
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 2 126 - 128

__

126

IJRITCC | February 2018, Available @ http://www.ijritcc.org

An Approach to Parallel Processing

Yashraj Rai

Computer Engineering

Ramrao Adik Institute of Technology

Navi Mumbai, India

yashraj62@yahoo.co.in

Puja Padiya

Computer Engineering

Ramrao Adik Institute of Technology

Navi Mumbai, India

puja.padiya@gmail.com

Abstract—Parallel processing offers enhanced speed of execution to the user and facilitated by different approaches like data parallelism and

control parallelism. Graphic Processing Units provide faster execution due to dedicated hardware and tools. This paper presents two popular

approaches and techniques for distributed computing and GPU computing, to assist a novice in parallel computing technique. The paper

discusses environment needs to be setup for both the above approaches and as a case study demonstrate matrix multiplication algorithm using

SIMD architecture.

Keywords-Distributed Computing; High performance Computing; Message Passing Interface; parallel computing;

__*****___

I. INTRODUCTION

The utilization of unused processors to execute more than
one job in parallel lead to parallel processing. The first parallel
processors were Massively Parallel Processors (MPP’s) which
were launched in mid 1980’s. In the late 1980’s clusters came
to compete and eventually displace MPP’s for many
applications. Parallel computing today are possible using multi-
core processors [1]. All the processors available today
commercially are multi-core processors. The famous brand
Intel develops three main processors, i3, i5 and i7. The i3
processor is a dual core processor and the i5 and i7 are quad
core processors. To increase the level of parallelism, today we
can use unutilized cores of Graphics Processing Unit (GPU)
which are part of systems used in high graphics applications.
The GPU can have 500 times more cores than the CPUs. There
are many applications using parallel processing today. Some of
the applications are:

 Scientific applications, like bioinformatics, high
performance computing, weather modeling, flood
prediction, etc [2].

 Commercial applications, like web and database
servers, data mining and analysis for optimizing
business and marketing decisions [2].

 Applications in Computer Systems, like intrusion
detection in computer security, area of
cryptography, etc [2].

We now discuss about the algorithm models, an algorithm
model is typically a way of structuring a parallel algorithm by
selecting decomposition and mapping technique and applying
the appropriate strategy to minimize interactions [2]. There are
two main types of algorithm models, data parallelism, and task
parallelism.

Data parallelism, the tasks are statically or semi-statically
mapped onto processes and each task performs similar
operations on different data. It is a result of identical operations
being applied concurrently on different data items.

Task parallelism, the interrelationships among the tasks are
utilized to promote locality or to reduce interaction costs. It is a
parallelism that is naturally expressed by independent tasks in a
task-dependency graph [2].

We will be using data parallelism for our parallel
computing environment. And we can perform parallel
computing in two ways, (1) Parallel and Distributed Systems,

by connecting systems over a high speed LAN and using
processors of all the systems to execute a job, and (2) GPGPU,
when GPU are used for general purpose tasks by using their
cores for parallel processing.

Many decomposition techniques are also used in parallel
processing, Data Decomposition is one of them, and we will be
using this decomposition method in both our approach. Data
Decomposition is a powerful and commonly used method for
deriving concurrency in algorithms that operate on large data
structures [2].

There are many architectures being used today in the
implementation of parallel systems. We will be using Single
Instruction, Multiple Data (SIMD) [2] architecture for our
environment. We will be using this architecture in both the
distributed and GPGPU environment. In SIMD, a single control
unit dispatches instructions to each processing unit and the
same instruction is executed synchronously by all processing
units [2].

II. AN ENVIRONMENT FOR GENERAL PURPOSE GPU

(GPGPU)

The GPU is a graphics processing unit whose primary task
is to render graphics on the display screen. These units have
very high number of cores which support parallel processing.
Since high level of processing is required when a high
resolution and high graphics image or video is played, these
processors are dedicated for only one purpose. But tools and
languages have been developed to use these processors for
general purpose processing. We will be using Nvidia GPU,
which is available in different versions in market. We will use
the Nvidia GeForce graphics card for our GPGPU processing.
Another famous graphics card available in market is AMD
Radeon. Nvidia graphics card will be easier to work on as;
Nvidia has developed a specific language, CUDA, which works
only on Nvidia graphics card. The other language which is used
for graphics programming is OpenCL. OpenCL is open source
and supported by both the graphics card. OpenCL is managed
by the Khronos group. One big advantage of OpenCL is, we
don’t need to write different code for CPU and GPU as we
have to do in CUDA, in OpenCL the GPU code will also work
for CPUs whereas in CUDA we need to write specific codes
for GPU and CPU. We will be using Nvidia graphics card with
CUDA programming in our GPGPU processing.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 2 126 - 128

