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Abstract—The basic fatigue crack growth is important consideration in structural design and constrained operations of safety in critical 

structural component. The basic law used in this study has been modified for analyzing the fracture mechanics of structures under random 

loading. In any mechanical system the behavior is modeled by differential equations deterministic and stochastic in nature. We give Paris law in 

random loading and differential equation governing such real time situations. 
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I. INTRODUCTION 

We give the various models for random fatigue 

crack growth. We give an elaborate account of the work by 

Sobczyk. Crack growth model under random loading is dealt 

at length .Crack growth is given as a differential equation 

model and as a Markov chain model .Crack propagation is 

illustrated as a diffusion model .We have found that 

stochastic modeling given by Keith Ortiz  is best suited for 

fatTraffic growth has always been much greater than 

predicted and with the development of new materials whose 

properties cannot be obtained using empirical methods, the 

need to predict the remaining lives of pavements and the 

design of new pavements to with stand heavier traffic 

loading with new axle and suspension configurations require 

the use of an analytical method as the traditional empirical 

ones cannot cope. 

It is desirable to formulate probabilistic models for 

fatigue phenomena that deal with all physical and chemical 

processes within a considered material which we observe 

are likely to be responsible for the generation of fatigue. 

While the existing physical theories are helpful in 

explaining qualitatively, the nature of fatigue, they do not 

give a base for treating fatigue problems quantitatively to 

yield results that are valid at the macroscopic level. In 

modeling fatigue processes, it seems to be important to 

relate the random factors and processes provoking fatigue, 

the mechanism of fatigue crack growth. It deals with the 

randomization methodology of investigation of fatigue crack 

growth through various models. It considers the Paris law 

with modified versions and discusses the fatigue failure or 

equivalently the propogation of cracks under random 

loading. The standard Paris Erdogen model is considered 

and some of the parameters in the governing equation are 

randomized for studying crack growth mechanism of 

materials. 

Probabilistic damage models based on Markov 

chain theory is studied. A basic concept in the model is a 

duty cycle which is repetitive period of operation on the life 

of a component during which damage accumulates in a 

probabilistic manner only on the duty cycle itself and on the 

value of the damage accumulated at the start of the duty 

cycle. 

Oh considered the growth of fatigue crack as a 

continuous stochastic process and obtained it as a diffusion 

process.Diffussion model of crack propogation is studied. It 

deals with the integrated of the two probabilistic approaches 

involving randomization of fatigue growth law co-efficient. 

II. CRACK GROWTH MODEL UNDER RANDOM 

LOADING 

It has been recognized that fatigue failure in 

materials result from the nucleation and propagation of 

cracks. However during their course of propagation, the 

cracks encounter various types of metallurgical structural 

imperfections so that the rate of propagation is in general 

varying in time. Randomness of a fatigue process is 

completely evident if a structure is subjected to time varying 

random loading. 

In modeling fatigue processes it seems to be 

important to relate the random factors and processes 

provoking fatigue to the mechanism of fatigue crack growth. 

This part deals with the randomization methodology of 

investigation of fatigue crack growth as dealt with by 

Sobczyk. 
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This first part considers the Paris law along with its 

subsequent modifications. The next part discusses 

Sobczyk‘s modified crack growth equation for random 

loading and its implications. The last part considers the 

variation of a crack growth equation taking into account the 

randomness of few other factors. 

A. Paris Law 

In general, the fatigue crack growth can be 

expressed as 

dL = F L, S, C, T, s; t dN …….. (1) 

Where S, C and T are the qualities indicated above and s 

denotes all other parameters important in fatigue problems 

(chemical properties, internal stresses etc.). L denotes the 

length of a dominant crack and N denotes the number of 

cycles corresponding to the crack length L. But the 

information about the influence of each of these parameter 

are insufficient. 

 Recent studies of fatigue crack growth in elastic 

materials have shown that the stress intensity factor K is the 

primary quantity for characterizing the fatigue growth rate. 

