
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 12 28– 32

28
IJRITCC | December 2017, Available @ http://www.ijritcc.org

An Advanced Caching Solution to Cluster Storage Environment

Aaishazun Basheer

M. Tech in Information Technology

Dept. of ISE,R. V. College of Engineering

Bengaluru, India

aaishazun@gmail.com

Dr. ShantharamNayak

Professor, Dept. of ISE,

R. V. College of Engineering

Bengaluru, India

shantaram_nayak@yahoo.com

Abstract- Clustered storage is the deployment of multiple data servers working together to improve reliability, capacity and

performance. Clustering divides workloads to every storage server to control and monitor workload transfer and file access between servers

without taking into account of the physical location of the file. Solid State Drives (SSD) can be considered as a more sophisticated version of a

USB memory stick since the memory stick does not have any moving part associated with it and moreover, data is stored in microchips.

In this paper, we give an overview of an advanced caching solution to improve IO and application performance by using flash storage

in cluster storage environment. It is a cluster storage solution with two highly scalable servers with optimizations to ensure fast service failovers

and deploying one or two solid state drives as the cache devices for faster and better performance.

The software supports write-back caching policy where both read and write requests on hot regions of drivesare cached. With write-

back, write requests to the hot regions are acknowledged immediately after it is written to the cache device and this (dirty) data will be flushed to

back-end virtual drive in the background. Flushing of dirty data will be performed by the flush manager of the software under different scenarios

like amount dirty data reaches a threshold, IO activity during a time interval is low etc. The solution effectively harnesses the flash storage

performance potential by retaining only frequently accessed data in flash for quick retrieval. The solution provides unmatched efficiency,

performance, support and reliability for enterprises or storage world.

Keywords: Cluster Storage Environment, Solid State Device (SSD), Hard Disk Drive (HDD), Caching, Flushing.

__*****___

I. INTRODUCTION

An SSD is based on NAND-based flash memory which

is non-volatile so that even if the disk is turned off, the data

is still retained and remains intact [1]. The advantages of a

HDD is that compared to an SSD, it stores lots of data

cheaply. But, it is slow in read/write performance, emits

noise and fragmentation affects the performance. Storage

I/O is very important when it comes to cluster storage

environment and should be scalable with unmatched

performance and efficiency. A Cluster storage solution [6] is

employed with two highly scalable servers with

optimizations to ensure fast service failovers and deploying

one or two SSDs as the cache devices for faster and better

performance.

Caching is the technique of storing a copy of data

temporarily in memory so that further requests to read them

are serviced from the cache. The proposed system uses flash

storage as cache and retains only frequently accessed data in

cache for quick retrieval [2]. There are three types of

caching which are write-through caching, write-around

caching and write-back caching.

 Write-through cache: redirects write I/O onto cache

and to permanent storage before acknowledging

I/O completion.

 Write-around cache: write I/O is directed to

permanent storage bypassing the cache.

 Write-back cache: write I/O is directed to cache

and completion is acknowledged to the host

immediately [3].

The proposed system uses write-back caching. Another

feature of the system is it handles pinned cache while SSDs

are going offline/online.

II. MOTIVATION

The proposed system has many benefits which are:

 Best suited for small IO, highly random block-

oriented applications frequently read from a

working unit.

 Improves throughput performance.

 Write-back caching and hence low latency and high

throughput for write-intensive applications.

 Failover/failback design to ensure fast service

failovers when servers are integrated [5].

III. METHODOLOGY

The solution is an advanced caching solution designed

to improve IO and application performance by using flash

storage in cluster storage environment. The solution

effectively harnesses the flash storage performance potential

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 12 28– 32

29
IJRITCC | December 2017, Available @ http://www.ijritcc.org

by retaining only frequently accessed data in flash for quick

retrieval.

Two controllers are connected to a common drive pool

containing SSDs and HDDs. Each controller has its own

instance of the software running. Each controller contains a

set of SSDs and HDDs configured as a group under the

software. Application ensures that the two groups have

different drives from the common pool. Suppose that there

are two controllers A & B such that group "G-A" is

configured on controller A and "G-B" on controller B.

