
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 11 222 – 229

222
IJRITCC | November 2017, Available @ http://www.ijritcc.org

A Review of Elastic Search: Performance Metrics and challenges

Subhani Shaik
1

Research scholar, Department of CSE,

Acharya Nagarjuna University ,,

Guntur, A.P, India.

Nallamothu Naga Malleswara Rao
2

Professor, Department of IT,

RVR & JC College of Engineering,

Chowdavaram, Guntur, A.P,India.

Abstract: The most important aspect of a search engine is the search. Elastic search is a highly scalable search engine that stores data in a

structure, optimized for language based searches. When it comes to using Elastic search, there are lots of metrics engendered. By using Elastic

search to index millions of code repositories as well as indexing critical event data, you can satisfy the search needs of millions of users while

instantaneously providing strategic operational visions that help you iteratively improve customer service. In this paper we are going to study

about Elastic searchperformance metrics to watch, important Elastic search challenges, and how to deal with them. This should be helpful to

anyone new to Elastic search, and also to experienced users who want a quick start into performance monitoring of Elastic search.

Keywords: Elastic search, Query latency, Index flush, Garbage collection, JVM metrics, Cache metrics.

__*****___

1. INTRODUCTION:

Elastic search is a highly scalable, distributed, open source

RESTful search and analytics engine. It is multitenant-capable

with an HTTP web interface and schema-free JSON

documents. Based on Apache Lucene, Elastic search is one of

the most popular enterprise search engines today and is

capable of solving a growing number of use cases like log

analytics, real-time application monitoring, and click stream

analytics. Developed by Shay Banon and released in 2010, it

relies heavily on Apache Lucene, a full-text search engine

written in Java.Elastic search represents data in the form of

structured JSON documents, and makes full-text search

accessible via RESTful API and web clients for languages like

PHP, Python, and Ruby. It’s also elastic in the sense that it’s

easy to scale horizontally—simply add more nodes to

distribute the load. Today, many companies, including

Wikipedia, eBay, GitHub, and Datadog, use it to store, search,

and analyze large amounts of data on the fly.

2. ELASTICSEARCH-THEBASIC ELEMENTS

In Elastic search, a cluster is made up of one or more

nodes.Each node is a single running instance of Elastic search,

and its elasticsearch.yml configuration file designates which

cluster it belongs to (cluster.name) and what type of node it

can be. Any property, including cluster name set in the

configuration file can also be specified via command line

argument. The three most common types of nodes in Elastic

search are:

2.1 Master-eligible nodes

Every node in Elastic search is master-eligible by default

unless otherwise specified. Each cluster automatically elects a

master node from all of the master-eligible nodes. The master

node is responsible for coordinating cluster tasks like

distributing shards across nodes, and creating and deleting

indices. If the current master node experiences a failure

master-eligible nodes elect a new master. Any master-eligible

node is also able to function as a data node. In order to

improve reliability in larger clusters, users may launch

dedicated master-eligible nodes that do not store any data.

a. Data nodes

Every node that stores data in the form of index and performs

actions related to indexing, searching, and aggregating data is

a data node. In larger clusters, you may choose to create

dedicated data nodes by adding node.master: false to the

config file, ensuring that these nodes have enough resources to

handle data-related requests without the additional workload

of cluster-related administrative tasks.

b. Client nodes

Client nodeis designed to act as a load balancer that helps

route indexing and search requests. Client nodes help to bear

some of the search workload so that data and master-eligible

nodes can focus on their core tasks.

Fig:1 Elastic Search Cluster

http://www.ijritcc.org/
https://lucene.apache.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 11 222 – 229

223
IJRITCC | November 2017, Available @ http://www.ijritcc.org

3. ELASTICSEARCHDATA ORGANIZATION

In Elasticsearch, interrelated data is stored in the same index

thatcontains a set of related documents in JSON format.

Elasticsearch’s secret sauce for full-text search is Lucene’s

inverted index. When a document is indexed, Elasticsearch

automatically creates an inverted index for each field; the

inverted index maps terms to the documents that contain those

terms.An index is stored across one or more primary shards,

and zero or more replica shards, and each shard is a complete

instance of Lucene, like a mini search engine.