 From Paris Law, we have 

𝑑𝐿

𝑑𝑁
= 𝐶(∆𝐾)𝑛……….. (2) 

Where ∆𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛  and𝐾 = 𝑆 𝜋𝐿. Also C and n are 

assumed constants for a given material. The above Paris law 

(2) has essential deficiencies as the constants n and c 

depends on many factors and their numerical values deviate 

greatly from experiment to experiment. 

As the stress ratio 𝑅 = 𝑆𝑚𝑖𝑛 /𝑆𝑚𝑎𝑥  was recognised 

to have sufficient influence on fatigue crack growth (2) can 

be replaced by  

𝑑𝐿

𝑑𝑁
= 𝐹(𝑅, ∆𝐾)  ……….. (3) 

The influence of R on fatigue crack length depends 

on the structure and mechanical properties of the material 

considered. The experiments show that the effect of mean 

stress under the tensile stresses results on increasing of 

fatigue crack growth rate. Thus (3), can be expressed as 

𝑑𝐿

𝑑𝑁
= 𝐶𝑔 𝑅 (∆𝐾)𝑛……… (4) 

Brock and Schifne (1963) generalized (4) in the form  

𝑑𝐿

𝑑𝑁
= 𝐶  

1

1−𝑅
 

2

(∆𝐾)3   ………… (5) 

Newmen et al.(1972) suggested the modification 

𝑑𝐿

𝑑𝑁
= 𝐶 1+∝ 𝑅 𝑞 ∆𝐾 𝑞   ……… (6) 

These modifications were mainly based on 

experimental data pertaining to specific materials. 

These laws are based on fixed stress level fatigue 

experiments (constant amplitude cyclic loadings). Bell and 

Wolfmann discussed the Eller‘s crack closure model based 

on effective stress range concept 𝐾𝑒𝑓𝑓 =  𝑆𝑚𝑎𝑥 − 𝑆𝑐   𝜋𝐿 

where Sc is the crack closure stress. Since 𝑆𝑚𝑎𝑥 − 𝑆𝑐 =

𝑆𝑚𝑎𝑥 1 − 𝐶𝑓  where 𝐶𝑓  is the closure factor, the proposed 

fatigue crack growth equation is 

𝑑𝐿

𝑑𝑁
= 𝐴  

∆𝑆

1 − 𝑅
 1 − 𝐶𝑓  𝜋𝐿 

𝑛

 

=   
1−𝐶𝑓

1−𝑅
∆𝑘 

𝑛

 ……… (7) 

The analysis of experimental data, revealed that 𝐶𝑓  can be 

expressed as 

 𝐶𝑓 = 𝑎 + 𝑏 1 + 𝑅 𝑞  …….. (8) 

 𝑎 = 𝐶𝑓  

 𝑏 = 𝐶𝑓𝑜 − 𝐶𝑓−1 

Where 𝐶𝑓𝑜  and 𝐶𝑓−1 are the values of  𝐶𝑓  at 𝑅 = 0 and 

𝑅 = −1 respectively and q is a positive constant. 

Since (7) is of the form (4), we can use (4) as a 

base for further analysis. 

Consider a situation when the structural element is subjected 

to time varying random loading. 

We assumed that, the material considered is homogeneous, 

linearly elastic for which the stress intensity factor is 

expressible in terms of the basic parameters of the material 

and applied stress. While there may be a number of cracks 

in a specimen it is assumed that the final damage is due to 

the growth of the dominant crack. The configuration of a 

dominant crack depends on one quantity – the length L 

(t).Randomness in crack evolution is caused by random 

applied stress and some other uncertainties relevant to 

fatigue. 

Also, 

Let  𝑆 𝑡  be a stochastic process characterizing the 

random applied stress and  𝑀𝑠 𝑡 𝑟𝑠 𝑡1, 𝑡2  denote 

respectively the mean and autocorrelation function for the 
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process. If 𝑆 𝑡  is a stationary process then𝑀𝑠 𝑡 = 𝑀𝑠, a 

constant which is independent of time. 

