstraction of 

computer memory that works along with recurrent neural 

networks. LSTMs have special blocks, known as gates, 

allows only a specific amount of information to be gated in 

and then the information to be gated out. Within intermediate 

time, these gates are closed, so that other information doesn’t 

interfere.  

 

Input gate: Responsible for how much of the output data to 

be written in memory cell. It receives the input data as well 

as the information from the previous cell. 

 

Output gate: Responsible for sending information from 

LSTM back to recurrent network. It receives the input data 

and the data from the memory cell. 

 

Forget gate: Responsible for the data maintenance in memory 

cell. It receives the same input data from the gates and the 

networks, but calculates how much data to remember. 

  
Figure 4. A memory block of LSTM[5] 

The equations involved for the timestamp t are: 

 

       i(t) = gh(WixX(t) + With(t-1) + Wicc(t-i) + bi) 

       f(t) = gh(WfxX(t) + Wfhh(t-1) + Wfcc(t-1) + bf) 

       c(t) = f(t)oc(t-1) + i(t)ʘ ᴓ(WcxX(t) + Wchh(t-1) + bc) 

       o(t) = gh(WoxX(t) + Wohh(t-1) + Wocc(t) + bo) 

       h(t) = o(t)ʘ ᴓ(c(t)) 

 

where i(t), o(t), f(t), and c(t) are the outputs of the input gate, 

output gate, forget gate and memory cells respectively. The 

Wx  weight matrices connect the inputs with the units, 

whereas the Wh weight matrices connect the previous 

memory cell states with the units, the Wc terms are diagonal 

weight matrices for peephole connections. Also, gh is the 

logistic sigmoid non-linearity, and ᴓ is the hyperbolic tangent 

nonlinearity[5]. 

 

3)  Gated Recurrent Unit(GRU) 

            Gated Recurrent Unit (GRUs) is a variation of LSTM. 

The difference between LSTMs and GRUs, is LSTM have 

four gates to control its memory contains whereas GRU have 

two gates to control its memory contains. As a result, GRU is 

easier to train. 

 

 
Figure 5. Gated Recurrent Unit[6] 

 

GRU have two gates and does not have the memory cell[7]. 

 

Update gate: Responsible for holding the information of 

previous timestamp. It receives the input of the current 

timestamp.  

 

Reset gate: Responsible for the amount of information that is 

to forget. 

 

The equations involved for the timestamp  t are: 

z(t) = gh(WzX(t) + Uzh(t-1)) 

r(t) = gh(WrX(t) + Urh(t-1)) 

ĥ(t) = tanh(WxX(t) + r(t) ʘ Uh(t-1)) 

h(t) = z(t) ʘ h(t-1) + (1 – z(t) ʘ h(t)) 

 

Where, z(t) and r(t) are the outputs of update gate and read 

gate respectively. W(z) and W(r) are the weight matrices in 

reference to update gate and read gate respectively. ĥ a 

memory content which will use the reset gate to store the 

previous information, h(t) is vector that holds current 

information and passes it down to the network. 

 

4) Bidirectional Recurrent Neural Network(BRNN) 

        One of the limitations of traditional RNN is that they 

are only able to use previous timestamp information. In 

bidirectional RNN, the input information can be trained from 

both past and future timestamp. The states of the RNN are 

split into positive direction i.e forward direction and negative 

direction i.e backward direction. Finally, positive direction 

and negative direction outputs are added and provided to the 

next layer. 
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Figure 6. Bidirectional Recurrent Neural Network[8] 

 

The equations involved for the timestamp t are: 
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      Where, h
F

(t) is the forward hidden output, h
B

(t) is the 

backward hidden output and Y(t) is the final output of the 

bidirectional recurrent layer. 

III. CONNECTIONIST TEMPORAL CLASSIFICATION 

(CTC) 

     Speech recognizer converts the sequences of utterances 

into a sequences of words. Input sound utterances may be 

much longer than output words, i.e. the input and output will 

be of different lengths, which creates a problem for our 

standard RNN architecture. Thus, Connectionist Temporal 

Classification (CTC) comes to rescue.  

