Some Properties on Strong Roman Domination in Graphs

G. Suresh Singh ${ }^{\# 1}$, Narges Mohsenitonekboni ${ }^{\# 2}$
\# Department of Mathematics
University of Kerala
Kariyavattom-695581
Thiruvananthapuram-Kerala, India
${ }^{1}$ sureshsinghg@yahoo.co.in
${ }^{2}$ narges.mtonekabni@gmail.com

Abstract

A Strong Roman dominating function (SRDF) is a function $f: V \rightarrow\{0,1,2,3\}$ satisfying the condition that every vertex u for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=3$ and every vertex u for which $f(u)=1$ is adjacent to at least one vertex v for which $f(v)=2$. The weight of an SRDF is the value $f(V)=\sum_{u \in V} f(u)$. The minimum weight of an SRDF on a graph G is called the Strong Roman domination numberof G. In this paper, we attempt to verify some properties on SRDF and moreover we present Strong Roman domination number for some special classes of graphs. Also we show that for a tree T with $n \geq 3$ vertices, l leaves and s support vertices, we have $\gamma_{S R}(T) \leq \frac{6 n-l-s}{4}$ and we characterize all trees achieving this bound.

Keywords-Roman domination number, Strong Roman domination number, Graph, Tree, Star, Double star, Connected graph.

I. INTRODUCTION

Mathematical study of domination in graphs began around 1960 , there are some references to domination related problems about 100 years prior. In 1862, De Jaenisch [2] attempted to determine the minimum number of queens required to cover a $n \times n$ chess board. Except as indicated otherwise, all terminology and notation follows [5, 4, 9]. Let $G=(V, E)$ be a graph of order $|V|=n$. For any vertex $v \in V$ the open neighborhood of v is the set $N(v)=\{u \in V \mid u v \in E\}$ and the closed neighborhood is the set $N[v]=N(v) \bigcup\{v\}$. For a set $S \subseteq V$ the open neighborhood of S is $N(S)=\bigcup_{v \in S} N(v)$ and the closed neighborhood is $N[S]=N(S) \bigcup S$.A set S of vertices is called a vertex cover if for every edge $u v \in E$ either $u \in S$ or $v \in S$. A graph G is said to be connected if there is at least one path between every pair of vertices in G. Otherwise, G is disconnected. A graph with no cycle is acyclic. A forest is an acyclic graph. A tree is a connected acyclic graph. A rooted tree T distinguishes a vertex r called the root. A vertex of degree 1 is called a leaf which denoted by l. A adjacent leafof vertex u in a tree T is a neighborhood of u that is a leaf in T. A support vertex (also called a stem in the
literature) is a vertex of degree at least 2 that is adjacent to at least one leaf. A support vertex adjacent to two or more leaves is a Strong support vertex. A Weak support vertex is a support vertex that is adjacent to exactly one leaf. Also we denote the set of leaves in G by $L(G)$ and the setof support vertices by $\mathrm{S}(\mathrm{G})$. A Star is the graph $K_{1, k}$ where $k \geq 1$. If $k>1$, the vertex of degree k is called the Center vertex of the star. A Double star is formed from two disjoint stars by joining the center vertices of each by an edge. Thus a Double star is a tree with exactly two vertices that are not leaves.

We now introduce the concept of dominating sets in graphs. A set $S \subseteq V$ is a dominating set if $N[S]=V$ or equivalently, every vertex in $V-S$ is adjacent to at least one vertex in S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set in G and a dominating set S of minimum cardinality is called a $\gamma(G)-$ set of G, see [10]. Let $f: V \rightarrow\{0,1,2\}$ be a function having the property that for every vertex $v \in V$ with $f(v)=0$, there exists a neighborhood $u \in N(v)$ with $f(u)=2$. Such a function is called a Roman dominating function or just an RDF. The weight of an RDF is the value $f(V)=\sum_{u \in V} f(u)$. The minimum weight of an RDF on
G is called the Roman domination number of G and is denoted by $\gamma_{R}(G)$, see $[1,10]$.
K. Selvakumar et al. [8] introduced Strong Roman domination in 2016. A Strong Roman dominating function (SRDF) is a function $f: V \rightarrow\{0,1,2,3\}$ satisfying the condition that every vertex u for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=3$ and every vertex u for which $f(u)=1$ is adjacent to at least one vertex v for which $f(v)=2$. The weight of an SRDF is the value $f(V)=\sum_{u \in V} f(u)$. The minimum weight of an SRDF on a graph G is called the Strong Roman domination numberof G.

In 2004, Cockayne et al. [1] studied the graph theoretic properties of Roman dominating sets. In recent years several authors studied the concept of Roman dominating functions and Roman domination numbers [12, 6, 7, 11]. In this paper, we present some results on SRDF and Strong Roman domination number for some special classes of graphs. Also we show that for a tree T with $n \geq 3$ vertices, l leaves and s support vertices, $\gamma_{S R}(T) \leq \frac{6 n-l-s}{4}$ and we characterize all trees achieving this bound.

Proposition: For any graph G, there exists an SRDF, $f=\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ of G, such that $V_{1}=\phi$.

Proof:

Let $V_{1}=\phi$ and $u \in V$. By the definition of SRDF, there exists a vertex $v \in V_{2}$ such that $v \in N(u)$. Hence a function $g=\left(V_{0} \cup\{u\}, V_{1}-\{u\}, V_{2}-\{v\}, V_{3} \cup\{v\}\right)$ is an SRDF. Continuing with the same argument we find an SRDF with $V_{1}=\phi$. Therefore, the proposition follows.

Theorem 1: For any graph G,

$$
2 \gamma(G) \leq \gamma_{S R}(G) \leq 3 \gamma(G)
$$

Proof:

Suppose that $f=\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ is a $\gamma_{S R}(G)$ - function and $\left|V_{0}\right|=n_{0},\left|V_{1}\right|=n_{1}$, $\left|V_{2}\right|=n_{2}$ and $\left|V_{3}\right|=n_{3}$.

$$
\begin{aligned}
\gamma_{S R}(G) & =f(V) \\
& =\sum_{u \in V} f(u) \\
& =3 n_{3}+2 n_{2}+n_{1}
\end{aligned}
$$

$V_{3}>V_{0} \rightarrow$ The set V_{3} dominates the set V_{0}.
$V_{2}>V_{1} \rightarrow$ The set V_{2} dominates the set V_{1}.