𝑟𝑠 𝑡1, 𝑡2 = 𝑟𝑠 𝑡2 − 𝑡1   and 

𝑆𝑟𝑚𝑠  𝑡 =  𝑆𝑜 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 Recent studies strongly suggest that ∆𝐾 should be 

replaced by the root mean square 𝐾𝑟𝑚𝑠  of the stress intensity 

factor. 

i.e.𝐾𝑟𝑚𝑠 = 𝑆𝑟𝑚𝑠  𝜋𝐿 …….. (9) 

The mean stress effect is modified by the new ratio. 

𝑄 =
<𝑆>

𝑆𝑟𝑚𝑠
 ……… (10) 

The further modification is concerned with the cycle which 

plays a conventional role in fatigue analysis. In the case of 

random we replace N by 𝜂 𝑡  where the relation between 

number of cycles N and time‗t‘ is random and 𝜂 𝑡  is a 

point stochastic process. Assuming that 𝜂 𝑡  characterizes a 

number of local maxima of a stress process in the interval 

 𝑡0, 𝜏  the quantity 𝑛 𝑡  is defined as  

𝑛 𝑡 =  𝑛 𝑠 𝑑𝑠
𝑇

𝑡𝑜

 

           Also <  𝑛 𝑡 > =  𝜇 𝑠 𝑑𝑠,
𝑇

𝑡𝑜
 

                     𝜇 𝑡 =<  𝑛 𝑡 >………..(11) 

So 𝜇 𝑡  describes the average number of cycles of a stress 

process per unit time. 

Thus the relation between the cyclic and temporal 

description can be put forth as  

𝑑𝐿

𝑑𝑁
=  𝜇 𝑡 

𝑑𝐿

𝑑𝑁
 …….. (12) 

If the process 𝑆 𝑡  is sufficiently regular (if atleast twice 

mean square differentiable) then the expected number of 

maxima per unit time of  𝑆 𝑡  above a certain levels 𝑆𝑜  is, 

𝜇 𝑡; 𝑠𝑜 = − 𝑑𝑠"0

−∞
 𝑆"𝑃 𝑠, 0, 𝑠", 𝑡 𝑑𝑠

∞

𝑠𝑜
 ……… (13) 

Where 𝑃 𝑠, 𝑠′ , 𝑠", 𝑡  is the joint density function of  

𝑠 𝑡 , 𝑠′ 𝑡 , 𝑠" 𝑡  at time t. 

The average crack growth rate under random 

loading takes the modified form. 

𝑑𝐿

𝑑𝑁
= 𝜇 𝑡 𝐹 𝑄, 𝐾𝑟𝑚𝑠  …….. (14) 

In which 𝐾𝑟𝑚𝑠 , 𝑄 and 𝜇 𝑡  characterize the effect of stress 

intensity range, stress ratio and frequency content 

respectively. The correlation properties of random applied 

stress are introduced though 𝜇 𝑡 .Then, 

𝑑𝐿

𝑑𝑁
= 𝐶𝜇 𝑡 𝑔 𝑄  𝐾𝑟𝑚𝑠  

𝑛 ;     𝐿 𝑡0 = 𝐿𝑜….. (15) 

Using (9). The above equation (15) can be written as  

𝑑𝐿

𝑑𝑡
= 𝑓 𝑡 𝐿𝑝 𝑡 , 

                  𝑓 𝑡 = 𝐴𝜇 𝑡 𝑔 𝑄 𝑡  𝑠𝑛
𝑟𝑚𝑠  𝑡  

𝐿 𝑡0 = 𝐿𝑜 ,      𝑃 = 𝑛
2  ,      𝐴 = 𝐶 𝜋. 