When creating an index, we can specify the number of primary

shards, as well as the number of replicas per primary. The

defaults are five primary shards per index, and one replica per

primary. The number of primary shards cannot be changed

once an index has been created. The number of replicas can be

updated later on as needed. To protect against data loss, the

master node ensures that each replica shard is not allocated to

the same node as its primary shard.

Fig:2 Elastic search data rganization

4.

4. ELASTIC SEARCH PERFORMANCE

METMETRICS :

Elasticsearch provides plenty of metrics to detect problems

like unreliable nodes, out-of-memory errors, and long garbage

collection times. All these metrics are accessible via

Elasticsearch’s API as well as single-purpose monitoring tools

like Elastic’s Marvel and universal monitoring services like

Datadog.

4.1Search and indexing performance

In Elasticsearch we have two types of requests, the search

requests and index requests which aresimilar to read and write

requests in a traditional database system.

4.1.1 Search Request:

 Client sends a search request to Node 2

 The coordinating node, Node 2 sends the query to a

copy of every shard in the index.

 Each shard executes the query locally and delivers

results to Node 2. Node 2 sorts and compiles them

into a global priority queue.

 Node 2 finds out which documents need to be fetched

and sends a multi GET request to the relevant

shards.5.

 Each shard loads the documents and returns them to

Node 2.

 Node 2 delivers the search results to the client.

Figure 3: Processing of Search Request

If search is a customer-facing feature you should monitor

query latency and take action if it surpasses a threshold. It’s

important to monitor relevant metrics about queries and

fetches that can help you determine how your searches

perform over time. For example, you may want to track spikes

and long-term increases in query requests, so that you can be

prepared to tweak your configuration to optimize for better

performance and reliability.

Search performance metrics

 Query load: Monitoring the number of queries currently in

progress can give you a rough idea of how many requests your

cluster is dealing with at any particular moment in time.

Consider alerting on unusual spikes or dips that may point to

underlying problems. You may also want to monitor the size

of the search thread pool queue.

 Query latency: Though Elasticsearch does not explicitly

provide this metric, monitoring tools can help you use the

available metrics to calculate the average query latency by

sampling the total number of queries and the total elapsed time

at regular intervals. Set an alert if latency exceeds a threshold,

and if it fires, look for potential resource bottlenecks, or

investigate whether you need to optimize your queries.

 Fetch latency: The fetch phase, should typically take much

less time than the query phase. If this metric isconstantly

increasing, this could indicate a problem with slow

disks, enriching of documents (highlighting relevant text in

search results, etc.), or requesting too many results.

4.1.2 Index Requests

Indexing requests are similar to write requests in a traditional

database system. If your Elasticsearch workload is write-

heavy, it’s important to monitor and analyze how effectively

you are able to update indices with new information. When

new information is added to an index, or existing information

is updated or deleted, each shard in the index is updated via

two processes: refresh and flush.

 Index refresh

Newly indexed documents are not immediately made available

for search. First they are written to an in-memory buffer where

they await the next index refresh, which occurs once per

http://www.ijritcc.org/
https://lucene.apache.org/core/3_0_3/fileformats.html#InvertedIndexing
https://lucene.apache.org/core/3_0_3/fileformats.html#InvertedIndexing
https://lucene.apache.org/core/3_0_3/fileformats.html#InvertedIndexing
https://lucene.apache.org/
https://www.datadoghq.com/blog/monitor-elasticsearch-performance-metrics/#toc-search-performance-metrics
https://www.datadoghq.com/blog/elasticsearch-performance-scaling-problems/
https://www.datadoghq.com/blog/elasticsearch-performance-scaling-problems/
https://www.datadoghq.com/blog/elasticsearch-performance-scaling-problems/
https://www.elastic.co/guide/en/elasticsearch/guide/current/highlighting-intro.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/pagination.html

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 11 222 – 229

224
IJRITCC | November 2017, Available @ http://www.ijritcc.org

second by default. The refresh process creates a new in-

memory segment from the contents of the in-memory buffer

(making the newly indexed documents searchable), then

empties the buffer, as shown below.