When controller A fails, failover command will be executed

on controller B upon which "G-A" (the configuration which

existed on controller A) will be activated on controller B.

However "G-A" configuration will not be updated with host

ID of controller B. When controller A comes back, during

boot up, it triggers failback command on controller B. With

this, the newly activated cache group "G-A" would be

removed from controller A. Since Host ID of G-A was

unchanged, G-A would be activated on controller A during

boot.

The procedures involved while running I/Os are:

 To flush cached data to disc.

 To disable/enable caching (cache invalidation).

 To set/get flush parameters while flushing cached

data.

 Failover support.

 To handle pinned cache while SSDs or HDDs

going offline/online.

 Cache Device and Disc Failure Handling.

A. OBJECTIVES

 Solution provides unmatched efficiency,

performance, support and reliability for enterprises

or storage world.

 Flash storage as cache device offers a significant

improvement in I/O performance and reliability.

 Retains only frequently accessed data in cache

device for fast retrieval.

 To handle pinned cache while SSDs or HDDs

going offline/online.

 Integration of two data storage servers to eliminate

single points of failure.

B. SYSTEM ARCHITECTURE

The software uses Flash memory technology to enhance

performance for those applications that are primarily stored

on spinning HDD media [7],[8]. The solution accelerates the

performance of applications that use either Storage Area

Network (SAN) attached or Direct Attached Storage (DAS)

by identifying the frequently accessed data. This data is

copied into low latency flash storage.

The solution improves the I/O performance to meet the

requirements of the high-performance applications and uses

the high-performance SSDs as a secondary tier of cache to

provide faster read and write access to maximize the

transactional I/O performance of the application. The

solution uses the write-back caching policy and is designed

to accelerate the I/O performance of the applications that are

limited by the HDD performance by only requiring a small

investment in the flash technology-based solutions.

The solution consists of filter driver, caching library,

and management solution. The filter driver filters I/Os that

are destined to VDs. The caching library determines the hot

regions in the VDs. The management solution consists of

Storage ManagerTM application and CLI utilities that can

be used to manage the solution. The system architecture is

shown in figure 1.

C. DETAILED DESIGN

The detailed design of the software implemented is

shown in figure 2. Here, filter driver and OS dependent

functions are implemented as device mapper target drivers.

Core caching library is compiled as a Linux kernel module

with well-defined APIs. Work at the block layer is

transparent to file system and applications. It consumes flash

devices and provides caching function across DAS/SAN

volumes. Core caching function is implemented as an OS

portable library with well-defined interfaces. Filter Driver in

OS stack intercepts IO and routes through Cache

Management Library for caching functions.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 12 28– 32

30
IJRITCC | December 2017, Available @ http://www.ijritcc.org

Figure 2: Linux Driver Architecture

The caching library architecture is shown in figure 3.

Here, the platform interfaces are abstracted to enable

portability across environments. A filter driver is required in

the OS IO stack to configure and route IOs through the

library. The library scales to represent multi-TB Flash/SSD

devices. There are configurable parameters to control

caching decisions. In-memory lookup tables are present for

fast cache lookups. Intelligent multi queue page replacement

algorithm is used for replacement and AVL based cache

flush engine is used for efficient flush to the HDDs. It also

supports cache hinting to pin a range of cache LBAs.

Figure 3 Caching Library Architecture

D. THEORY OF OPERATION

The solution uses a Kernel driver to review any

storage I/O transaction destined for logical disks (also

indicated as VDs) assigned to be cached. The caching

software is a Block Device Mapper driver in Linux. Using

its caching algorithms, the solution determines hot region of

frequent I/O activity. The address ranges are determined by

the caching algorithms and the write storage I/O transactions

within this range is stored upon the Flash technology located

on SSD and also into the SAN or DAS storage. The read

storage I/O transactions within the address range is quickly

accessed from the drive. As the data within the cache cools,

it is replaced with hotter data.

i) Caching Solution

The solution offers the caching feature that can be

controlled through the CLI management applications. The

features are included as a package. At the time of system

startup, the hardware with the software features is detected

and enabled on any one or all of the SSDs connected to the

server. The SAN or DAS storage that are being accelerated

are referred to as cached devices or logical drives (VDs).

ii) Read Cache Persistence

The read cache metadata persists onto the cache device

only during graceful shutdown of the system. It will not be

persisted in case of ungraceful shutdown of the system like

system crash, power-recycle etc. After successfully saving

the metadata, a bit in the metadata header, called trust bit,

will be updated and written to the cache device to indicate

that read cache metadata on the cache device is now valid.

