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Abstract—Polyphase Sequences (known as P1, P2, Px, Frank) exist for a square integer length with good auto correlation properties are helpful 

in the several applications. Unlike the Barker and Binary Sequences which exist for certain length and exhibits a maximum of two digit merit 

factor. The Integrated Sidelobe level (ISL) is often used to define excellence of the autocorrelation properties of given Polyphase sequence. In 

this paper, we present the application of Cyclic Algorithm named CA which minimizes the ISL (Integrated Sidelobe Level) related metric which 

in turn improve the Merit factor to a greater extent is main thing in applications like RADAR, SONAR and communications. To illustrate the 

performance of the P1, P2, Px, Frank sequences when cyclic Algorithm is applied. we presented a number of examples for integer lengths. 

CA(Px) sequence exhibits the good Merit Factor among all the Polyphase sequences that are considered. 

Keywords-Polyphase sequence, Cyclic Algorithm, Correlation level, Integrated sidelobe level,  Merit Factor,  
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I. INTRODUCTION 

Radar waveform designs have examined Polyphase 
sequences for a long time as a productive contracting option to 
the diverse classes of Frequency-modulated signals [1][2]. In 
radar & communication, sequences with good autocorrelation 
properties are of main interest. The “goodness” depends on the 
application we use. Frank sequence merit factors are analyzed 
in [3]. P2 &Px sequences derived from linear-frequency-
modulated [4]. Frank & P1 are designed from step 
approximation-to-linear frequency-modulation waveform [5]. 
Frank sequence merit factors are better than Chu. The two of 
them significantly outperform binary sequences [6][7]. 

The sequences can be processed digitally even though they 
are deriving from phase history of chirp or step-chirp Analog 
signals. By and by, radar waveforms might be upgraded in a 
first plan step by utilizing relationship measures and thus 
connects with the uncertainty capacity to assess the effect of 
phase shift changes on the execution. Prevalent execution as far 
as the incorporated Sidelobe levels contrasted with the Frank 
and P1 sequence is given by Px sequences that have been 
presented by Rapajic and Kennedy [8]. 

The ideas driving Frank sequences have later been summed 
up to encourage plans of Polyphase sequence of any length and 
related work was combined in the plain Zad-off-Chu(FZC) 
sequences or Chu Sequence[9][10]. A few execution parts of 
the previously mentioned classes of Polyphase sequences have 
been accounted for in writing fined years [11][12]. These 
sequences were initially presented inside the specific 
circumstance of utilizations for code division various to 
(CDMA) frame works, while these conducts inside radar 
situations have not been considered so for to the best of our 
insight [13]. 

This paper is organized as follows. Section II characterizes 

the measures used to encourage a quantitative execution 

assessment of good correlation sequence. Section III presents 

the essentials on classes of Polyphase sequences that are 

utilized with radar applications. Section IV presents the basic 

cyclic algorithm. On the basis of numerical results for 

different are given in Section V. Section VI concludes the 

paper.  

II. PERFORMANCE MEASURES 

Let N denotes the length of each Polyphase sequences 

Ck=[Ck(0),Ck(1),….,Ck(N-1)…..] of a size P where 

11  Nk  

A. Correlation Function 

The correlation function at a discrete shift k between a 

Polyphase sequence is given by        
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Where 
*)(  denotes the complex conjugate for scalar & the 

conjugate transpose for vector & matrices. 

B. Integrated Sidelobe Level (ISL) 

TThe ISL for the Polyphase sequence 

Ck=[Ck(0),Ck(1),….,Ck(N-1) can be defined as follows  
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ckISL is the ISL metric   (2) 

The primary concentration of this paper is on calculation for 

limiting the ISL metric or ISL related measurements over the 

arrangement of Polyphase sequences. Note that minimization 

of ISL metric is proportional to the improvement of the merit 

factor defined as a performance metric in the below. 