 
𝐿

𝐿𝑝 𝑡 
 =    𝑓 𝑡 𝑑𝑡

𝜏

𝑡𝑜

𝜏

𝑡𝑜

 

i.e. 
𝐿−𝑝+1 𝑡 

1−𝑝
 
𝑡𝑜

𝜏

= 𝜙 𝜏  ……….(16) 

Where,𝜙 𝜏 =   𝑓 𝑠 𝑑𝑠
𝜏

𝑡𝑜
 

i.e.
1

 1−𝑝 
 𝐿1−𝑝 𝜏 − 𝐿0

1−𝑝 = 𝜙 𝜏  

𝐿1−𝑝 𝑡 = 𝐿0
1−𝑝 −  𝑝 − 1 𝜙 𝜏  

𝐿 𝑡 =
1

 
1

𝐿𝑜
 𝑝−1 − 𝑝−1 𝜙 𝜏  

1
𝑝−1

 

   ………. (17) 

The explosion time τ is obtained from the equation  

 𝑝 − 1 𝜙 𝜏   =  
1

𝐿𝑜
𝑝−1 ………….. (18) 

If S 𝑡  is stationary then𝑄 𝑡 = 𝑄𝑂 ;             𝑆𝑟𝑚𝑠  𝑡 =

𝑆𝑜 ;𝜇 𝑡 = 𝜇𝑜 ;𝑓 𝑡 = 𝑓𝑜  and we have 

𝜏 =  𝑡𝑜 +
1

𝑓𝑜  𝑝−1 𝐿𝑜
𝑝−1   ………. (19) 

For the non-stationary case, assume that the time 𝑡∗ to reach 

the crack size 𝐿∗ as  

𝜙 𝑡∗ =  
1

 1−𝑝 
 𝐿∗ 1 − 𝑝 − 𝐿𝑜

1−𝑝  …….. (20) 

And for the stationary case 

𝑡∗ =  𝑡𝑜 +
𝐿𝑜

1−𝑝−𝐿∗1−𝑝

𝑓 𝑝−1 
 ………. (21) 

The modified growth equation gives a satisfactory 

picture for the case of stationary loading when both the 

stress range (characterized by 𝑆𝑟𝑚𝑠  ) and expected frequency 

𝜇 are constant. For the non- stationary case, the 
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determination of 𝜇 𝑡 in analytical form possess certain 

difficulties. 

B. Illustration 01 

Let the random loading be the stochastic process 

characterized by the wave form  

           𝑆 𝑡 = 𝑎𝑆𝑖𝑛 𝑤𝑡 + 𝜓  Where a and w are the 

constants and ψ is a random variable uniformly distributed 

on  0, 2𝜋 .Then  

< 𝑆 > =   𝑎 𝑠𝑖𝑛 𝑊𝑡 + 𝑋 
1

2𝜋

2𝜋

0

𝑑𝑋 = 0 

𝑟𝑠 𝑡1, 𝑡2  =  𝑟𝑠 𝑡, 𝑡 + 𝜏  

    =   𝑎 𝑠𝑖𝑛
2𝜋

0
 𝑊𝑡 + 𝑋 𝑎 𝑠𝑖𝑛 𝑊𝑡 + 𝑊𝜏 + 𝑋 

1

2𝜋
dX 

=  
𝑎2

2
cos 𝑤𝜏 

𝑆𝑟𝑚𝑠 =  
𝑎

 2
,        𝑄 = 0,      𝜇 𝑡 = 𝜇𝑜 =

w

2π
  

The function f (t) takes the form  

𝑓 𝑡 = 𝐴
𝑤

2𝜋
𝑔 0  

𝑎

 2
 
𝑛

 

This can be applied to the crack induced by the vibrations of 

random loading by vehicles in under simple harmonic 

motion. 

C.Illustration 02 

Fatigue cracks in a pavement layer are caused by 

the combination of repetitive strains and apparent reduction 

of tensile strength caused by fatigue of the layer material. 

This type of failure occurs when the pavement has been a 

stress to the limit of its fatigue life by repetitive axle load 

applications.It is often called alligator cracking. The fatigue 

cracking is often caused by high moisture content, poor sub 

grade or some other local problems that can be repaired 

without major reconstruction. In these instances the poor 

material is removed and replaced with good material and 

drainage improved. If the failed area is extensive one typical 

repair strategy is to place a HMA overlay over the entire 

surface. Investigation should involve determination of the 

thickness of layers and the material quality so that a suitable 

solution is selected. 