It is implied that $V_{2} \bigcup V_{3}$ is a dominating set of G. So $\gamma(G) \leq\left|V_{2}\right|+\left|V_{3}\right|$, thus

$$
\begin{aligned}
2 \gamma(G) & \leq 2\left|V_{2}\right|+2\left|V_{3}\right| \\
& \leq\left|V_{1}\right|+2\left|V_{2}\right|+3\left|V_{3}\right| \\
& =\gamma_{S R}(G)
\end{aligned}
$$

Hence

$$
\begin{equation*}
2 \gamma(G) \leq \gamma_{S R}(G) \tag{1}
\end{equation*}
$$

Now, let S be a $\gamma-$ set of G. Then $\gamma(G)=|S|$. We can define an SRDFon G, for all $v \in S$ we have $f(v)=3$ and also for all $u \notin S$ we have $f(u)=0$. Therefore $\left(V_{0}, V_{1}, V_{2}, V_{3}\right)=(\phi, \phi, \phi, S)$ is an SRDF. It is impliedthat $\left|V_{0}\right|=0,\left|V_{1}\right|=0,\left|V_{2}\right|=0$ and $\left|V_{3}\right|=|S|$. Therefore

$$
\begin{aligned}
\gamma_{S R}(G) & \leq 3\left|V_{3}\right| \\
& =3|S| \\
& =3 \gamma(G)
\end{aligned}
$$

Hence

$$
\begin{equation*}
\gamma_{S R}(G) \leq 3 \gamma(G) \tag{2}
\end{equation*}
$$

From (1) and (2) we get $2 \gamma(G) \leq \gamma_{S R}(G) \leq 3 \gamma(G)$. \square
Theorem 2: For any graph G of order n,

$$
\gamma_{S R}(G)=2 \gamma(G)
$$

if and only if $G=\bar{K}_{n}$.

Proof:

Suppose that $f=\left(V_{0}, V_{1}, V_{2}, V_{3}\right) \quad$ isa $\gamma_{S R}(G)$ - function. Thus $V_{2} \cup V_{3}$ is a dominating set of the graph G. Therefore $\gamma(G) \leq\left|V_{2}\right|+\left|V_{3}\right|$. The equality $\gamma_{S R}(G)=2 \gamma(G)$ implies that we have equality in

$$
\begin{aligned}
2 \gamma(G) & \leq 2\left|V_{2}\right|+2\left|V_{3}\right| \\
& =2\left|V_{2}\right|+3\left|V_{3}\right| \\
& =\gamma_{S R}(G)
\end{aligned}
$$

So $\left|V_{3}\right|=0$, which implies that $V_{0}=\phi$. Hence all vertices are assigned with 2 and therefore

$$
\begin{aligned}
\gamma_{S R}(G) & =2\left|V_{2}\right| \\
& =2 n .
\end{aligned}
$$

This implies that $\gamma(G)=n$ which shows that $G=\bar{K}_{n}$.
Conversely, It is obvious that if $G=\bar{K}_{n}$, then $\gamma_{S R}(G)=2 \gamma(G)$. \square

Theorem 3: For any graph G,

$$
\gamma_{R}(G) \neq \gamma_{S R}(G)
$$

Proof:

Suppose that $f=\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ is a $\gamma_{S R}(G)-$ function. Let $g=\left(Y_{0}, Y_{1}, Y_{2}\right)$ be an RDF on G where $Y_{0}=V_{0}, Y_{1}=V_{2}$ and $Y_{2}=V_{3}$. Therefore

$$
\begin{aligned}
\gamma_{R}(G) & \leq\left|Y_{1}\right|+2\left|Y_{2}\right| \\
& =\left|V_{2}\right|+2\left|V_{3}\right| \\
& <2\left|V_{2}\right|+3\left|V_{3}\right| \\
& =\gamma_{S R}(G) .
\end{aligned}
$$

Thus $\gamma_{R}(G) \neq \gamma_{S R}(G)$.
Based on above theorem, we know that $\gamma_{S R}(G) \geq \gamma_{R}(G)+1$. In the next theorem, we will discuss the equation of this inequality.

Theorem 4: $\gamma_{S R}(G)=\gamma_{R}(G)+1$ if and only if $\Delta(G)=n-1$.

Proof:

Suppose that $\quad \gamma_{S R}(G)=\gamma_{R}(G)+1 \quad$ and $f=\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ isa $\gamma_{S R}(G)-$ function. Define $g=\left(Y_{0}, Y_{1}, Y_{2}\right)$ is an RDF on G where $Y_{0}=V_{0}$, $Y_{1}=V_{2}$ and $Y_{2}=V_{3}$. Therefore

$$
\begin{aligned}
\gamma_{R}(G) & \leq\left|Y_{1}\right|+2\left|Y_{2}\right| \\
& =\left|V_{2}\right|+2\left|V_{3}\right|
\end{aligned}
$$

On the other hand, if $\left|V_{2}\right| \neq 0$ and also $\left|V_{3}\right| \neq 0$, then

$$
\begin{aligned}
\left|V_{2}\right|+2\left|V_{3}\right| & \leq\left|V_{2}\right|+2\left|V_{3}\right|+\left(\left|V_{2}\right|-1\right)+\left(\left|V_{3}\right|-1\right) \\
& =2\left|V_{2}\right|+3\left|V_{3}\right|-2
\end{aligned}
$$

Hence

$$
\begin{aligned}
\gamma_{R}(G)+1 & \leq\left|V_{2}\right|+2\left|V_{3}\right|+1 \\
& \leq 2\left|V_{2}\right|+3\left|V_{3}\right|-1 \\
& =\gamma_{S R}(G)-1
\end{aligned}
$$

Thus $\gamma_{R}(G)+1 \neq \gamma_{S R}(G)$, which is a contradiction. Therefore $\left|V_{3}\right|=0$ or $\left|V_{2}\right|=0$.
Let $\left|V_{3}\right|=0$ and if $\left|V_{2}\right|>1$, then

$$
\begin{aligned}
\gamma_{R}(G) & \leq\left|V_{2}\right| \\
& \leq 2\left|V_{2}\right|-2
\end{aligned}
$$

$$
\begin{aligned}
\gamma_{R}(G)+1 & \leq\left|V_{2}\right|+1 \\
& \leq 2\left|V_{2}\right|-1 \\
& =\gamma_{S R}(G)-1 .
\end{aligned}
$$

Thus $\gamma_{R}(G)+1 \neq \gamma_{S R}(G)$ which is a contradiction. Therefore in this case, $\left|V_{2}\right|=1$ and thus $G=K_{1}$.
Now, assume that $\left|V_{2}\right|=0$ and if $\left|V_{3}\right|>1$, then

$$
\begin{aligned}
\gamma_{R}(G) & \leq 2\left|V_{3}\right| \\
& \leq 3\left|V_{3}\right|-2 .
\end{aligned}
$$