C. Merit Factor(MF) 

The MF for the Polyphase sequence Ck=[Ck(0),Ck(1),….,Ck(N-

1) is defined as follows 
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Polyphase sequences with good merit factor are desired in 

many applications including range compression radar and 

sonar and wireless communication.  
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III. POLYPHASE SEQUENCES CLASSES 

This section, we will describe the definitions of the 

considered Polyphase sequence classes in terms of phases & 

autocorrelation function. We adopted the sequence as it is used 

in many radar-related publication work & communication 

systems. In particular the P1, P2,Px, Frank sequences will be 

described for radar applications. on behalf of that these 

sequences beneficial properties and remarks also said. 

A. Frank Sequence 

Let the Polyphase sequence ),,.........,(
21 xxx N

X   of a 

square integer length N=M
2
(where M is a prime number). Due 

to work on phase shift pulse codes in [14].The history of 

complex-valued back as far as the 1950‟s. 

The sequence elements are arranged as a M x M Matrix and 

are given by M
th

 roots of unity 

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j
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2
exp                  (5) 

From the above, the actual Length „N‟ of Polyphase sequence 

can be produced by matrix of roots of units row-by-row. 

Polyphase sequence of perfect square length N=M
2
 are shown 

in [15]. the related sequence are referred to as Frank sequence. 

Frank Sequence:   The elements xk(m,n) of k
th

 Frank sequence 

is given as a matrix 
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The Phase components are mnk
Mk




2
  

Where 11  Mk  , 1,0  Mnm  and gcd(k,m)=1is 

required. (m,n)
th

 element s of (8)  can be point to the i
th
 

element of a sequence length N in terms of the phase sequence 

as follows 

)()(),(: nmMinmnmMi
kkk

                   (7)
 

B. P1, P2, Px Sequence 
This sequence can be considered for perfect square 

length N=M
2
 only. In P1, P2, Px the phase components are 

rearranged version of Frank phase components [16] by cluster 

of zeros placed in the central part of the sequence.  

)],(exp[),()()( nmjnmpnmMpip  (8)  

here 1,0  Mnm  and the phase components are 

P1sequence:  nmMm
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P2 sequence: 
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Similarly for Px sequence Px: 
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Here 1,0  Mnm . Note that the phase elements of Px 

are similar to that of P2 for M even.  

IV. CYCLIC ALGORITHM 

The approach in the following is much simpler & 

computationally efficient than applying the optimization 

technique for the Polyphase sequence [16] and [17]. This 

makes feasible to work with quite large values of N (in some 

radar and imaging applications we can choose 1000~N ). It 

means we can choose Q  first from practical consideration and 

select QN  on computational as well as practical operation 

accounts.  

Let C
~

be the following block-Toeplitz matrix 
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Note that C
~

is )1(  KLCNL . The auto & cross 

correlation appeared in below are the elements of the positive 

–semi finite matrix CC
~~

.  
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denote the (cross)- correlation of )(lxn
and )(~ lxn

at lag 

.Consequently, a criterion related to above equation (15) 

which has more compact form of the following 

2
*
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The above equation is the generalized correlation coefficient; 

and we use this equation to evaluate the correlation quality of 

a waveform. In such a case where *~~
CC is singular, it follows 

that the maximum magnitude of its off-diagonal elements must 

be of the order  1O  or larger; consequently, the ratio 

between )(max ~~,, pr nnnnp
and Krnn )0( is of the order 

)/1( LO but not smaller. 

In the following we assume that 




















1

1

1

1
1

N

K
Lposibly

N

K
LKLNL (17) 

Under the above equation, if we relax any requirement on the 

elements and the structure of C
~

, then the class matrix C
~

that 

satisfies the equality KICC *~~
is given by 

UKC 
~

(18) 

Where U is an arbitrary semi-unitary matrix [18] i.e. 