Crack in pavement under varied stress with the help of 

illustration 01 , we can illustrate the fatigue crack growth in 

the pavement is illustrated given in the figure. 

 

 

III. STOCHASTIC CRACK GROWTH EQUATION 

We improve the model for random fatigue by accounting for 

randomness of other factors provoking fatigue. 

The model proposed is 

dL

dt
= Cμ t g Q  Krms  

n X t, γ  ………. (22) 

𝐿 𝑡𝑜 =  𝐿𝑜  

Here 𝑋 𝑡, 𝛾  represents the combined effect of unknown 

random factors of external origin such as environment, creep 

etc., 

If 𝑋 𝑡, 𝛾 =  𝑚𝑥 + 𝑋   𝑡, 𝛾  where Mx is the average value of 

𝑋 𝑡, 𝛾  

𝑑𝐿

𝑑𝑡
= Cμ t g Q  Krms  

n 𝑚𝑥 + 𝑋   𝑡, 𝛾   …….. (23) 

The above equation can be rewritten as  

𝑑𝐿

𝑑𝑡
= Cμ t 𝑚𝑥g Q  Krms  

n +

 Cμ t g Q  Krms  
n𝑋   𝑡, 𝛾 …….. (24) 

It is convenient to write the stochastic growth model 

(23),(24) in the form 

𝑑𝐿

𝑑𝑡
= 𝑎 𝐿, 𝑡 + 𝜎 𝐿. 𝑡 𝑋   𝑡, 𝛾  ……… (25) 

𝐿 𝑡𝑜 =  𝐿𝑜  

Or 
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𝑑𝐿

𝑑𝑡
=  𝑓1 𝑡 𝐿

𝑝 𝑡 + 𝑓2 𝑡 𝐿
𝑝 𝑡  𝑋   𝑡, 𝛾  ……….. (26) 

𝐿 𝑡𝑜 =  𝐿𝑜  

 

Where 𝑝 =  𝑛 2 ,     𝐶 = 𝑐𝜋𝑝  

𝑎 𝐿, 𝑡 =  𝑓1 𝑡 𝐿
𝑝 𝑡  

𝜎 𝐿, 𝑡 =  𝑓2 𝑡 𝐿
𝑝 𝑡  

                                           𝑓1 𝑡 =  𝑚𝑥  Cμ t g Q 𝑆𝑟𝑚𝑠
2𝑝 𝑡  

……. (27) 

𝑓2 𝑡 =  1 𝑚𝑥 𝑓1 𝑡  

There are three basic factors which determine properties and 

admissibility of the model proposed. They are  

i. Random applied stress 𝑆 𝑡, 𝛾 .If it is stationary 

𝑆𝑟𝑚𝑠  𝑡 =  𝑆𝑜 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑄 𝑡        =  𝑄𝑜 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝜇 𝑡 =  𝜇𝑜  

𝑓1 𝑡 =  𝑓1
0

= 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑓2 𝑡 =  𝑓2
0

= 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

ii. Random multiplicative noise 𝑋 𝑡, 𝛾  

iii. Constant experimental parameters especially 

realistic values of ‗p‘. 

A. Properties of Stochastic growth model 

Since stochastic differential equation (22) and (23) 

has been introduced in a somewhat artificial way (via) 

randomization of experimental laws one should check 

carefully its properties and usefulness. 

In order to recognize the basic properties of the 

model introduced we consider a special but important case 

when random disturbance 𝑋 𝑡, 𝛾  is a white Gaussian noise, 

It is worth nothing that because of normality of the 

distribution it can theoretically take negative values with 

positive probability. This deficiency is not serious since the 

deterministic term in (25) which is positive dominates the 

tendency of the motion. 