Similarly, we get $\gamma_{R}(G)+1 \neq \gamma_{S R}(G)$, which is a contradiction. Therefore in this case, $\left|V_{3}\right|=1$ and if $V_{3}=\{v\}$, then $\operatorname{deg}(v)=n-1$. Thus G has a vertex of degree $n-1$.
Therefore in each case $\Delta(G)=n-1$.
Conversely, If $\Delta(G)=n-1$, then $\gamma_{S R}(G)=3$ and $\gamma_{R}(G)=2$. So $\gamma_{S R}(G)=\gamma_{R}(G)+1$. \square

Theorem 5: For any path P_{n},

$$
\gamma_{S R}\left(P_{n}\right)=\left\{\begin{array}{ll}
n & , \\
n \equiv 0(\bmod 3) \\
n+1, & n \not \equiv 0(\bmod 3)
\end{array} .\right.
$$

Proof:

Suppose that a, b and c are consecutive vertices and $f=\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ is a $\gamma_{S R}(G)-$ function of P_{n}, respectively. If two vertices of $\{a, b, c\}$ belongingto V_{0}, then either one of those vertices belongs to V_{3}, which in this case we have

$$
f(a)+f(b)+f(c) \geq 3
$$

or $a, c \in V_{0}$ and $b \in V_{2}$. In this case, all vertices which are adjacent to a and c are named x and y should belongto V_{3} . Therefore

$$
f(x)+f(a)+f(b)+f(c)+f(y) \geq 8
$$

So, always

$$
\begin{aligned}
\gamma_{S R}\left(P_{n}\right) & =f(V) \\
& \geq n
\end{aligned}
$$

Now, we use an induction on the order n. Assume the result is true for $n \leq 6$. Suppose that $n \geq 7$ and it is true for $m<n$. If $n \equiv 0(\bmod 3)$ and $P_{n}=v_{1} v_{2} \cdots v_{n}$, we put

$$
f\left(v_{i}\right)=\left\{\begin{array}{lll}
3 & , \quad i \equiv 2(\bmod 3) \\
0 & , \quad i \not \equiv 2(\bmod 3)
\end{array}\right.
$$

Hence, f is an SRDF and also

Hence

$$
\begin{aligned}
f(V) & =\sum_{i=1}^{n} f\left(v_{i}\right) \\
& =n
\end{aligned}
$$

Therefore $\gamma_{S R}\left(P_{n}\right) \leq n$.
On the other hand, we have shown for any $n, \gamma_{S R}\left(P_{n}\right) \geq n$.
Hence $\gamma_{S R}\left(P_{n}\right)=n$.
Now, let $n \neq 0(\bmod 3)$ and $f=\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ be a $\gamma_{S R}(G)-$ function .
If $V_{2}=\phi$, then it is easy to show that $\gamma_{S R}\left(P_{n}\right)=f(V) \geq n+1$.
If $V_{2} \neq \phi$, then assume that for $1 \leq i \leq n, f\left(v_{i}\right)=2$. We consider the following cases:

Case 1: $i=1$ or $i=n$.

Without loss of generality, suppose that $i=1$, $f\left(v_{1}\right)=2$. Hence

$$
P_{n}-v_{1}=P_{n-1}
$$

By the induction, we know that $\gamma_{S R}\left(P_{n-1}\right) \geq n-1$. On the other hand, it is clearly, $g=\left.f\right|_{P_{n-1}}$ be an SRDFon P_{n-1}. Thus

$$
\begin{aligned}
g(V) & \geq \gamma_{S R}\left(P_{n-1}\right) \\
& \geq n-1
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\gamma_{S R}\left(P_{n}\right) & =f(V) \\
& =g(V)+2 \\
& \geq(n-1)+2 \\
& =n+1
\end{aligned}
$$

Hence $\gamma_{S R}\left(P_{n}\right) \geq n+1$.
Similarly, we can prove that the result is true for $i=n$.

Case 2: $i \neq 1, n$.

Hence we put $P_{i-1}=v_{1} v_{2} \ldots v_{i-1}$ and $P_{n-i}=v_{i+1} v_{i+2} \ldots v_{n}$. We know that

$$
\begin{aligned}
& \gamma_{S R}\left(P_{i-1}\right) \geq i-1 \\
& \gamma_{S R}\left(P_{n-i}\right) \geq n-i
\end{aligned}
$$

On the other hand, it is clearly, the functions $g_{1}=\left.f\right|_{P_{i-1}}$ and $g_{2}=\left.f\right|_{P_{n-i}}$ are two

SRDFs on P_{i-1} and P_{n-i}, respectively. Thus

$$
\begin{aligned}
g_{1}(V) & \geq \gamma_{S R}\left(P_{i-1}\right) \\
& \geq i-1 \\
g_{2}(V) & \geq \gamma_{S R}\left(P_{n-i}\right) \\
& \geq n-i
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\gamma_{S R}\left(P_{n}\right) & =f(V) \\
& =g_{1}(V)+g_{2}(V)+2 \\
& \geq(i-1)+(n-i)+2 \\
& =n+1
\end{aligned}
$$

Hence $\gamma_{S R}\left(P_{n}\right) \geq n+1$.
Therefore in both cases $\gamma_{S R}\left(P_{n}\right) \geq n+1$.
Now we define the function f on path P_{n} if $n \neq 0(\bmod 3)$ as follows:

1) If $n \equiv 1(\bmod 3)$, then

$$
f\left(v_{i}\right)=\left\{\begin{array}{lll}
3 & , & i \equiv 2(\bmod 3) \\
0 & , & i \neq 2(\bmod 3), i<n \\
2 & , & i=n
\end{array}\right.
$$

2) If $n \equiv 2(\bmod 3)$, then

$$
f\left(v_{i}\right)= \begin{cases}3 & , \quad i \equiv 2(\bmod 3) \\ 0 & , \quad i \not \equiv 2(\bmod 3)\end{cases}
$$

In both cases f is an SRDF on path P_{n} of weight $n+1$. Hence $\gamma_{S R}\left(P_{n}\right) \leq n+1$.
Since we have shown that before $\gamma_{S R}\left(P_{n}\right) \geq n+1$, therefore if $n \neq 0(\bmod 3)$, then we have $\gamma_{S R}\left(P_{n}\right)=n+1$. \square

II. A NEW UPPER BOUND IN TREES

It has been shown that the domination number of a connected graph G of order n is at most $\frac{n}{2}$ [4]. Regarding the fact that $\gamma_{S R}(G) \leq 3 \gamma(G)$, we get

$$
\gamma_{S R}(G) \leq 3 \gamma(G) \leq \frac{3 n}{2}
$$

Our aim in this section is improve this bound on trees. We show that for any tree T of order n with l leaves and s support vertices, we have $\gamma_{S R}(T) \leq \frac{6 n-l-s}{4}$. Moreover, we characterize all trees achieving this bound.

