
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 6 Issue: 4 88 - 93

__

88

IJRITCC | April 2018, Available @ http://www.ijritcc.org

Recurrent Neural Networks for End-to-End Speech Recognition: A Comparative

Analysis

Gauri Dhande

M.Tech.

The Department of Computer Engineering

K.J.Somaiya College of Engineering

Mumbai, Maharashtra 400077

Email:gauri.dhande@somaiya.edu

Prof. Zaheed Shaikh

The Department of Computer Engineering

K.J.Somaiya College of Engineering

Mumbai, Maharashtra 400077

Email: zaheedshaikh@somaiya.edu

Abstract—Speech Recognition is correctly transcribing the spoken utterances by the machine. A new area that is emerging for the representation

of the sequential data, such as Speech Recognition is Deep Learning. Deep Learning frameworks such as Recurrent Neural Networks(RNNs)

were successful in replacing the traditional speech models such as Hidden Markov Model and Gaussian mixtures. These frameworks boosted the

recognition performances to a large context. RNNs being used for sequence to sequence modeling, is a powerful tool for sequence labeling. End-

to-End methods such as Connectionist Temporal Classification(CTC) is used with RNNs for Speech Recognition. This paper represents a

comparative analysis of RNNs with End-to-End Speech Recognition. Models are trained with different RNN architectures such as Simple RNN

cells(SRNN), Long Short Term Memory(LSTMs), Gated Recurrent Unit(GRUs) and even a bidirectional RNNs using all these is compared on

Librispeech corpse.

Keywords - Speech recognition, Recurrent Neural Networks, End-to-End model

__*****___

I. INTRODUCTION

Speech is the basic form in which a human passes the

information in voice form. Now-a-days, due to increase in

use of electronic gadgets, recognizing the speech through

machine has become an important aspect. Many physically

challenged and visually impaired people can make use of

such system. With the help of speech as an input, such people

can use the technology and become expertise. However,

speech recognition has to face challenges such as speech

classes, speech styles, vocabulary, transducers, illness and

channels; due to all this constraints the noise factor in

automatic speech recognition is high[1].

Speech recognition involves analysis of speech signals to

correctly identify the spoken words with the used of training

its features. Speech signals are 1-D vector representation.

Few of algorithms to extract the features from Artificial

neural networks (ANN) are, linear prediction cepstrum

coefficients (LPCC), Mel Frequency cepstrum coefficients

(MFCC), combination of Linear Prediction coefficients and

Mel Cepstrum coefficients (LPCMCC), the Support Vector

Machine (SVM); combination of HMM and SVM etc [2].

One of the commonly used method to extract the feature from

speech signal is Mel Frequency Cepstral Coefficient

(MFCC). Being this a supervised system, text transcriptions

along with speech signals are also passed in the form of

input.

The flow chart of end-to-end system is shown in figure 1.

This paper describes the comparison of RNN methods for

end-to-end systems. The organization of this paper is as

follows: Section I is the introduction for the topic. Section II

is the literature survey for preprocessing method and

Recurrent Neural Networks. Section III and Section IV is the

introductory paragraphs for Connectionist Temporal

Classification (CTC) and Decoding method used

respectively. Section V is the comparatively analysis for

different RNN architectures described in literature survey.

Section VI is the future work followed by Section VII, which

is conclusion for the paper.

II. LITERATURE SURVEY

Speech Recognition is transforming different speech

signals into feature arrays, and these arrays are later supplied

to the RNNs for training the model.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 6 Issue: 4 88 - 93

__

89

IJRITCC | April 2018, Available @ http://www.ijritcc.org

Figure 1. Algorithm

A. Method

1) Data

 Librispeech corpse is English Speech corpse of 1000

hours derived from audio books that are part of the

LibriVox project, and contains 1000 hours of speech

sampled at 16kHz[3].

2) Framing or Windowing

 Audio signals are non-stationary i.e. the properties

changes very quickly. It is necessary to split them into frames

where these are assumed to be stationary. This is known as

windowing or framing. A window of 10ms is used in our

project.

3) Feature Extraction

 In this paper, the feature extraction technique call Mel

Frequency Cepstral Coefficients (MFCC) is used. The

general procedure of mel-cepstrum extraction actually

involve, dividing the signal into frames, to obtain the power

of spectrum, to convert the melspectrum and lastly uses the

Discrete Cosines Transform (DCT) to get the cepstrum

coefficient[4].