__

127

IJRITCC | February 2018, Available @ http://www.ijritcc.org

Hardware specification of our high performance system
includes:

 Intel core i5 processor

 8 GB of RAM

 NVIDIA GeForce 940M GPU with 4 GB memory
We have used the above mentioned NVIDIA’s graphics

card in our GPGPU environment. There are 384 cores in our
system’s graphics card. We have to achieve parallelism by
assigning tasks to different processors of the GPU, which will
be achieved by executing CUDA program, with proper set of
instructions. There are many versions of the GeForce graphics
card, and only few support the CUDA functionality. So to run
CUDA in a GeForce card, we need to first check the
compatibility from the NVIDIA website. Once the
compatibility check is complete, we move forward to download
the NVIDIA CUDA Toolkit, which contains the complete
libraries of CUDA and OpenCL. It also contains drivers for
running the CUDA program on the Nvidia graphics card. It is a
GUI based toolkit, which makes the implementation very easy
for the user. We can also customize the Toolkit interface. The
Nvidia CUDA Toolkit is operating system specific; all the
versions of operating systems are not supported. For example,
Ubuntu’s latest version is 16.04 but Nvidia toolkit is only
supported in 12.04 and 14.04 versions of Ubuntu.

The CUDA program is written in Microsoft’s Visual Basic,
if we are using Microsoft Window as our operating system.
Only CUDA enabled compiler is required if we are executing
the programs in Linux operating system. We have opted for
Linux based operating system, i.e. Ubuntu, so we have
downloaded a supporting CUDA enabled compiler.

III. AN ENVIRONMENT FOR PARALLEL AND DISTRIBUTED

COMPUTING

In this section we discuss about the parallel and distributed
environment which was setup for testing parallel programming
using Message Passing Interface (MPI). We have used shared
memory to access data over the network when programming
with MPI. The shared memory environment is created by using
Network File System (NFS), which mounts a drive on the
network, to be accessed by all the systems connected to that
network.

The secure connection is provided by the Secure Shell
(SSH) which connects two or more system in a client-server
architecture using Openssh prompt in Linux based operating
system [3]. The clients and servers are named at this time of the
stage. They are labeled properly while using the commands in
the configuration. We can increase the number of systems in
the LAN to increase the level of parallelization. We had used
Data decomposition in our experiment to divide the program in
different systems.

The high performance computing using the parallel and
distributed computing can be used to connect homogeneous or
heterogeneous systems [2]. There are lots of tools available
today for high performance computing. For example, MPI,
PVM, BLACS, PICL, HPF, etc [4]. These tools are classified
as portable tools or hardware specific tools. There is a lot of
research going in standardizing the software tools available for
parallel and distributed computing. We will be using MPI in
our environment for high performance computing.

There are different types of communications that take place
when we connect the systems using MPI.

Point-to-Point Communication, The point-to-point
communication is the simplest form of communication between

two systems. This communication method can be implemented
using two simple functions given in MPI library send and
receive. The send function is basically used to send data from
one machine to another. E.g. - Sending data for processing
from server to client, or sending the processed data from client
to server. The receive function is used to receive data from
another machine. Every send function should have a receive
function of its own as the data which is sent and received has a
unique identifier [5].

It can be further divided into Synchronous and
Asynchronous communications.

 In Synchronous communication, after assigning a job
to the client the server waits for the reply and then
once the reply is received it starts its execution again.

 In Asynchronous communication, the server assigns
the job to the client and continues its work, once the
client completes the task; it sends the reply to the
server, which is accessed by the server once it has
finished its current task [5].

Group Communications, The group communications work
when there are more than two systems involved in the
distributed computing. These group communications can be
further divided into one-to-many communication, many-to-one
communication and many-to-many communication [5].

 One-to-Many communication, in this communication
one system sends data to many receivers; this can also
be referred to as broadcast or multicast of the
information over the LAN. This communication is
used when a server has multiple clients and the server
has to send data to multiple clients at once.

 Many-to-One communication, in this communication
many systems send data to one receiver. This is just
the opposite of the One-to-Many communication. E.g.
when the clients have finished processing, they send
the result together to the server. This is a reduction
operation [5].

For a parallel and distributed computing environment, our
hardware requirement involves two systems with powerful
processors and high memory and one high speed network to
connect the systems. The software portion required for the
environment involves high speed communication protocol,
MPI compiler and a Linux based operating system. The flow of
our system is shown in figure 1.