Theorem 6: If T is a tree of order $n \geq 3$ with l leaves and S support vertices, then

$$
\gamma_{S R}(T) \leq \frac{6 n-l-s}{4} .
$$

Proof:

We prove this by induction on order n of tree T.
If $\operatorname{diam}(T)=2$, then T is a Star. Therefore $l=n-1$, $s=1$ and $\gamma_{S R}(T)=3$. Hence

$$
\begin{aligned}
\gamma_{S R}(T) & =3 \\
& <\frac{6 n-l-s}{4} \\
& =\frac{6 n-(n-1)-1}{4} \\
& =\frac{5 n}{4}
\end{aligned}
$$

Now, assume that $\operatorname{diam}(T)=3$. In this case, T is a Double Star $S_{a, b}$ with central vertices u and v with degrees of a and b, respectively. Without loss of generality, suppose that $a \geq b$.
If $a=2$, then $b=2$ and thus $T=P_{4}$. Therefore

$$
\begin{aligned}
\gamma_{S R}(T) & =5 \\
& =\frac{6 n-l-s}{4}
\end{aligned}
$$

Now, let $a \geq 3$. If $b=2$, then the function $f=(N(u), \phi, N(v),\{u\}) \quad$ is
is $\quad a$
$\gamma_{S R}(T)-$ function. Since $n \geq 5, l=n-2$ and $s=2$, we have

$$
\begin{aligned}
\gamma_{S R}(T) & =f(V) \\
& =2\left|V_{2}\right|+3\left|V_{3}\right| \\
& =2|N(v)|+3 \\
& =5 \\
& <\frac{6 n-l-s}{4} .
\end{aligned}
$$

Now, let $b \geq 3$. In this case, $n \geq 6, l=n-2, s=2$ and the function $f=(V(T)-\{u, v\}, \phi, \phi,\{u, v\})$ is an SRDF on tree T. Hence

$$
\begin{aligned}
\gamma_{S R}(T) & \leq f(V) \\
& =2\left|V_{2}\right|+3\left|V_{3}\right| \\
& =6 \\
& <\frac{6 n-l-s}{4}
\end{aligned}
$$

So, we can assume that $\operatorname{diam}(T) \geq 4$. If T has a Strong support vertex u and also v and w are adjacent leaves to u, then we consider $T^{\prime}=T-w$. Let n^{\prime}, l^{\prime} and s^{\prime} be order, number of leaves and number of vertices of tree T^{\prime}, respectively. Since $\operatorname{diam}(T) \geq 4$, we get $n^{\prime} \geq 3$. Therefore by induction $\gamma_{S R}\left(T^{\prime}\right) \leq \frac{6 n^{\prime}-l^{\prime}-s^{\prime}}{4}$. Suppose that $g=\left(V_{0}, \phi, V_{2}, V_{3}\right)$ is a $\gamma_{S R}\left(T^{\prime}\right)-$ function.
If $g(u)=3$, then extension of g by assigning the weight 0 to w is an SRDF on tree T. Thus, since $l^{\prime}=l-1$ and $s^{\prime}=s$, we have

$$
\begin{aligned}
\gamma_{S R}(T) & \leq g(V) \\
& =\gamma_{S R}\left(T^{\prime}\right) \\
& \leq \frac{6 n^{\prime}-l^{\prime}-s^{\prime}}{4} \\
& =\frac{6(n-1)-(l-1)-s}{4} \\
& =\frac{6 n-l-s}{4}
\end{aligned}
$$

Now, let $g(u) \neq 3$. Then $g(v)=2$. Therefore the function f with $f(w)=f(v)=0, f(u)=3$ and for any other vertex x, we have $f(x)=g(x)$ is an SRDF on tree T. Hence

$$
\begin{aligned}
\gamma_{S R}(T) & \leq f(V) \\
& =g(V)+1 \\
& =\gamma_{S R}\left(T^{\prime}\right)+1 \\
& \leq \frac{6 n^{\prime}-l^{\prime}-s^{\prime}}{4}+1 \\
& =\frac{6(n-1)-(l-1)-s}{4}+1 \\
& <\frac{6 n-l-s}{4}
\end{aligned}
$$

Therefore, we can consider the following Fact.

Fact: T has no Strong support vertex.

We root the tree T at vertex x_{0}. Support that $P=x_{0} x_{1} \cdots x_{d}$ is a diagonal path. Based on Fact, $\operatorname{deg}\left(x_{d-1}\right)=2$. We consider the following cases:

Case 1: $\operatorname{deg}\left(x_{d-2}\right) \geq 3$.

In this case, every child of x_{d-2} is either a leaf or a support vertex of degree 2 . Since based on Fact, T does not has a Strong support vertex, we consider $T^{\prime}=T-\left\{x_{d}, x_{d-1}\right\} \quad$. So, $\quad n^{\prime}=n-2 \quad$, $l^{\prime}=l-1 \quad$ and $\quad s^{\prime}=s-1 \quad$. Suppose that $f^{\prime}=\left(V_{0}^{\prime}, V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}\right)$ isa $\gamma_{S R}\left(T^{\prime}\right)-$ function .
If $f^{\prime}\left(x_{d-2}\right)=2$, then the function $f=\left(V_{0}, V_{1}, V_{2}, V_{3}\right) \quad$ where $V_{0}=V_{0}^{\prime} \cup\left\{x_{d}, x_{d-2}\right\} \quad, \quad V_{1}=V_{1}^{\prime}=\phi \quad$, $V_{2}=V_{2}^{\prime}-\left\{x_{d-2}\right\}$ and $V_{3}=V_{3}^{\prime} \cup\left\{x_{d}\right\}$ is an SRDF on tree T. Thus

$$
\begin{aligned}
\gamma_{S R}(T) & \leq f(V) \\
& =f^{\prime}(V)+1 \\
& =\gamma_{S R}\left(T^{\prime}\right)+1
\end{aligned}
$$

Since $\operatorname{diam}(T) \geq 4$, we get $n^{\prime} \geq 3$. Then under the hypothesis

$$
\begin{aligned}
\gamma_{S R}(T) & \leq \gamma_{S R}\left(T^{\prime}\right)+1 \\
& \leq \frac{6 n^{\prime}-l^{\prime}-s^{\prime}}{4}+1 \\
& =\frac{6(n-2)-(l-1)-(s-1)}{4}+1 \\
& <\frac{6 n-l-s}{4}
\end{aligned}
$$