Figure 4. The index refresh process

Shards of an index are composed of multiple segments. The

core data structure from Lucene, a segment is essentially a

change set for the index. These segments are created with

every refresh and subsequently merged together over time in

the background to ensure efficient use of resources. Each

segment uses file handles, memory, and CPU. Segments are

mini-inverted indices that map terms to the documents that

contain those terms. Every time an index is searched, a

primary or replica version of each shard must be searched by,

in turn, searching every segment in that shard.

A segment is immutable, so updating a document means:

 writing the information to a new segment during the

refresh process

 marking the old information as deleted

The old information is eventually deleted when the outdated

segment is merged with another segment.

Index flush

When the newly indexed documents are added to the in-

memory buffer, they are also appended to the shard’s translog:

a persistent, write-ahead transaction log of operations.

Whenever the translog reaches a maximum size which is

512MB by default, a flush is triggered. During a flush, any

documents in the in-memory buffer are refreshed (stored on

new segments), all in-memory segments are committed to

disk, and the translog is cleared.

The translog helps prevent data loss in the event that a node

fails. It is designed to help a shard recover operations that may

otherwise have been lost between flushes. The log is

committed to disk every five seconds, or upon each successful

index, delete, update, or bulk request, whichever occurs first.

Figure: 5The index flush process

Indexing Performance Metrics

Elasticsearch provides a number of metrics to assess indexing

performance and to optimize update your indices.

 Indexing latency: Monitoring tools can help to

calculate the average indexing latency from the

available index_total and index_time_in_millis metric

s. If the latency is increasing, user is trying to index

too many documents at one time.To index a lot of

documents without new information to be

immediately available for search, you can optimize

for indexing performance over search performance by

decreasing refresh frequency until you are done

indexing.

 Flush latency: Because data is not persisted to disk

until a flush is successfully completed, it can be

useful to track flush latency and take action if

performance begins to take a dive. If this metric is

increasing steadily, it could indicate a problem with

slow disks; this problem may escalate and eventually

prevent from being able to add new information to

index.

4.2 Memory usage and garbage collection

Memory is one of the key resources when running

Elasticsearch. Elasticsearch and Lucene utilize all of the

available RAM on your nodes in two ways: JVM heap and the

file system cache. Elasticsearch runs in the Java Virtual

Machine (JVM), which means that JVM garbage collection

duration and frequency will be other important areas to

monitor.

JVM heap:

Elasticsearch stresses the importance of a JVM heap size. In

general, Elasticsearch’s rule of thumb is allocating less than 50

percent of available RAM to JVM heap, and never going

higher than 32 GB.

The less heap memory you allocate to Elasticsearch, the more

RAM remains available for Lucene, which relies heavily on

the file system cache to serve requests quickly. If the heap size

is too small we may get out-of-memory errors or reduced

throughput as the application faces constant short pauses from

frequent garbage collections. Elasticsearch’s default

installation sets a JVM heap size of 1 gigabyte, which is too

small for most use cases. The other option is to set the JVM

heap size (with equal minimum and maximum sizes to prevent

http://www.ijritcc.org/
https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules-translog.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/_limiting_memory_usage.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/_limiting_memory_usage.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/_limiting_memory_usage.html
https://datadog-prod.imgix.net/img/blog/monitor-elasticsearch-performance-metrics/elasticsearch-diagram2a.png?fit=max

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 11 222 – 229

225
IJRITCC | November 2017, Available @ http://www.ijritcc.org

the heap from resizing) on the command line every time you

start up Elasticsearch:

Garbage collection

Elasticsearch relies on garbage collection processes to free up

heap memory. Because garbage collection uses resources in

order to free up resources, you need to adjust the heap size.

Setting the heap too large can result in long garbage collection

times; these excessive pauses are dangerous because they can

lead your cluster to mistakenly register your node as having

dropped off the grid.