Let us assume that in equations (24) and (25) 

𝑋   𝑡, 𝛾 = 𝜉 𝑡, 𝛾 …….. (28) 

< 𝜉 𝑡1, 𝛾 𝜉 𝑡2, 𝛾 > = 2𝐷𝛿 𝑡2 − 𝑡1  

Where D is a constant intensity of noise and <. > denotes 

averaging. Although (25) together  with 𝑋 𝑡, 𝛾  given by 

(28) looks like a differential equation, it is really G formal 

record of symbols since 𝜉 𝑡, 𝛾  is an abstraction and not a 

physical process. Equation (25) with (28) does not define a 

stochastic process 𝐿 𝑡, 𝛾   yet, it is a pre-equation. 

There are two well known interpretations of our 

pre-equation turning it into a meaningful  stochastic 

differential equation defining process 𝐿 𝑡, 𝛾 .These are the 

Ito and Stratonovich interpretation. Here we adopt 

Stratowcich interpretation .This means that (20) can be 

understood as the following equivalent Ito equation, 

𝑑𝐿 𝑡 = 𝑎∗ 𝐿, 𝑡 𝑑𝑡 + 𝜎 𝐿, 𝑡 𝑑𝑤 𝑡 …… (29) 

𝐿 𝑡𝑜 =  𝐿𝑜  

Where w(t) is the Brownian motion starting from 𝑡 = 𝑡𝑜  and 

𝑤 𝑡𝑜 = 0 almost surely white noise 𝜉 𝑡  is a generalized 

derivative of w(t) and  

𝑎∗ 𝐿, 𝑡 = 𝑎 𝐿, 𝑡 + 𝐷𝜎 𝐿, 𝑡 𝜕𝜎 𝜕𝐿  

= 𝑓1 𝑡 𝐿
𝑝 𝑡 + 𝑝𝐷𝑓2

2 𝑡 𝐿2𝑝−1 𝑡 …… (30) 

It should be noted that in the Stratonovich 

interpretation the deterministic (drift) term 𝑎∗ 𝐿, 𝑡  differs 

from the macroscopic deterministic law equations (14) and 

(15). 

B. Case 1 

Adopting the results of general theory of stochastic 

systems, analysis of equation (29) yields the following 

conclusions. 

1. In the case when 𝑝 = 𝑛 2  occurring in 

experimental laws is not greater than one  𝑝1  the 

crack growth is stable in a sense that on each finite 

time interval L(t) takes finite values with 

probability one. 

 

When p=1, what is often met in experimental 

predictions, the crack size L(t) is expressed 

explicitly by qualities occurring in the problem i.e. 

by characteristics of random applied 

stress 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 ∶  𝑓1 𝑡 , 𝑓2 𝑡  , the Brownian 

motion process W(t) characterizing other 

uncertainties and initial crack length Lo. When 

random applied stress is stationary the appropriate 

formulae are very simple. The probability 

distribution of the crack size is for each fixed t and 

deterministic Lo log-normal. 

2. In the case when 𝑝 = 𝑛 2 > 1 which concern large 

variety of experimental laws, situation predicted by 

the model differs from this when  1 . 
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3. The parameters occurring in the model proposed 

which need to be estimated from experiments are 

the following: 

Two material constants: 

C and 𝑝 =
𝑛

2
 occuring in crack gwth law. 

One Constant: D characterizing the intensity of 

white noise ξ(t). 

Three functions:𝑚𝑠 𝑡 =<

𝑆 𝑡, 𝛾 .𝑆𝑟𝑚𝑠  𝑡 and 𝜇 𝑡 ; if random applied stress is 

stationary then:𝑚𝑠 𝑡 = 𝑚𝑠 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

𝑆𝑟𝑚𝑠  𝑡 = 𝑓𝑜 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and  𝜇 𝑡 =   𝜇0 =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

IV. A DIFFERENTIAL EQUATION MODEL FOR 

RANDOM FATIGUE GROWTH 

Stochastic models for cumulative damage describe 

the probabilistic mechanism of fatigue accumulation from 

which fatigue life can be predicted. These models can be 

broadly classified into two categories. (a) Time to failure 

models where the system is characterized through a 

distribution function for the time to failure. (b) 

‗Phenomenological‘ models which characterize explicitly 

the underlying physical mechanism which causes the failure. 