Now, let $f^{\prime}\left(x_{d-2}\right)=3$. So, the function $f=\left(V_{0}^{\prime} \cup\left\{x_{d-1}\right\}, \phi, V_{2}^{\prime} \cup\left\{x_{d}\right\}, V_{3}^{\prime}\right)$ is an
SRDF on tree T. Thus by hypothesis we have

$$
\begin{aligned}
\gamma_{S R}(T) & \leq f(V) \\
& =f^{\prime}(V)+2 \\
& =\gamma_{S R}\left(T^{\prime}\right)+2 \\
& \leq \frac{6 n^{\prime}-l^{\prime}-s^{\prime}}{4}+2 \\
& =\frac{6(n-2)-(l-1)-(s-1)}{4}+2 \\
& <\frac{6 n-l-s}{4}
\end{aligned}
$$

Therefore, we can assume that for each $\gamma_{S R}\left(T^{\prime}\right)-$ function, the weight of the vertex x_{d-2} is equals to 0 .
Assume that x_{d-2} is a support vertex. Based on Fact, T has only an adjacentleaf .we consider u as an adjacent leaf to x_{d-2}. If x_{d-2} has a support
child v other than x_{d-1}, then since $f^{\prime}\left(x_{d-2}\right)=0$, we can assume $f^{\prime}(v)=3$, $f^{\prime}(u)=2$ and the child weight of v is equals to 0 . By changing the weight of the vertices u and v to $0, x_{d-2}$ to 3 and child of v to 2 a new $\gamma_{S R}\left(T^{\prime}\right)$ - function is obtained where weight of x_{d-2} is not equals to 0 , which is a contradiction. Since we assume that for each $\gamma_{S R}\left(T^{\prime}\right)$ - function, we have the weight of x_{d-2} is 0 . So, we can assume that the only support child x_{d-2} is the vertex x_{d-1}. We put $T^{\prime}=T-T_{x_{d-2}}$. In this case, $n^{\prime}=n-4$. Since $\operatorname{diam}(T) \geq 4$, we get $n^{\prime} \geq 2$.
If $n^{\prime}=2$, then $T=F_{1}$ shown in the figure (1). In this case, $n=6, l=s=3$ and $\gamma_{S R}(T)=7$. Therefore

$$
\begin{aligned}
\gamma_{S R}(T) & =7 \\
& <\frac{30}{4} \\
& =\frac{6 n-l-s}{4} .
\end{aligned}
$$

Now, assume that $n^{\prime} \geq 3$. Therefore based on inductive hypothesis $\gamma_{S R}\left(T^{\prime}\right) \leq \frac{6 n^{\prime}-l^{\prime}-s^{\prime}}{4}$. Any $\gamma_{S R}\left(T^{\prime}\right)-$ function can be extended to an SRDF on tree T by assigning the weight 3 to x_{d-2}, 2 to x_{d} and 0 to x_{d-1} and u. Thus $\gamma_{S R}(T) \leq \gamma_{S R}\left(T^{\prime}\right)+5$.
If $\operatorname{deg}\left(x_{d-3}\right)=2$, then $l^{\prime}=l-1$ and $s^{\prime} \geq s-2$
. Therefore

$$
\begin{aligned}
\gamma_{S R}(T) & \leq \gamma_{S R}\left(T^{\prime}\right)+5 \\
& \leq \frac{6 n^{\prime}-l^{\prime}-s^{\prime}}{4}+5 \\
& =\frac{6(n-4)-(l-1)-(s-2)}{4}+5 \\
& <\frac{6 n-l-s}{4}
\end{aligned}
$$

Now, let $\operatorname{deg}\left(x_{d-3}\right) \geq 3$. In this case, $l^{\prime}=l-2$ and $s^{\prime}=s-2$. Hence

$$
\begin{aligned}
\gamma_{S R}(T) & \leq \gamma_{S R}\left(T^{\prime}\right)+5 \\
& \leq \frac{6 n^{\prime}-l^{\prime}-s^{\prime}}{4}+5 \\
& =\frac{6(n-4)-(l-2)-(s-2)}{4}+5 \\
& =\frac{6 n-l-s}{4} .
\end{aligned}
$$

Therefore in this case, if x_{d-2} is a support vertex,
then $\gamma_{S R}(T) \leq \frac{6 n-l-s}{4}$.
Now, assume that x_{d-2} is not a support vertex.
If x_{d-2} has three children u, v and w other than x_{d-1}, then we put $T^{\prime}=T-\left\{x_{d}, x_{d-1}\right\}$. We already assumed that for each $\gamma_{S R}\left(T^{\prime}\right)$-function the weight of x_{d-2} is equalsto 0 . We consider that the function f^{\prime} is a $\gamma_{S R}\left(T^{\prime}\right)$-function, therefore $f^{\prime}\left(x_{d-2}\right)=0$. Hence we can assume $f^{\prime}(u)=f^{\prime}(v)=f^{\prime}(w)=3$ and the child weight of each of the vertices u, v and w are 0 . In this case, by changing the weight of the vertices u, v and w to 0 , childof each of the vertices u, v and w to 3 and x_{d-2} to 3 , we obtain a $\gamma_{S R}\left(T^{\prime}\right)$-function where the weight of the vertex x_{d-2} is not equals to 0 which is a contradiction, since we previously assumed that for each $\gamma_{S R}\left(T^{\prime}\right)$-function, we have the weight of the vertex x_{d-2} is equals to 0 .
So, we can assume that x_{d-2} has at most two support children other than x_{d-1}.
First, assume x_{d-2} has two support children u and v other than x_{d-1}. We put $T^{\prime}=T-T_{x_{d-2}}$. Since $\operatorname{diam}(T) \geq 4$, we get $n^{\prime} \geq 2$.
If $n^{\prime}=2$, then $T=F_{2}$ shown in the figure (1). In this case, $n=9, l=s=4$ and $\gamma_{S R}(T)=11$. Thus $\gamma_{S R}(T)<\frac{6 n-l-s}{4}$.
Now, let $n^{\prime} \geq 3$. In this case, $n^{\prime}=n-7$ and under the hypothesis $\gamma_{S R}\left(T^{\prime}\right) \leq \frac{6 n^{\prime}-l^{\prime}-s^{\prime}}{4}$. Any $\gamma_{S R}\left(T^{\prime}\right)$ - function can be extended to an SRDF on tree T by assigning the weight 3 to the vertices
u, v and x_{d-1} and 0 to all their neighboring vertices. Therefore $\gamma_{S R}(T) \leq \gamma_{S R}\left(T^{\prime}\right)+9$.
If $\operatorname{deg}\left(x_{d-3}\right)=2$, then $l^{\prime}=l-2$ and $s^{\prime} \geq s-3$. Hence
$\gamma_{S R}(T) \leq \gamma_{S R}\left(T^{\prime}\right)+9$
$\leq \frac{6 n^{\prime}-l^{\prime}-s^{\prime}}{4}+9$
$\leq \frac{6(n-7)-(l-2)-(s-3)}{4}+9$
$<\frac{6 n-l-s}{4}$.
Now, let $\operatorname{deg}\left(x_{d-3}\right) \geq 3$. In this case, $l^{\prime}=l-3$ and $s^{\prime}=s-3$. Thus

$$
\begin{aligned}
\gamma_{S R}(T) & \leq \gamma_{S R}\left(T^{\prime}\right)+9 \\
& \leq \frac{6 n^{\prime}-l^{\prime}-s^{\prime}}{4}+9 \\
& =\frac{6(n-7)-(l-3)-(s-3)}{4}+9 \\
& =\frac{6 n-l-s}{4} .
\end{aligned}
$$