JVM metrics

JVM heap in use: Elasticsearch is set up to initiate garbage

collections whenever JVM heap usage hits 75 percent. As

shown above, it may be useful to monitor which nodes exhibit

high heap usage, and set up an alert to find out if any node is

consistently using over 85 percent of heap memory; this

indicates that the rate of garbage collection isn’t keeping up

with the rate of garbage creation. To address this problem, you

can either increase your heap size (as long as it remains below

the recommended guidelines stated above), or scale out the

cluster by adding more nodes.

JVM heap used vs. JVM heap committed: It can be helpful

to get an idea of how much JVM heap is currently in use,

compared to committed memory (the amount that

is guaranteed to be available). The amount of heap memory in

use will typically take on a sawtooth pattern that rises when

garbage accumulates and dips when garbage is collected. If the

pattern starts to skew upward over time, this means that the

rate of garbage collection is not keeping up with the rate of

object creation, which could lead to slow garbage collection

times and, eventually, OutOfMemoryErrors.

Garbage collection duration and frequency: Both young-

and old-generation garbage collectors undergo ―stop the

world‖ phases, as the JVM halts execution of the program to

collect dead objects. During this time, the node cannot

complete any tasks. Because the master node checks the status

of every other node every 30 seconds, if any node’s garbage

collection time exceed 30 seconds, it will lead the master to

believe that the node has failed.

Memory usage

Elasticsearch makes excellent use of any RAM that has not

been allocated to JVM heap. Elasticsearch was designed to

rely on the operating system’s file system cache to serve

requests quickly and reliably.A number of variables determine

whether or not Elasticsearch successfully reads from the file

system cache. If the segment file was recently written to disk

by Elasticsearch, it is already in the cache. However, if a node

has been shut off and rebooted, the first time a segment is

queried, the information will most likely have to be read from

disk. This is one reason why it’s important to make sure your

cluster remains stable and that nodes do not crash.Generally,

it’s very important to monitor memory usage on your nodes,

and give Elasticsearch as much RAM as possible, so it can

leverage the speed of the file system cache without running

out of space.

4.3 Host-level network and system metrics

Host metrics to alert on

Disk space: This metric is significant if Elasticsearch cluster

is write-heavy. To insert or update anything we need a

sufficient disk space otherwise the node will fail. If less than

20 percent is available on a node, use a tool like Curator to

delete certain indices residing on that node that are taking up

too much valuable disk space. Other alternative is to add more

nodes, and let the master take care of automatically

redistributing shards across the new nodes.

Host metrics to watch

I/O utilization: Elasticsearch does a lot of writing to and

reading from disk when segments are created, queried, and

merged, For write-heavy clusters with nodes that are

frequently experiencing heavy I/O activity, Elasticsearch

recommends using SSDs to boost performance.

CPU Utilization: Increase in CPU usage is usually caused by

a heavy search or indexing workload. Set up a notification to

find out if your nodes’ CPU usage is consistently increasing,

and add more nodes to redistribute the load if needed.

Network bytes sent/received: Communication between nodes

is a key component of a balanced cluster. Elasticsearch

provides transport metrics about cluster communication.

Open file descriptors: File descriptors are used for node-to-

node communications, client connections, and file operations.

If this number reaches your system’s max capacity, then new

connections and file operations will not be possible until old

ones have closed.

HTTP connections

Requests sent in any language but Java will communicate with

Elastic search using RESTful API over HTTP. If the total

number of opened HTTP connections is constantly increasing,

it could indicate that your HTTP clients are not properly

establishing persistent connections. Reestablishing

connections adds extra milliseconds or even seconds to your

request response time. Make sure your clients are configured

properly to avoid negative impact on performance, or use one

of the official Elasticsearch clients, which already properly

configure HTTP connections.

4.4 Cluster health and node availability

 Cluster status:

If the cluster status is yellow, at least one replica shard is

unallocated or missing. Search results will still be

complete, but if more shards disappear, you may lose

data.If the cluster status is red, at least one primary shard

is missing, and you are missing data, which means that

searches will return partial results. You will also be

blocked from indexing into that shard. Consider setting up

an alert to trigger if status has been yellow for more than 5

min or if the status has been red for the past minute.