B. Recurrent Neural Networks (RNNs)

There are two kinds of neural networks, namely, feed-

forward and feed-backwards. Feed-forwards are the networks

where the data flows in forward direction i.e. from input to

output and there are no backward connections. Feed-

backwards are the networks where there are backward

connections i.e. the current input data depends on the

previous output.

RNNs are a type of feed-backward neural network. The

output of the current timestamp depends on previous

timestamp. There is memory assigned to every cell of RNN.

This memory keeps the track of previously computed outputs.

Thus, long term dependencies are taken care of.

Figure 2. Recurrent Neural Networks

1) Simple Recurrent Neural Network(SRNN)

Simple RNN consists of three layer, input, output

and hidden layer. All the information from the current

timestamp is passed as current output and the input to the

next timestamp.

Figure 3 shows the way weights are assigned to

SRNN. There are two output equations, which are

involved in SRNN.

First, the information from the previous

timestamp(t-1) to next hidden unit in the next

timestamp(t).

Figure 3. Simple Recurrent Neural Network

h(t) = gh(WxX(t)

+ Whh(t-1) + bh)

Thus, current hidden layer is a summation of current input

multiplied by its weights, plus info from the hidden layer of

previous timestamp plus biases, applied by the activation

function. Second, the output at that particular timestamp

Y(t) = gy(Wyh(t) + bh)

Thus, it is the summation of current hidden layer

multiplied by its weights, plus biases, applied by the

activation function. Where, W and b are weights and biases

respectively, and g is the activation function.

Although Simple RNNs are capable of learning sequential

time series patterns, they have vanishing and exploding

gradient problem that affects their performance. Also, they

can’t carry out long term dependencies of sequential data.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 6 Issue: 4 88 - 93

__

90

IJRITCC | April 2018, Available @ http://www.ijritcc.org

2) Long Short Term Memory(LSTM)

 The problem of vanishing and exploding gradient is

solved by LSTMs. The idea behind is the short term memory,

which has to last for a long time. LSTM is the abstraction of

computer memory that works along with recurrent neural

networks. LSTMs have special blocks, known as gates,

allows only a specific amount of information to be gated in

and then the information to be gated out. Within intermediate

time, these gates are closed, so that other information doesn’t

interfere.

Input gate: Responsible for how much of the output data to

be written in memory cell. It receives the input data as well

as the information from the previous cell.

Output gate: Responsible for sending information from

LSTM back to recurrent network. It receives the input data

and the data from the memory cell.

Forget gate: Responsible for the data maintenance in memory

cell. It receives the same input data from the gates and the

networks, but calculates how much data to remember.

Figure 4. A memory block of LSTM[5]

The equations involved for the timestamp t are:

 i(t) = gh(WixX(t) + With(t-1) + Wicc(t-i) + bi)

 f(t) = gh(WfxX(t) + Wfhh(t-1) + Wfcc(t-1) + bf)

 c(t) = f(t)oc(t-1) + i(t)ʘ ᴓ(WcxX(t) + Wchh(t-1) + bc)

 o(t) = gh(WoxX(t) + Wohh(t-1) + Wocc(t) + bo)

 h(t) = o(t)ʘ ᴓ(c(t))

where i(t), o(t), f(t), and c(t) are the outputs of the input gate,

output gate, forget gate and memory cells respectively. The

Wx weight matrices connect the inputs with the units,

whereas the Wh weight matrices connect the previous

memory cell states with the units, the Wc terms are diagonal

weight matrices for peephole connections. Also, gh is the

logistic sigmoid non-linearity, and ᴓ is the hyperbolic tangent

nonlinearity[5].

3) Gated Recurrent Unit(GRU)

 Gated Recurrent Unit (GRUs) is a variation of LSTM.

The difference between LSTMs and GRUs, is LSTM have

four gates to control its memory contains whereas GRU have

two gates to control its memory contains. As a result, GRU is

easier to train.

Figure 5. Gated Recurrent Unit[6]

GRU have two gates and does not have the memory cell[7].

Update gate: Responsible for holding the information of

previous timestamp. It receives the input of the current

timestamp.

Reset gate: Responsible for the amount of information that is

to forget.

The equations involved for the timestamp t are:

z(t) = gh(WzX(t) + Uzh(t-1))

r(t) = gh(WrX(t) + Urh(t-1))

ĥ(t) = tanh(WxX(t) + r(t) ʘ Uh(t-1))

h(t) = z(t) ʘ h(t-1) + (1 – z(t) ʘ h(t))

Where, z(t) and r(t) are the outputs of update gate and read

gate respectively. W(z) and W(r) are the weight matrices in

reference to update gate and read gate respectively. ĥ a

memory content which will use the reset gate to store the

previous information, h(t) is vector that holds current

information and passes it down to the network.