Figure.1 Process Flow

A. Hardware Support

High performing systems with following hardware support

were used:

 Inter core i3 processors @ 2 GHz

 2 GB RAM

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 6 Issue: 2 126 - 128

__

128

IJRITCC | February 2018, Available @ http://www.ijritcc.org

 Ethernet Network Adapter with bandwidth of 1Gbps

 Wi-Fi Network Adapter for portable systems or

laptops

High speed network with the following properties are

required for hardware support:

 High speed CAT 5 cable

 A Network Switch if more than 2 systems are

connected

 Wi-Fi connection

We should use the best possible combination of tools so

that the network speed is high and reliable.

B. Software Support

We had decided on working on Linux based platform, so,

we selected Ubuntu as our operating system. Ubuntu is an

open source platform used in smart phones, tablets and PC.

Ubuntu is derived from a very famous Linux project, Debian

[6]. Since Ubuntu is open source and software packages are

easily available online, and it is easy to handle for new users,

we preferred this operating system. The latest version

available is 16.04, but we will be using a more stable version

i.e. 15.04. So that we can easily get the solutions of any

problems arising during the setup of the environment, as the

support for the operating system is very dependable.

After deciding on the operating system, we move on to the

programming language. As we have already decided, we will

be using MPI in our distributed environment. To execute MPI

programs we need MPI compiler which is supported in Ubuntu

versions till 15.10, i.e. MPICH2. If we are using Ubuntu

version 16.04, we will have to install MPICH. MPICH and

MPICH2 can be downloaded by online. We should make sure

that the MPICH2 versions on all the systems are same. If we

fail to do this check then, while executing this program, we

will get error while connecting to other systems in the cluster.

For accessing the resources over the LAN, we required

shared memory. This shared memory was implemented by

Network File System (NFS), the NFS allows remote hosts to

mount file systems over a network and interact with those file

systems as though they are mounted locally. This enables

system administrators to consolidate resources onto

centralized servers on the network [7].

We can assign the number of clients in a job and total

number of processes needed for the job. These processes are

divided equally to all the client systems mentioned during the

execution step. The server assigns the tasks to the clients and

the clients return the results after the job is completed.

All the instructions are given by the server; other systems

perform their own tasks. Only the processes are utilized from

the client, which occur at the background.

IV. RESULTS AND ANALYSIS

We discuss about the results generated during the execution
of the matrix multiplication test case.

The minimum hardware requirement for a system in the
distributed environment is:

 Dual core processor @ 2GHz

 2 GB RAM

 Ethernet/Wi-Fi adapter for network connectivity

The software requirement includes:

 A Linux based operating system, Ubuntu

 A compiler for MPI, Mpich2

 Openssh-server

 Network File System (NFS)
We saw some marginal improvement in the time of our

setup of distributed system. We tried with different number of
processes,

Number of processes – 2
Execution time in 1 system - 0.002512 seconds
Execution Time in cluster - 0.021693 seconds

Number of processes – 10
Execution time in 1 system - 0.060686 seconds
Execution Time in cluster - 0.058349 seconds

Number of processes – 50
Execution time in 1 system - 0.158426 seconds
Execution Time in cluster - 1.232802 seconds
We see that when the number of processes is 10, we get

0.002 seconds of improvement using the cluster of systems in
distributed environment for execution of matrix multiplication.

V. CONCLUSION

We have implemented parallel processing using Message
Passing Interface in distributed computing environment. We
did a comparative study by executing a matrix multiplication
program in a single system and in parallel using a cluster of
systems connected over a LAN. Our study showed that
program executed in a cluster took less time than in a single
system.

REFERENCES

[1] http://www.intel.com/pressroom/kits/upcrc/ParallelComputing_b
ackgrounder.pdf

[2] Kumar, Vipin, et al. Introduction to parallel computing: design
and analysis of algorithms. Vol. 400. Redwood City, CA:
Benjamin/Cummings, 1994.

[3] http://mpitutorial.com/tutorials/running-an-mpi-cluster-within-a-
lan

[4] http://people.eecs.berkeley.edu/~culler/machines/tools.html
[5] Hariri, Salim, et al. "A message passing interface for parallel and

distributed computing." High Performance Distributed
Computing, 1993., Proceedings the 2nd International Symposium
on. IEEE, 1993.

[6] http://www.ubuntu.com/about/about-ubuntu
[7] https://access.redhat.com/documentation/en-

US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_
Guide/ch-nfs.html