 Initializing and unassigned shards
When you first create an index, or when a node is

rebooted, its shards will briefly be in an ―initializing‖ state

before transitioning to a status of ―started‖ or

―unassigned‖, as the master node attempts to assign

shards to nodes in the cluster. If shards remain in an

http://www.ijritcc.org/
https://docs.oracle.com/javase/7/docs/api/java/lang/management/MemoryUsage.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-health.html
https://www.elastic.co/blog/found-elasticsearch-in-production#memory
https://github.com/elastic/curator
https://www.elastic.co/guide/en/elasticsearch/guide/2.x/_monitoring_individual_nodes.html
https://www.elastic.co/guide/en/elasticsearch/guide/2.x/_monitoring_individual_nodes.html
https://www.elastic.co/guide/en/elasticsearch/guide/2.x/_monitoring_individual_nodes.html
https://www.elastic.co/blog/found-interfacing-elasticsearch-picking-client
https://www.elastic.co/guide/en/elasticsearch/client/index.html
https://www.datadoghq.com/alerts/
https://www.datadoghq.com/alerts/
https://www.datadoghq.com/alerts/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 11 222 – 229

226
IJRITCC | November 2017, Available @ http://www.ijritcc.org

initializing or unassigned state too long, it could be a

warning sign that the cluster is unstable.

4.5 Resource saturation and errors

Elasticsearch nodes use thread pools to manage how threads

consume memory and CPU. Since thread pool settings are

automatically configured based on the number of processors, it

usually doesn’t make sense to tweak them. If the nodes are not

able to keep up we can add more nodes to handle all of the

concurrent requests. Fielddata and filter cache usage is another

area to monitor, as evictions may point to inefficient queries or

signs of memory pressure.

Thread pool queue and rejections

Each node maintains many types of thread pools; The most

important nodes to monitor are search, index, merge, and

bulk.The size of each thread pool’s queue represents how

many requests are waiting to be served while the node is

currently at capacity. The queue allows the node to track and

eventually serve these requests instead of discarding them.

Thread pool rejections arise once the thread pool’s maximum

queue size is reached.

Metrics to watch

Thread pool queues : Large queues are not ideal because they

use up resources and also increase the risk of losing requests if

a node goes down. If you see the number of queued and

rejected threads increasing steadily, you may want to try

slowing down the rate of requests (if possible), increasing the

number of processors on your nodes, or increasing the number

of nodes in the cluster. As shown in the screenshot below,

query load spikes correlate with spikes in search thread pool

queue size, as the node attempts to keep up with rate of query

requests.

Fig:6.Thread pool queues

Bulk rejections and bulk queues: Bulk rejections are usually

related to trying to index too many documents in one bulk

request. Bulk operations are a more efficient way to send

many requests at one time. Generally, if you want to perform

many actions like create an index, or add, update, or delete

documents, you should try to send the requests as a bulk

operation instead of many individual requests.

Cache usage metrics

Each query request is sent to every shard in an index, which

then hits every segment of each of those shards. Elastic search

caches queries on a per-segment basis to speed up response

time. If caches hog too much of the heap, they may slow

things down instead of speeding them up.

In Elastic search, each field in a document can be stored in one

of two forms: as an exact value or as full text. An exact value,

such as a timestamp or a year, is stored exactly the way it was

indexed because you do not expect to receive to query 1/1/16

as ―January 1st, 2016.‖ If a field is stored as full text, that

means it is analyzed—basically, it is broken down into tokens,

and, depending on the type of analyzer, punctuation and stop

words like ―is‖ or ―the‖ may be removed. The analyzer

converts the field into a normalized format that enables it to

match a wider range of queries.

Elastic search uses two main types of caches to serve search

requests more quickly: fielddata and filter.

Fielddata cache

The fielddata cache is used when sorting or aggregating on a

field, a process that basically has to uninvent the inverted

index to create an array of every field value per field, in

document order.