Now, we support that x_{d-2} has only one support child other than x_{d-1}. Let u be a support child x_{d-2} other than x_{d-1}. We put $T^{\prime}=T-T_{x_{d-2}}$. So $n^{\prime}=n-5, l^{\prime} \geq l-2$ and $s^{\prime} \geq s-2$. Since $\operatorname{diam}(T) \geq 4$, we get $n^{\prime} \geq 2$.
If $n^{\prime}=2$, then $T=F_{3}$ shown in figure (1). So, $n=7, l=s=3$ and $\gamma_{S R}(T)=9$. Hence $\gamma_{S R}(T)=\frac{6 n-l-s}{4}$.
Now, let $n^{\prime} \geq 3$. So based on inductive hypothesis $\gamma_{S R}\left(T^{\prime}\right) \leq \frac{6 n^{\prime}-l^{\prime}-s^{\prime}}{4}$
$\gamma_{S R}\left(T^{\prime}\right)-$ function can be extended to an SRDF on tree T by assigning the weight 3 to the vertices u and x_{d-1} and 0 to all their neighboring vertices. So, $\gamma_{S R}(T) \leq \gamma_{S R}\left(T^{\prime}\right)+6$. And therefore

$$
\begin{aligned}
\gamma_{S R}(T) & \leq \gamma_{S R}\left(T^{\prime}\right)+6 \\
& \leq \frac{6 n^{\prime}-l^{\prime}-s^{\prime}}{4}+6 \\
& \leq \frac{6(n-5)-(l-2)-(s-2)}{4}+6 \\
& <\frac{6 n-l-s}{4}
\end{aligned}
$$

Case 2: $\operatorname{deg}\left(x_{d-2}\right)=2$.
We put $T^{\prime}=T-T_{x_{d-2}}$. Since $\operatorname{diam}(T) \geq 4$, we get $n^{\prime} \geq 2$.
If $n^{\prime}=2$, then $T=P_{5}$. Thus

$$
\begin{aligned}
\gamma_{S R}(T) & =5 \\
& =\frac{6 n-l-s}{4}
\end{aligned}
$$

Now, let $n^{\prime} \geq 3$. In this case, $n^{\prime}=n-3$, $l^{\prime} \geq l-1 \quad$ and $\quad s^{\prime} \geq s-1 \quad$. Any $\gamma_{S R}\left(T^{\prime}\right)-$ function can be extended to an SRDF on tree T by assigning the weight 3 to the vertices u and x_{d-1} and 0 to all their neighboring vertices. Therefore $\gamma_{S R}(T) \leq \gamma_{S R}\left(T^{\prime}\right)+3$. Hence with the hypothesis we have

$$
\begin{aligned}
\gamma_{S R}(T) & \leq \gamma_{S R}\left(T^{\prime}\right)+3 \\
& \leq \frac{6 n^{\prime}-l^{\prime}-s^{\prime}}{4}+3 \\
& \leq \frac{6(n-3)-(l-1)-(s-1)}{4}+3 \\
& <\frac{6 n-l-s}{4} .
\end{aligned}
$$

So the problem is solved.

In the following, we characterize all the trees subjected to the condition $\gamma_{S R}(T)=\frac{6 n-l-s}{4}$. Let F be a family of trees T where it comes from a sequence of trees $T_{1}, T_{2}, \ldots, T_{j},(j \geq 1)$ such that $T_{1}=P_{4}$ or $T_{1}=F_{3}$ (Shown in Fig 1) and if $j \geq 2$, then T_{j+1} can be obtained from T_{j} with one of two operations O_{1} or O_{2}.

A. Operation O_{1}

Let $\quad u \in V\left(T_{j}\right) \quad, \quad \gamma_{S R}\left(T_{j}-u\right) \geq \gamma_{S R}\left(T_{j}\right) \quad$ and $\operatorname{deg}(u) \geq{ }^{\prime} \quad T_{j} \quad$ this case, T_{j+1} is obtained from T_{j} by adding, 2
edge l^{\prime} v

$$
\text { Figure 2.Operation } O_{1} \text {. }
$$

B. Operation O_{2}

Let $\quad u \in V\left(T_{j}\right) \quad, \quad \gamma_{S R}\left(T_{j}-u\right) \geq \gamma_{S R}\left(T_{j}\right) \quad$ and $\operatorname{deg}(u) \geq 2{\underset{T}{j}}$ In this case, T_{j+1} is obtained from T_{j} by adding a-tree F_{Y}, with adding the edge $u v$ where $v{ }_{0}$ is a centra 1^{\prime} vertex of tree' F_{3}. (See Fig 3

$$
u
$$

Figure 3.Operation O_{2}.
To prove that each tree $T \in F$ satisfy the condition $\gamma_{S R}(T)=\frac{6 n-l-s}{4}$, the following two Lemmas will be useful. For each $k \geq 1$, let n_{k}, l_{k} and s_{k} denote order, number of leaves and number of support vertices of tree T_{k}, respectively.

Lemma 1: Let $\gamma_{S R}\left(T_{j}\right)=\frac{6 n_{j}-l_{j}-s_{j}}{4}$ and T_{j+1} is obtained by T_{j} with operation O_{1}, then

$$
\gamma_{S R}\left(T_{j+1}\right)=\frac{6 n_{j+1}-l_{j+1}-s_{j+1}}{4}
$$

Proof:

Suppose that the path $P_{4}=x v y z$ and the vertex u is operation dependent. Any $\gamma_{S R}\left(T_{j}\right)-$ function can be extended to an SRDF on tree T by assigning the weight 3 to $v, 2$ to z and 0 to x and y. Therefore $\gamma_{S R}\left(T_{j+1}\right) \leq \gamma_{S R}\left(T_{j}\right)+5$. Now, suppose that f is a $\gamma_{S R}\left(T_{j+1}\right)-$ function .
If $f(u) \neq 0$, then $\left.f\right|_{T_{j}}$ is an SRDF on tree T_{j}. So, in this case, we have

$$
\begin{aligned}
\gamma_{S R}\left(T_{j}\right) \leq & f\left(\left.V\right|_{T_{j}}\right) \\
& =f(V)-f\left(V\left(P_{4}\right)\right) .
\end{aligned}
$$