IUU *
usually the observation, we can reformulate (18) or 

(20) in the following related(but bot equivalent) way: 
2

)},({

~
min UKC

Uln




(19)  

This is a non-convex problem, the following cyclic 

minimization algorithm [19] [20], that is conceptually 
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&computationally simple and also have good local 

convergence properties. 

A. BLOCK DIAGRAM OF THE CA 
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Cyclic Algorithm  

Step 0:Initialize Uor possibly C
~

(in which case the sequence 

of the next steps should be inverted), at some value suggested 

by “prior knowledge”. i.e. initializing C with possibly good 

existing sequence of Polyphase sequence (P1, P2, Px,  Frank) 

Step 1: Compute the semi-unitary matrix U& minimize the 

(19) with respect to )}({ ln . 

Step 2: with )}({ ln set to the most-recent values, minimize 

the (19) w.r.to U. 

Iteration: repeat step 1 and 2 until a practical convergence 

criterion is satisfied.  

The iteration can be terminated, when the relative difference 

of the cost in (19) (i.e. the cost difference normalized by the 

cost of the previous iteration) is less than or equal to the 10
-3

 

value in the numerical example illustrated. 

The minimization problem in step 1 has the following generic 

form
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Where  Zp are numbers given in (20) (21). The solution to 

the above equation is given by 


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In step 2 of the CA, the minimization problem solution can be 

easily computed as. Let 
*~~

UUCK  (23) 

Above equation denotes the singular value decomposition 

(SVD) of CK
~

, when U is NLNL , and U
~

is 

NLKL  )1(  then the said solution is given by [21][22]. 

*~
UU  (24) 

 Consider the simple illustration that with N=4 and L=22. Fig 

1 shows the generalized correlation coefficient of the 

waveform given by the CA, as a function of Sampler Number 

L.(Note that for L<94, the GCC is too large to be of any 

practical interest). As L increases, we can achieve the goal of 

obtaining sequence with small value of auto & cross 

correlation effectively which is sign of improving the Merit 

Factor [23]. Additional simulation examples are shown in the 

next section for different values of N.  

 
Fig 1 Sample number Vs. GCC via Cyclic Algorithm 

 

V RESULTS 

We compared the merit factors of the Polyphase 

sequence (P1, P2, Px, Frank), and that of CA Algorithm 

initialized by sequence said above( denoted as CA(P1), 

CA(P2), CA(Px), CA(Frank). 

Note that the above sequences can be calculated for any value 

of N of possible practical interest, with the only restriction that 

N must be perfect square for Frank, P1, P2, Px sequences. We 

computed the Merit factors of above eight type sequences (P1, 

P2,Px, Frank) for the following length shown in Table I. the 

results are shown in Fig (1 & 2). The correlation level is 

defined as   

1,...,1,log20
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10  Nk
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   (25) 
 

We calculated the Merit Factor of Polyphase 

sequences for the lengths N=100 and N=256 and note that the 

correlation levels  of the CA(Px) and CA(Frank)sequence are 

comparatively small from k close to zero and N-1. 

The Merit Factor of Polyphase sequences using 

conventional and cyclic algorithm for N=100 and N=256 are 

shown in TABLE I. In conventional method the P2, Frank 

exhibits the nearly same merit factor for length N=100 and P1, 

P2 have the same merit factor for length N=256. The Px 

exhibits the good merit factor among all the sequences when 

cyclic algorithm is applied for both the lengths N=100 & 256. 
Merit Factor of Polyphase sequences (p1, p2, Px, 

frank) for integer values M=2 to 16 (i.e. N=4 to 256 where 
N=M

2
), the merit factor are exist lengths N=16 to N=256 are 

shown in TABLE II. We notice that for integer values M=11 & 
13 all the sequences such as CA(P1), CA(P2), CA(Px), 
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CA(Frank) exhibits the approximate value of the merit factor 
for the co-integer values. Where the 11 and 13 are the prime 
numbers. So, the P1, P2, Px, Frank can exhibit the good merit 
factor for the sequences length N which are obtained from the 
prime integer. Merit factor vs. sequence length are shown in 
Fig. 3 and Fig. 4 for the conventional and when cyclic 
algorithm applied.  
 