Cumulative damage models are phenomenological models 

in which shock causes a certain amount of damage is 

additive. System failure occurs when total damage exceeds a 

critical level. 

Most of our basic knowledge on fatigue behavior 

comes from experiments. The experimental data from 

engineering laboratories constitute a basic source of 

information about the fatigue behavior of materials 

subjected to various loading conditions. An important 

problem is to represent the information contained in the 

fatigue data in the language of Mathematics. 

In the study of crack propogation in materials, most 

of the researchers take into consideration the paris-Erdogan 

equation. 

𝑑𝑎

𝑑𝑁
= 𝐶 ∆𝐾 𝑚  

For the rate of fatigue growth under homogeneous 

cyclic stressing which was attained from experimental 

results as the linear regression of 𝑙𝑜𝑔  
𝑑𝑎

𝑑𝑁
  on 𝑙𝑜𝑔 ∆𝐾  

where ‗a‘ is the crack length. ‗N‘ is the number of cycles 

and k is the range of stress intensity factor at the crack tip. 

 The Paris-Erdogan equation 

We consider the paris-Erdogan model from two points of 

view namely. 

Crack length ‗a‘ is the dependent variable. 

Cycle number ‗n‘ is the dependent variable. 

It is generally accepted that fatigue crack under 

constant amplitude cyclic loading can be related to the stress 

intensity factor ∆𝑘 through the first order differential 

equation. 

𝑑𝑎

𝑑𝑁
= 𝐶 ∆𝐾 𝑚………. (31) 

 

Where 𝑎 = 𝑎 𝑛  the crack length at time n.In 

general ‗f‘ is is an experimentally determined function and 

‗c‘ is an experimentally determined constant. Clearly 
𝑑𝑎

𝑑𝑛
≥ 0 

implies that c and f are non –ve.From fracture mechanics, 

one can relate ∆𝑘 to crack length ‗a‘ via 

∆𝑘 = 𝛼∆𝑆𝑎𝑎1/2  ……… (32) 

Where ‗a‘ is a geometrically related parameter and ∆𝑠 is the 

applied stress amplitude. (31) can be written as 

𝑑𝑎

𝑑𝑛
= 𝑐𝑓 𝛼∆𝑆𝑎1/2   …….. (33) 

On the basis of number of experimental 

investigations ‗f‘ can be approximated as a power function 

so that 

𝑑𝑎

𝑑𝑛
= 𝑐 𝑎∆𝑠 𝛽𝑎𝛽 = 𝐾𝑎𝛽 2 ……. (34) 

Where k contains all geometric, stress and material factors 

or parameters. The above equation (34) contains three 

parameters k, β and a .Thus any randomization of the P.E. 

equation must be based upon a randomization of these three 

parameters. 

Now  
𝑑𝑎

𝑎𝛽 2 =   𝑘𝑑𝑛 

i.e.  
𝑎−𝛽 2 +1 

−𝛽 2 +1
= 𝑘𝑛 + 𝐶 

We have the initial condition        𝑎 0 = 𝑎𝑜 . 

2

2 − 𝛽
 𝑎𝑜

2−𝛽 2 = 𝐶 

 

2 − 𝛽

2
 𝑎2−𝛽 2 = 𝑘𝑛 +

2

2 − 𝛽
 𝑎𝑜

2−𝛽 2  

𝑎 𝑛 =  𝑎𝑜
2−𝛽 2 +

2−𝛽

2
𝑘𝑛2  2−𝛽  = 𝑘 𝑎𝑜 ……. (35) 

V.  CONCLUSION 

We have given the behavior of crack growth under random 

loading using continuous stochastic models of stress 
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behavior and stochastic differential equation model of 

fatigue behavior. Illustration is given to explain these 

modifications in the basic law under random loading. 
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