     There is always a blank symbol associated with CTC. So, 

for k number of graphemes, we have k+1 total classes. With 

all these decision, the network will decide whether to output 

the alphabet or a blank symbol. 

Connectionist Temporal Classification (CTC) works with 

Softmax function. Softmax layer defines the probability 

output distribution Pr(k|t) at every timestamp along with 

input [9]. 

IV. DECODING 

Before decoding the network refers to the process by 

which the model finds the most probable output transcription 

y given an input x. Here, CTC decoding method is used. The 

rule used for decoding is: Given a specific character sequence 

c, squeeze out duplicates and blanks to yield transcriptions 

[10]. 

V. COMPARATIVE ANALYSIS 

      This section consists of two parts: First the part is training 

and second is analysis. 

A) Training 

            The RNN Models is trained on GPU GeForce GTX 

1060 6GB. RNN is trained on ‘train-clean-100’ of 100 hours 

set and validated on ‘dev-clean’. All the Models consists of 

common hyper-parameters such as learning rate of 0.001 and 

momentum with 0.99. The optimizer used is Stochastic 

Gradient Descent(SGD) with nesterove value true, delay with 

value (1e-6) and clipnorm with value 5. The network of RNN 

layers consists of 3 and there are 200 cell units for each layer. 

Number of epochs are 20 with mini-batch size of 10.  There 

are total of 28 characters that has to be recognized in the 

dataset (26 alphabets, apostrophe (‘), space). Batch 

normalization and dropout techniques are used to avoid 

overfitting of the model. 

 

B) Analysis and Graphs 

            The metrics for evaluation is loss and mean square 

error(mse). The model with the numbers is described below: 

model_0: A Simple RNN model. 

model_1: A Long Short Term Memory model. 

model_2: A Gated Recurrent Unit model. 

model_3: A Bidirectional Simple RNN model. 

model_4: A Bidirectional Long Short Term Memory model. 

model_5: A Bidirectional Gated Recurrent Unit model. 

 

 
Figure 7. Epoch vs Training Loss Graph 

 

 
Figure 8. Epoch vs Validation Loss Graph 
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Figure 9. Epoch vs Training Mean Square Error Graph 

 

 
Figue 10. Epoch vs Validation Mean Square Error Graph  

  Model_0 and model_3 have almost same loses. 

Simple RNN and bidirectional simple RNN does not show 

any changes with respect to all the metrics. Increasing the 

number of epoch makes a significant difference for both 

models   

Model_1 and model_4 (both variant of LSTMs) 

have constant loss, can be improved by changing model 

capacity and regularization techniques.  

Model_2 and model_5, a GRU implementation, 

shows a large difference between the losses. Model_5 gave 

the best results for among all the models, in every metrics. 

These results can be further improved by increasing the 

number of epochs.  

 

 

 trained 

loss 

trained 

mse 

validatio

n loss 

validatio

n mse 

model_0 111.646 14990.1 104.336 13686.1 

model_1 770.269 671984 664.867 510042 

model_2 102.964 12855.1 97.0203 11871.8 

model_3 103.952 13129.5 98.8551 12433.4 

model_4 770.382 672207 668.245 517052 

model_5 69.7156 6100.63 87.0962 9984.63 

Table1: A table of comparison for all models and their 

metrics. 

VI. CONCLUSION AND FUTURE WORK 

      This paper demonstrates various RNN architecture on a 

common hyper-parameters. Training loss can be further 

reduced by increasing the number of epochs. The validation 

loss can be reduced with hyper-parameters tuning. To make 

the results easy to produce and to compare, all networks are 

implemented on the common Keras, networks API, written in 

Python with TensorFlow as backend. A bidirectional version 

of GRU gave the best results with least training loss of 69.71. 

Future work will comprise of effective training of RNNs with 

more efficient methods, for example, the use of convolution 

neural networks with RNNs[13]. In addition, using of more 

comprehensive features [11] and using a different RNN 

training toolkit [12] inducing more advanced features.  
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