TABLE I MERIT FACTOR OF POLYPHASE SEQUENCES 

USING CONVENTIONAL AND CYCLIC ALGORITHM 

FOR N=100 AND N=256. 

 

P
o

ly
p

h
as

e 

S
eq

u
en

ce
s Conventional 

Method 

Merit Factor 

Polyphase 

Sequences 

with 

Cyclic 

Algorithm 

CA 

Merit Factor 

N=100 N=256 N=100 N=256 

P1 22.452 36.103 CA(P1) 60.014 92.342 

P2 23.121 36.014 CA(P2) 60.213 93.789 

Px 25.012 40.012 CA(Px) 67.344 107.732 

Frank 23.592 38.214 
CA 

(Frank) 
61.414 94.355 

 
TABLE II MERIT FACTOR OF POLYPHSE SEQUENCES 
(P1, P2, Px, Frank) FOR LENGTHS N=4 TO N=256. 
 

Sequence Length N=M
2
 

M N 
MF for 
CA(P1) 

MF for 
CA(P2) 

MF for 
CA(Px) 

MF for 
CA(Frank) 

2 4 --- ---- ---- ---- 

3 9 --- ---- ---- ---- 

4 16 8.614 8.081 12.808 10.671 

5 25 13.459 14.0193 21.325 19.215 

6 36 19.380 19.942 34.172 31.587 

7 49 29.408 30.718 46.536 45.345 

8 64 38.411 39.415 56.020 51.421 

9 81 48.615 50.615 59.610 56.192 

10 100 60.014 60.213 67.344 61.414 

11 121 75.612 76.354 87.486 73.405 

12 144 72.850 73.015 81.438 68.147 

13 169 88.412 91.031 105.417 93.012 

14 196 79.451 81.247 91.325 85.410 

15 225 81.159 84.564 97.142 87.621 

16 256 92.342 93.789 107.732 94.355 

 

 
(a) 

 

 
 

 
(b) 

 

 
(c) 

 

 
(d) 

Fig 1. Correlation levels of the (a) CA(P1), (b) CA( P2), (c) 
CA(Px) (d) CA(Frank) for the length N=100. 
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(b) 

 

 
(c) 

 

 
(d) 

Fig 2. Correlation levels of the (a) CA(P1), (b) CA( P2), (c) 
CA(Px)  (d) CA(Frank) for the length N=256. 

 

 
Fig 3. Merit Factor of the P1, P2, Px, Frank for the length N=0 

to 256. 
 
 

 
Fig 4 Merit Factor of CA(P1), CA(P2), CA(Px), CA(Frank) 

for the lengths N=0 to 256.  

 

VI CONCLUSION 

This paper presents the cyclic algorithm namely CA, 

which can be applied to the Polyphase sequences such as P1, 

P2, Px, Frank that have good correlation properties. The CA 

algorithm makes use of SVD of matrix NLNL can be 

computationally efficient upto the length of N=256. In 

conventional method the best Merit Factor is obtained for Px 

sequence only of 25.012& 40.012 for length N=100& 256 

respectively. But when Cyclic Algorithm is appliedthe CA(Px) 

and CA(Frank) sequences exhibits the better merit Factor 

61.344 & 61.414 for N=100, 107.732 & 94.355 for N=256 

respectively. The P1, P2, Px, Frank express good merit factor 

for the M=11, 13 which are prime numbers (i.e. N=M
2
, 

N=121, 169). The merit factor comparison between P1, P2, 

Px, Frank is Px>Frank>P2>P1. The minimum integer value in 

N=M
2
 we can apply the CA is M=4 and maximum is 16. 
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