On subsequent system start, boot code and driver init code

will check this bit to decide whether the read cache is valid

or not.

Filter driver will register for shutdown notification

from operating system in the disk device start-device routine

for the devices it filters. Filter driver will notify library

about the system shutdown event using a newly exported

library function which will save the in-memory copy of the

metadata on to the cache device. After the metadata update

is complete, trust bit in the metadata header buffer will be

updated and written on the cache device. Trust bit will be

cleared and written to cache device during metadata

initialization to make sure that the boot code and driver

initialization code ignores the read cache on subsequent

ungraceful shutdown and restart of the computer.

iii)Write-back Metadata support

Metadata region will store the Cache Window

metadata information for all the cache windows generated

from that cache device. Since the cache policy is write-back,

this data will be kept in sync (with respect to the dirty bits),

with the in-memory metadata buffer. This is achieved by

updating metadata whenever the in-memory dirty bitmap is

modified. Valid bit map will be updated with clean

shutdown of the system.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 12 28– 32

31
IJRITCC | December 2017, Available @ http://www.ijritcc.org

iv) Metadata Initialization

The cache policy is write-back and hence, memory for

the metadata will be allocated and initialized for each cache

device that is added to the cache group. The size of metadata

is computed based on the number of cache windows needed

for the cache device. One instance of cache window

metadata structure will be maintained for each cache

windows and hence size of metadata buffer will be number

of windows multiplied by size of cache window metadata

structure. Metadata entries in the buffer are indexed by the

cache device window-number and stores corresponding VD

window-number, valid bitmap dirty data bitmap and a VD

identifier.

When the cache device is added to the cache group for

the first time, metadata header region on the cache device

will be initialized with the default values. Metadata region

on the cache device and in-memory metadata buffer will be

zeroed out.

v)Metadata Logging

On successful completion of a write request to the

cache device, in-memory metadata for the cache line(s)

and/or cache window(s) will be updated by setting the

corresponding bits in the dirty data bitmap. Then, this will

be made persistent by sending metadata update request to

the cache device by invoking a function that initiates

metadata update request (when all the child requests are

completed for a write-back request and for a flush request).

This function will generate metadata update request(s) for

the page(s) in which the windows falls and completion of

the write-back/flush request will be delayed until metadata

update is completed. State of the request will be updated to

indicate that dirty tree info needs to be updated and

scheduled to the scheduler.

On clean shutdown of the system, the entire metadata

will be persisted onto cache device. A flag in the metadata

header will also be updated to indicate that metadata (both

dirty and valid bitmaps) are valid which will be used by the

boot code to validate whether entire metadata is trustable or

not.

vi)Metadata Restore

On system reboot, filter driver will read the persistent

configuration from the cache device and will apply the

configuration to the library by adding the cache device and

VD to the cache group. Now, library will read the metadata

header, validate it and then read metadata into the in-

memory buffer it allocated as part of cache device

initialization. This will be followed by library building the

caching data structures (hash table, dirty tree, etc), using the

metadata in the in-memory buffer.

vii) Flushing Mechanism

A logical entity called flush manger will be defined in the

caching library which can be initialized whenever cache

policy is set to write-back and can be destroyed whenever

cache policy is set to anything other than write-back [4].

Different parameters that are required for the flush logic can

be set at the initialization time using the interface functions

defined for the flush manger. Flush manager will create a

background thread which on creation will wait on a

semaphore till it is signaled to start the flush of dirty data.

Interface functions provided to start flush of dirty data under

different scenarios will set the appropriate parameters and

wakes up the thread by signaling the semaphore.

Scenarios to start flush:

 Amount of dirty data hits the threshold. This will

be set to 2/3 of total cache capacity.

 No or very low IO activity for a time duration.