Now, assume that $f(u)=0$. Hence $\left.f\right|_{T_{j}-u}$ is an SRDF on $T_{j}-u$. Therefore $\gamma_{S R}\left(T_{j}-u\right) \leq f\left(\left.V\right|_{T_{j}-u}\right)$ and so by the assumption

$$
\begin{aligned}
\gamma_{S R}\left(T_{j}\right) & \leq \gamma_{S R}\left(T_{j}-u\right) \\
& \leq f\left(\left.V\right|_{T_{j}-u}\right) \\
& =f(V)-f\left(V\left(P_{4}\right)\right)
\end{aligned}
$$

On the other hand, always $f\left(V\left(P_{4}\right)\right) \geq 5$.
So, in both cases we have

$$
\begin{aligned}
\gamma_{S R}\left(T_{j}\right) & \leq f(V)-f\left(V\left(P_{4}\right)\right) \\
& \leq f(V)-5 \\
& =\gamma_{S R}\left(T_{j+1}\right)-5
\end{aligned}
$$

Therefore $\quad \gamma_{S R}\left(T_{j+1}\right)=\gamma_{S R}\left(T_{j}\right)+5 \quad$ Since $\operatorname{deg}(u) \geq 2$, we get $l_{j+1}=l_{j}+2$ and $s_{j+1}=s_{j}+2$. So, by induction we have

$$
\begin{aligned}
\gamma_{S R}\left(T_{j+1}\right) & =\gamma_{S R}\left(T_{j}\right)+5 \\
& =\frac{6 n_{j}-l_{j}-s_{j}}{4}+5 \\
& =\frac{6\left(n_{j+1}-4\right)-\left(l_{j+1}-2\right)-\left(s_{j+1}-2\right)}{4}+5 \\
& =\frac{6 n_{j+1}-l_{j+1}-s_{j+1}}{4}
\end{aligned}
$$

Now, hence the proof. \square

Lemma 2: Suppose that $\gamma_{S R}\left(T_{j}\right)=\frac{6 n_{j}-l_{j}-s_{j}}{4}$ and T_{j+1} is obtained with the operation O_{2} of T_{j}, then

$$
\gamma_{S R}\left(T_{j+1}\right)=\frac{6 n_{j+1}-l_{j+1}-s_{j+1}}{4}
$$

Proof:

Let F_{3} be a tree with central vertex v and vertex $u \in V\left(T_{j}\right)$ is dependent to operation O_{2}. Suppose that f is a $\gamma_{S R}\left(T_{j+1}\right)-$ function.
If $f(u) \neq 0$, then $\left.f\right|_{T_{j}}$ is an SRDF on tree T_{j}. Thus

$$
\begin{aligned}
\gamma_{S R}\left(T_{j}\right) & \leq f\left(\left.V\right|_{T_{j}}\right) \\
& =f(V)-f\left(V\left(F_{3}\right)\right)
\end{aligned}
$$

Now, let $f(u)=0$. In this case, we have

$$
\begin{aligned}
\gamma_{S R}\left(T_{j}\right) & \leq \gamma_{S R}\left(T_{j}-u\right) \\
& \leq f\left(\left.V\right|_{T_{j}-u}\right) \\
& =f(V)-f\left(V\left(F_{3}\right)\right)
\end{aligned}
$$

On the other hand, always $f\left(V\left(F_{3}\right)\right) \geq 9$.
So, in both cases we have

$$
\begin{aligned}
\gamma_{S R}\left(T_{j}\right) & \leq f(V)-f\left(V\left(F_{3}\right)\right) \\
& \leq f(V)-9 \\
& =\gamma_{S R}\left(T_{j+1}\right)-9
\end{aligned}
$$

Also any $\gamma_{S R}\left(T_{j}\right)-$ function can be extended to an SRDF on tree T by assigning the weight 3 to the support vertices of tree F_{3} and 0 to other vertices of tree F_{3}. Thus

$$
\begin{aligned}
\gamma_{S R}\left(T_{j+1}\right) & \leq \gamma_{S R}\left(T_{j}\right)+3\left|S\left(F_{3}\right)\right| \\
& =\gamma_{S R}\left(T_{j}\right)+9
\end{aligned}
$$

Therefore $\quad \gamma_{S R}\left(T_{j+1}\right)=\gamma_{S R}\left(T_{j}\right)+9 \quad$ Clearly $n_{j+1}=n_{j}+7$ and since $\operatorname{deg}(u) \geq 2$, we get $l_{j+1}=l_{j}+3$ and $s_{j+1}=s_{j}+3$. So, by induction we have

$$
\begin{aligned}
\gamma_{S R}\left(T_{j+1}\right) & =\gamma_{S R}\left(T_{j}\right)+9 \\
& =\frac{6 n_{j}-l_{j}-s_{j}}{4}+9 \\
& =\frac{6\left(n_{j+1}-7\right)-\left(l_{j+1}-3\right)-\left(s_{j+1}-3\right)}{4}+9 \\
& =\frac{6 n_{j+1}-l_{j+1}-s_{j+1}}{4}
\end{aligned}
$$

Now, hence the proof. \square

Theorem 7: For any tree T of order $n \geq 3$ with l leaves and s support vertices, $\gamma_{S R}(T)=\frac{6 n-l-s}{4}$ if and only if $T \in F$.

Proof:

Suppose that $\gamma_{S R}(T)=\frac{6 n-l-s}{4}$. We proceed by an induction on the order n of a tree T.
If $\operatorname{diam}(T) \leq 3$, then based on proof of Theorem 6 , we get $T=P_{4}$ and thus $T \in F$.
Now, let $\operatorname{diam}(T) \geq 4$. We root the tree T at vertex x_{0}.
Suppose that $P=x_{0} x_{1} \ldots x_{d}$ isa diagonal path.
Based on proof of Theorem $6, T$ does not have a Strong support vertexand if $T \neq F_{3}$, then only in following two cases are $\gamma_{S R}(T)=\frac{6 n-l-s}{4}$ holds:

Case 1: $\operatorname{deg}\left(x_{d-2}\right)=3, \operatorname{deg}\left(x_{d-2}\right) \geq 3$ and x_{d-2} is a support vertex.