4) Bidirectional Recurrent Neural Network(BRNN)

 One of the limitations of traditional RNN is that they

are only able to use previous timestamp information. In

bidirectional RNN, the input information can be trained from

both past and future timestamp. The states of the RNN are

split into positive direction i.e forward direction and negative

direction i.e backward direction. Finally, positive direction

and negative direction outputs are added and provided to the

next layer.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 6 Issue: 4 88 - 93

__

91

IJRITCC | April 2018, Available @ http://www.ijritcc.org

Figure 6. Bidirectional Recurrent Neural Network[8]

The equations involved for the timestamp t are:

 h
F

(t) = gh(W
F

xhX(t) + W
F

hhh
F

(t-1) + b
F

h)

 h
B

(t) = gh(W
B

xhX(t) + W
B

hhh
B

(t-1) + b
B

h)

 Y(t) = W
F

hyh
F

(t) + W
B

hyh
B

(t) + by

 Where, h
F

(t) is the forward hidden output, h
B

(t) is the

backward hidden output and Y(t) is the final output of the

bidirectional recurrent layer.

III. CONNECTIONIST TEMPORAL CLASSIFICATION

(CTC)

 Speech recognizer converts the sequences of utterances

into a sequences of words. Input sound utterances may be

much longer than output words, i.e. the input and output will

be of different lengths, which creates a problem for our

standard RNN architecture. Thus, Connectionist Temporal

Classification (CTC) comes to rescue.

 There is always a blank symbol associated with CTC. So,

for k number of graphemes, we have k+1 total classes. With

all these decision, the network will decide whether to output

the alphabet or a blank symbol.

Connectionist Temporal Classification (CTC) works with

Softmax function. Softmax layer defines the probability

output distribution Pr(k|t) at every timestamp along with

input [9].

IV. DECODING

Before decoding the network refers to the process by

which the model finds the most probable output transcription

y given an input x. Here, CTC decoding method is used. The

rule used for decoding is: Given a specific character sequence

c, squeeze out duplicates and blanks to yield transcriptions

[10].

V. COMPARATIVE ANALYSIS

 This section consists of two parts: First the part is training

and second is analysis.

A) Training

 The RNN Models is trained on GPU GeForce GTX

1060 6GB. RNN is trained on ‘train-clean-100’ of 100 hours

set and validated on ‘dev-clean’. All the Models consists of

common hyper-parameters such as learning rate of 0.001 and

momentum with 0.99. The optimizer used is Stochastic

Gradient Descent(SGD) with nesterove value true, delay with

value (1e-6) and clipnorm with value 5. The network of RNN

layers consists of 3 and there are 200 cell units for each layer.

Number of epochs are 20 with mini-batch size of 10. There

are total of 28 characters that has to be recognized in the

dataset (26 alphabets, apostrophe (‘), space). Batch

normalization and dropout techniques are used to avoid

overfitting of the model.

B) Analysis and Graphs

 The metrics for evaluation is loss and mean square

error(mse). The model with the numbers is described below:

model_0: A Simple RNN model.

model_1: A Long Short Term Memory model.

model_2: A Gated Recurrent Unit model.

model_3: A Bidirectional Simple RNN model.

model_4: A Bidirectional Long Short Term Memory model.

model_5: A Bidirectional Gated Recurrent Unit model.

Figure 7. Epoch vs Training Loss Graph

Figure 8. Epoch vs Validation Loss Graph

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 6 Issue: 4 88 - 93

__

92

IJRITCC | April 2018, Available @ http://www.ijritcc.org

Figure 9. Epoch vs Training Mean Square Error Graph

Figue 10. Epoch vs Validation Mean Square Error Graph

 Model_0 and model_3 have almost same loses.

Simple RNN and bidirectional simple RNN does not show

any changes with respect to all the metrics. Increasing the

number of epoch makes a significant difference for both

models

Model_1 and model_4 (both variant of LSTMs)

have constant loss, can be improved by changing model

capacity and regularization techniques.

Model_2 and model_5, a GRU implementation,

shows a large difference between the losses. Model_5 gave

the best results for among all the models, in every metrics.