Filter cache

Filter caches also use JVM heap. Elastic search automatically

cached filtered queries with a max value of 10 percent of the

heap, and evicted the least recently used data. Elastic search

automatically began optimizing its filter cache, based on

frequency and segment size (caching only occurs on segments

that have fewer than 10,000 documents or less than 3 percent

of total documents in the index).

Cache metrics to watch

Fielddata cache evictions: Ideally, you want to limit the

number of fielddata evictions because they are I/O intensive. If

you’re seeing a lot of evictions and you cannot increase your

memory at the moment, Elastic search recommends a

temporary fix of limiting fielddata cache to 20 percent of heap;

Elastic search also recommends using doc values whenever

possible because they serve the same purpose as fielddata.

However, because they are stored on disk, they do not rely on

JVM heap. Although doc values cannot be used for analyzed

string fields, they do save field data usage when aggregating or

sorting on other types of fields.

Filter cache evictions: Each segment maintains its own

individual filter cache. Since evictions are costlier operations

on large segments than small segments, there’s no clear-cut

way to assess how serious each eviction may be. However, if

you see evictions occurring more often, this may indicate that

you are not using filters to your best advantage—you could

just be creating new ones and evicting old ones on a frequent

basis, defeating the purpose of even using a cache.

Pending tasks

Pending tasks such as creating indices and assigning shards to

nodes can only be handled by master nodes. Pending tasks are

processed in priority order—urgent comes first, then high

priority. They start to accumulate when the number of changes

occurs more quickly than the master can process them.The

number of pending tasks indicates how smoothly a cluster is

operating. If your master node is very busy and the number of

http://www.ijritcc.org/
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-threadpool.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-threadpool.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-threadpool.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/_deep_dive_on_doc_values.html

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 11 222 – 229

227
IJRITCC | November 2017, Available @ http://www.ijritcc.org

pending tasks doesn’t subside, it can lead to an unstable

cluster.

Unsuccessful GET requests

A GET request is more straightforward than a normal search

request—it retrieves a document based on its ID. An

unsuccessful get-by-ID request means that the document ID

was not found.

5. ELASTICSEARCH CHALLENGES

Elasticsearch was intended to allow its users to get up and

running quickly, without having to understand all of its inner

workings.

5.1 Cluster status.

Cluster status is reported as red if one or more primary shards

and its replicas is missing, and yellow if one or more replica

shards is missing. Normally, this happens when a node drops

off the cluster for hardware failure, long garbage collection

time, etc. Once the node recovers, its shards will remain in an

initializing state before they transition back to active status.

The number of initializing shards typically peaks when a node

rejoins the cluster, and then drops back down as the shards

transition into an active state.

Fig: 7.Cluster status

During this initialization period, your cluster state may

transition from green to yellow or red until the shards on the

recovering node regain active status. In many cases, a brief

status change to yellow or red may not require any action on

your part.

However, if you notice that your cluster status is lingering in

red or yellow state for an extended period of time, verify that

the cluster is recognizing the correct number of Elastic search

nodes, either by consulting Data dog’s dashboard or by

querying the Cluster Health API

Fig:8. The Cluster Health API

If the number of active nodes is lower than expected, it means

that at least one of your nodes lost its connection and hasn’t

been able to rejoin the cluster. To find out which node(s) left

the cluster, check the logs (located by default in the logs folder

of your Elastic search home directory) for a line similar to the

following:[TIMESTAMP] ... Cluster health status changed

from [GREEN] to [RED].

Reasons for node failure can vary, ranging from hardware or

hypervisor failures, to out-of-memory errors. If it is a

temporary failure, you can try to get the disconnected node(s)

to recover and rejoin the cluster. If it is a permanent failure,

and you are not able to recover the node, you can add new

nodes and let Elastic search take care of recovering from any

available replica shards; replica shards can be promoted to

primary shards and redistributed on the new nodes you just

added.

However, if you lost both the primary and replica copy of a

shard, you can try to recover as much of the missing data as

possible by using Elastic search snapshot and restore module.

If you’re not already familiar with this module, it can be used

to store snapshots of indices over time in a remote repository

for backup purposes.