 A VD with dirty data is being taken out of the

cache group.

 Cache policy is being changed from write-back to

any other policy.

Flush Logic:

When signaled, flush manager thread take following

actions.

 Stops if shutdown flag is set.

 If there are pending device flush request, start

flushing those VDs.

 If there are no pending device flush request, start

flushing dirty data in a round robin fashion starting

next VD after last_checked_vd.

Flush IO Handling:

A new IO request flag will be defined to differentiate

flush request while handling completion of IO request.

Child read requests will be created for each continuous run

of dirty regions in the dirty window and will be dispatched

to cache device. On successful completion of the child

request, it will be sent to VD as a write request. If that also

succeeds, metadata will be updated to reflect that data has

been flushed.

E. PERFORMANCE

The performance graphs for random 100% writes with

SSDs and HDDs are presented in figures 2 and 3.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 12 28– 32

32
IJRITCC | December 2017, Available @ http://www.ijritcc.org

IV. CONCLUSION

Caching is the technique of storing a copy of data

temporarily in memory so that further requests to read them

are serviced from the cache.

Figure 4: IOPS vs Time Performance Graph

Figure 5: Throughput vs Time Performance Graph

Proposed solution uses NAND – based flash memory for

caching because of their high speed and Hard Disk Drives as

permanent storage because of their large capacity to store

data in cluster storage environment. Two storage servers are

integrated to support failover/failback of servers.

This approach can be widely used in large enterprises

where data is continuously moving in and out and also in

storage world which handles large I/O. The limitations are:

 SSDs as cache devices are costly compared to

HDDs.

 Best suited for small IO, highly random block-

oriented applications frequently read from a

working unit.

 Only two data servers can be integrated together to

support failover/failback.

REFERENCES

[1] D. Jiang, Y. Che, J. Xiong and X. Ma, "uCache: A Utility-

Aware Multilevel SSD Cache Management Policy," High

Performance Computing and Communications & 2013 IEEE

International Conference on Embedded and Ubiquitous

Computing (HPCC_EUC), 2013 IEEE 10th International

Conference on, Zhangjiajie, 2013, pp. 391-398.

[2] T. Luo, S. Ma, R. Lee, X. Zhang, D. Liu and L. Zhou, "S-

CAVE: Effective SSD caching to improve virtual machine

storage performance," Proceedings of the 22nd International

Conference on Parallel Architectures and Compilation

Techniques, Edinburgh, 2013, pp. 103-112.

[3] Y. Ko, R. Jeyapaul, Y. Kim, K. Lee and A. Shrivastava,

"Guidelines to design parity protected write-back L1

datacache," 2015 52nd ACM/EDAC/IEEE

DesignAutomation Conference (DAC), San Francisco, CA,

2015, pp. 1-6.

[4] C. Wang, Q. Wei, J. Yang, C. Chen and M. Xue, "How to be

consistent with persistent memory? An evaluation

approach," Networking, Architecture and Storage (NAS),

2015 IEEE International Conference on, Boston, MA, 2015,

pp. 186-194.

[5] W. S. Ling, O. B. Yaik and L. S. Yue, "High availability

resource monitoring solution using simplified team

formation algorithm," Frontiers of Communications,

Networks and Applications (ICFCNA 2014 -Malaysia),

International Conference on, Kuala Lumpur, 2014, pp. 1-5.

[6] S. Agarwala and R. Routray, "Cluster aware storage resource

provisioning in a data center," 2010 IEEE Network

Operations and Management Symposium - NOMS 2010,

Osaka, 2010, pp. 647-660.

[7] H. Takishita, S. Ning and K. Takeuchi, "Trade-off of

performance, reliability and cost of SCM/NAND flash

hybrid SSD," 2015 Silicon Nanoelectronics Workshop

(SNW), Kyoto, 2015, pp. 1-2.

[8] C. Sun, T. O. Iwasaki, T. Onagi, K. Johguchi and K.

Takeuchi, "Cost, Capacity, and Performance Analyses for

Hybrid SCM/NAND Flash SSD," in IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 61, no. 8, pp.

2360-2369, Aug. 2014.

http://www.ijritcc.org/