These results can be further improved by increasing the

number of epochs.

 trained

loss

trained

mse

validatio

n loss

validatio

n mse

model_0 111.646 14990.1 104.336 13686.1

model_1 770.269 671984 664.867 510042

model_2 102.964 12855.1 97.0203 11871.8

model_3 103.952 13129.5 98.8551 12433.4

model_4 770.382 672207 668.245 517052

model_5 69.7156 6100.63 87.0962 9984.63

Table1: A table of comparison for all models and their

metrics.

VI. CONCLUSION AND FUTURE WORK

 This paper demonstrates various RNN architecture on a

common hyper-parameters. Training loss can be further

reduced by increasing the number of epochs. The validation

loss can be reduced with hyper-parameters tuning. To make

the results easy to produce and to compare, all networks are

implemented on the common Keras, networks API, written in

Python with TensorFlow as backend. A bidirectional version

of GRU gave the best results with least training loss of 69.71.

Future work will comprise of effective training of RNNs with

more efficient methods, for example, the use of convolution

neural networks with RNNs[13]. In addition, using of more

comprehensive features [11] and using a different RNN

training toolkit [12] inducing more advanced features.

REFERENCES

[1] Chavan, K. and Gawande, U., 2015, February. Speech

recognition in noisy environment, issues and challenges: A

review. In Soft-Computing and Networks Security (ICSNS),

2015 International Conference on (pp. 1-5). IEEE.

[2] El Ayadi, M., Kamel, M.S. and Karray, F., 2011. Survey on

speech emotion recognition: Features, classification

schemes, and databases. Pattern Recognition, 44(3), pp.572-

587.

[3] On, C.K., Pandiyan, P.M., Yaacob, S. and Saudi, A., 2006,

June. Mel-frequency cepstral coefficient analysis in speech

recognition. In Computing & Informatics, 2006. ICOCI'06.

International Conference on (pp. 1-5). IEEE.

[4] Miao, Y., Gowayyed, M. and Metze, F., 2015, December.

EESEN: End-to-end speech recognition using deep RNN

models and WFST-based decoding. In Automatic Speech

Recognition and Understanding (ASRU), 2015 IEEE

Workshop on (pp. 167-174). IEEE.

[5] Chung, J., Gulcehre, C., Cho, K. and Bengio, Y., 2014.

Empirical evaluation of gated recurrent neural networks on

sequence modeling. arXiv preprint arXiv:1412.3555.

[6] Chung, J., Gulcehre, C., Cho, K. and Bengio, Y., 2014.

Empirical evaluation of gated recurrent neural networks on

sequence modeling. arXiv preprint arXiv:1412.3555.

[7] Irie, K., Tuske, Z., Alkhouli, T., Schluter, R. and Ney, H.,

2016. LSTM, GRU, highway and a bit of attention: an

empirical overview for language modeling in speech

recognition. RWTH Aachen University Aachen Germany.

[8] Arisoy, E., Sethy, A., Ramabhadran, B. and Chen, S., 2015,

April. Bidirectional recurrent neural network language

models for automatic speech recognition. In Acoustics,

Speech and Signal Processing (ICASSP), 2015 IEEE

International Conference on (pp. 5421-5425). IEEE.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 6 Issue: 4 88 - 93

__

93

IJRITCC | April 2018, Available @ http://www.ijritcc.org

[9] Graves, A., Mohamed, A.R. and Hinton, G., 2013, May.

Speech recognition with deep recurrent neural networks.

In Acoustics, speech and signal processing (icassp), 2013

ieee international conference on (pp. 6645-6649). IEEE.

[10] Graves, A., Fernández, S., Gomez, F. and Schmidhuber, J.,

2006, June. Connectionist temporal classification: labelling

unsegmented sequence data with recurrent neural networks.

In Proceedings of the 23rd international conference on

Machine learning (pp. 369-376). ACM.

[11] Yao, K., Zweig, G., Hwang, M.Y., Shi, Y. and Yu, D., 2013,

August. Recurrent neural networks for language

understanding. In Interspeech (pp. 2524-2528).

[12] Mikolov, T., Kombrink, S., Deoras, A., Burget, L. and

Cernocky, J., 2011, December. Rnnlm-recurrent neural

network language modeling toolkit. In Proc. of the 2011

ASRU Workshop (pp. 196-201).

[13] Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J.,

Battenberg, E., Case, C., Casper, J., Catanzaro, B., Cheng,

Q., Chen, G. and Chen, J., 2016, June. Deep speech 2: End-

to-end speech recognition in english and mandarin. In

International Conference on Machine Learning (pp. 173-

182).