5.2Disk space

If all data nodes are running low on disk space, add more data

nodes to a cluster. Make sure that indices have enough primary

shards to be able to balance their data across all those

nodes.However, if only certain nodes are running out of disk

space means an index is initialized with too few shards. It is

hard for Elastic search to distribute these shards across nodes

in a balanced manner.Elastic search takes available disk space

into account when allocating shards to nodes. By default, it

will not assign shards to nodes that have over 85 percent disk

in use. In Datadog, you can set up a threshold alert to notify

you when any individual data node’s disk space usage

approaches 80 percent, which should give you enough time to

take action.

There are two remedies for low disk space.

 One is to remove outdated data and store it off the

cluster.

 Second is storing all of your data on the cluster

vertically or horizontally.

5.3 Execution time of Searches

Search performance varies according to the type of data that is

being searched and how each query is structured. Depending

on the way data is organized, to speed up search performance,

we have two methods custom routing andforce merging.

 Custom routing allows you to store related data on the

same shard, so that you only have to search a single shard

to satisfy a query.In Elasticsearch, every search request

has to check every segment of each shard it hits. So once

you have reduced the number of shards you’ll have to

search, you can also reduce the number of segments per

shard by triggering the Force Merge API on one or more

of your indices. The Force Merge API prompts the

segments in the index to continue merging until each

shard’s segment count is reduced

to max_num_segments which is 1, by default.

 Force mergingwhen it comes to shards with a large

number of segments, the force merge process becomes

much more computationally expensive. Force merging an

index of 10,000 segments down to 5,000 segments doesn’t

http://www.ijritcc.org/
https://app.datadoghq.com/screen/integration/elasticsearch
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-snapshots.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/disk-allocator.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/disk-allocator.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/disk-allocator.html
https://www.datadoghq.com/blog/tiered-alerts-urgency-aware-alerting/
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-routing-field.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-forcemerge.html

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 11 222 – 229

228
IJRITCC | November 2017, Available @ http://www.ijritcc.org

take much time, but merging 10,000 segments all the way

down to one segment can take hours. The more merging

that must occur, the more resources you take away from

fulfilling search requests, which may defeat the purpose of

calling a force merge in the first place. It is a good idea to

schedule a force merging during non-peak hours, such as

overnight, when you don’t expect many search or

indexing requests.

5.4Index-heavy workload.

Elastic search comes pre-configured with many settings to

retain enough resources for searching and indexing data.

However, if the usage of Elastic search is heavily skewed

towards writes, it makes sense to tweak certain settings to

boost indexing performance, even if it means losing some

search performance or data replication.

Methods to optimize use case for indexing.

 Shard allocation: If you are creating an index to

update frequently, allocate one primary shard per

node in a cluster, and two or more primary shards per

node, but only if you have a lot of CPU and disk

bandwidth on those nodes. However, shard

overallocation adds overhead and may negatively

impact search, since search requests need to hit every

shard in the index. If you assign fewer primary shards

than the number of nodes, you may create hotspots,

as the nodes that contain those shards will need to

handle more indexing requests than nodes that don’t

contain any of the index’s shards.

 Disable merge throttling: Merge throttling is

Elasticsearch’s automatic tendency to throttle

indexing requests when it detects that merging is

falling behind indexing. Update cluster settings to

disable merge throttling to optimize indexing

performance, not search.

 Increase the size of the indexing buffer:

This(indices.memory.index_buffer_size) setting

determines how full the buffer can get before its

documents are written to a segment on disk. The

default setting limits this value to 10 percent of the

total heap in order to reserve more of the heap for

serving search requests, which doesn’t help you if

you’re using Elastic search primarily for indexing.

 Index first, replicate later: When you initialize an

index, specify zero replica shards in the index

settings, and add replicas after you’re done indexing.

This will boost indexing performance, but it can be a

bit risky if the node holding the only copy of the data

crashes before you have a chance to replicate it.

 Refresh less frequently: Increase the refresh interval

in the Index Settings API. By default, the index

refresh process occurs every second, but during heavy

indexing periods, reducing the refresh frequency can

help alleviate some of the workload.

 Tweak your translog settings: Elastic search

will flush translog data to disk after every request,

reducing the risk of data loss in the event of hardware

failure. If you want to prioritize indexing

performance over potential data loss, you can

change index.translogdurability to asyncin the index

settings. With this in place, the index will only

commit writes to disk upon every sync_interval,

rather than after each request, leaving more of its

resources free to serve indexing requests.

5.5Bulk thread pool rejections

Thread pool rejections are typically a sign that you are sending

too many requests to your nodes, too quickly. If this is a

temporary situation you can try to slow down the rate of your

requests. However, if you want your cluster to be able to

sustain the current rate of requests, you will probably need to

scale out your cluster by adding more data nodes. In order to

utilize the processing power of the increased number of nodes,

you should also make sure that your indices contain enough

shards to be able to spread the load evenly across all of your

nodes.

6. CONCLUSION

Elastic search lets you make amazing things quite easily. It

provides great features at great speeds and scale.In this paper,

we’ve covered important areas of Elastic searchsuch as Search

and indexing performance, Memory and garbage collection,

Host-level system and network metrics, Cluster health and

node availability and Resource saturation and errors.Elastic

search metrics along with node-level system metrics will

discover which areas are the most meaningful for specific use

case.

REFERENCES
[1] https://curatedsql.com/2016/09/29/monitoring-

elasticsearch-performance/

[2] https://blog.codecentric.de/en/2014/05/elasticsearch-

indexing-performance-cheatsheet/

[3] https://sematext.com/publications/performance-monitoring-

essentials-elasticsearch-edition.pdf

[4] https://www.datadoghq.com/blog/elasticsearch-

performance-scaling-problems/

[5] https://dzone.com/articles/top-10-elasticsearch-metrics

[6] Elastic search: Guide – https://www.elastic.co/guide

[7] Elasticsearch: Issues –

 https://github.com/elasticsearch/elasticsearch/issues

[8] Heroku postgres production tier technical characterization,

2013 – https://devcenter.heroku.com/articles/heroku-

postgres-production-tier-technical-characterization

[9] PostgreSQL: PostgreSQL documentation, 2013 –

 http://www.postgresql.org/docs/current/static/

[10] Szegedi, Attila: Everything i ever learned about jVM

performance tuning @twitter

About the Authors

Mr. Subhani Shaik is working as Assistant

professor in Department of computer science and

Engineering at St. Mary’s group of institutions

Guntur, he has 12 years of TeachingExperience in
the academics.

http://www.ijritcc.org/
https://www.elastic.co/guide/en/elasticsearch/guide/current/kagillion-shards.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/kagillion-shards.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/kagillion-shards.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-update-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/2.2/indexing-buffer.html
https://www.elastic.co/guide/en/elasticsearch/reference/2.0/index-modules-translog.html
https://curatedsql.com/2016/09/29/monitoring-elasticsearch-performance/
https://curatedsql.com/2016/09/29/monitoring-elasticsearch-performance/
https://blog.codecentric.de/en/2014/05/elasticsearch-indexing-performance-cheatsheet/
https://blog.codecentric.de/en/2014/05/elasticsearch-indexing-performance-cheatsheet/
https://sematext.com/publications/performance-monitoring-essentials-elasticsearch-edition.pdf
https://sematext.com/publications/performance-monitoring-essentials-elasticsearch-edition.pdf
https://dzone.com/articles/top-10-elasticsearch-metrics
https://www.elastic.co/guide
https://github.com/elasticsearch/elasticsearch/issues
https://devcenter.heroku.com/articles/heroku-postgres-production-tier-technical-characterization
https://devcenter.heroku.com/articles/heroku-postgres-production-tier-technical-characterization
http://www.postgresql.org/docs/current/static/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 11 222 – 229

229
IJRITCC | November 2017, Available @ http://www.ijritcc.org

Dr. Nallamothu Naga Malleswara Rao is working

as Professor in the Department of Information

Technology at RVR & JC College of Engineering

with 25 years of Teaching Experience in the

academics.

http://www.ijritcc.org/