In this case, we put $T^{\prime}=T-T_{x_{d-2}}$. Let u be adjacent leaf to x_{d-2}. Hence $T_{x_{d-2}} \cong P_{4}$. To prove that T is obtained from T^{\prime} with operation O_{1}, it is enough to show $\gamma_{S R}\left(T^{\prime}-x_{d-3}\right) \geq \gamma_{S R}\left(T^{\prime}\right)$.
Let $T^{\prime} \in F$. On contrary, suppose that $\gamma_{S R}\left(T^{\prime}-x_{d-3}\right)<\gamma_{S R}\left(T^{\prime}\right)$ Any $\gamma_{S R}\left(T^{\prime}-x_{d-3}\right)-$ function can be extended to an SRDF on tree T by assigning the weight 3 to $x_{d-2}, 2$ to x_{d} and 0 to x_{d-1}, x_{d-3} and u. Therefore $\gamma_{S R}(T) \leq \gamma_{S R}\left(T^{\prime}-x_{d-3}\right)+5$. Thus $\gamma_{S R}(T) \leq \gamma_{S R}\left(T^{\prime}-x_{d-3}\right)+5$

$$
<\gamma_{S R}\left(T^{\prime}\right)+5
$$

$$
\leq \frac{6 n^{\prime}-l^{\prime}-s^{\prime}}{4}+5
$$

$$
=\frac{6(n-4)-(l-2)-(s-2)}{4}+5
$$

$$
=\frac{6 n-l-s}{4}
$$

Therefore $\gamma_{S R}(T)<\frac{6 n-l-s}{4}$ which is a contradiction. So, $\gamma_{S R}\left(T^{\prime}-x_{d-3}\right) \geq \gamma_{S R}\left(T^{\prime}\right)$.

Now, let $T^{\prime} \notin F \quad$ In this case, $\gamma_{S R}\left(T^{\prime}\right)<\frac{6 n^{\prime}-l^{\prime}-s^{\prime}}{4}$

Any
$\gamma_{S R}\left(T^{\prime}\right)$ - function can be extended to an SRDF by assigning the weight 3 to $v, 0$ to u and x_{d-1} and 2 to x_{d}. Thus

$$
\begin{aligned}
\gamma_{S R}(T) & \leq \gamma_{S R}\left(T^{\prime}\right)+5 \\
& <\frac{6 n^{\prime}-l^{\prime}-s^{\prime}}{4}+5 \\
& =\frac{6(n-4)-(l-2)-(s-2)}{4}+5 \\
& =\frac{6 n-l-s}{4}
\end{aligned}
$$

Therefore $\quad \gamma_{S R}(T)<\frac{6 n-l-s}{4}$ which is a contradiction.
Hence $T^{\prime} \in F$. Thus T is obtained from T^{\prime} with operation O_{1}.

Case 2: $\operatorname{deg}\left(x_{d-2}\right)=4, \operatorname{deg}\left(x_{d-2}\right) \geq 3$ and x_{d-2} has exactly two support children u and v other than x_{d-1}.

We put $T^{\prime}=T-T_{x_{d-2}}$. In this case, $T_{x_{d-2}} \cong F_{3}$. Any $\gamma_{S R}\left(T^{\prime}\right)-$ function can be extended to an SRDF by assigning the weight 3 to x_{d-1}, u and v and 0 to all their neighboring vertices. Thus $\gamma_{S R}(T) \leq \gamma_{S R}\left(T^{\prime}\right)+9$.
If $T^{\prime} \notin F \quad$ then $\quad \gamma_{S R}\left(T^{\prime}\right)<\frac{6 n^{\prime}-l^{\prime}-s^{\prime}}{4}$. Therefore

$$
\begin{aligned}
\gamma_{S R}(T) & \leq \gamma_{S R}\left(T^{\prime}\right)+9 \\
& <\frac{6 n^{\prime}-l^{\prime}-s^{\prime}}{4}+9 \\
& =\frac{6(n-7)-(l-3)-(s-3)}{4}+9 \\
& =\frac{6 n-l-s}{4}
\end{aligned}
$$

So, $\quad \gamma_{S R}(T)<\frac{6 n-l-s}{4} \quad$ which \quad is \quad a
contradiction. Hence $T^{\prime} \in F$.
To prove that T is obtained from T^{\prime} with operation O_{2}, it is enough to show that
$\gamma_{S R}\left(T^{\prime}-x_{d-3}\right) \geq \gamma_{S R}\left(T^{\prime}\right)$
Any
$\gamma_{S R}\left(T^{\prime}\right)-$ function can be extended to an SRDF by assigning the weight 3 to $x_{d-2}, 0$ to x_{d-3} and vertices $S\left(T_{x_{d-2}}\right)$ and 2 to $L\left(T_{x_{d-2}}\right)$. Thus $\gamma_{S R}(T) \leq \gamma_{S R}\left(T^{\prime}-x_{d-3}\right)+9$. Therefore
$\gamma_{S R}(T) \leq \gamma_{S R}\left(T^{\prime}-x_{d-3}\right)+9$

$$
<\gamma_{S R}\left(T^{\prime}\right)+9
$$

$$
\leq \frac{6 n^{\prime}-l^{\prime}-s^{\prime}}{4}+9
$$

$$
=\frac{6(n-7)-(l-3)-(s-3)}{4}+9
$$

$$
=\frac{6 n-l-s}{4} .
$$

Thus $\quad \gamma_{S R}(T)<\frac{6 n-l-s}{4} \quad$ which \quad is \quad a contradiction.
So $\gamma_{S R}\left(T^{\prime}-x_{d-3}\right) \geq \gamma_{S R}\left(T^{\prime}\right)$. Therefore T is obtained from T^{\prime} with operation O_{2}. Hence $T \in F$ Hence in both cases $T \in F$.

Conversely, let $T \in F$. We apply induction on the number of operations performed to construct a tree T.
If $T=P_{4}$ or $T=F_{3}$, then clearly $\gamma_{S R}(T)=\frac{6 n-l-s}{4}$.
Now, let $T \neq P_{4}$ and $T \neq F_{3}$. Based on the structure of F, let T be obtained of $T^{\prime} \in F$ with operations O_{1} and O_{2}. Under the hypothesis we have $\gamma_{S R}\left(T^{\prime}\right)=\frac{6 n^{\prime}-l^{\prime}-s^{\prime}}{4}$ where n^{\prime}, l^{\prime} and s^{\prime} denote order, number of leaves and number of vertices of tree T^{\prime}, respectively.
If T is obtained from T^{\prime} with operation O_{1}, then based on Lemma 1 we have $\gamma_{S R}(T)=\frac{6 n-l-s}{4}$.

Also, if T is obtained from T^{\prime} with operation O_{2}, then from the Lemma 2 it follows that $\gamma_{S R}(T)=\frac{6 n-l-s}{4}$. Hence the proof.

References

[1] Cockayne, E. J., Dreyer, P. A., Hedetniemi, S. M., and Hedetniemi, S. T. (2004). Roman domination in graphs. Discrete Mathematics, 278(1):11-22.
[2] De Jaenisch, C.F. (1862) Applications de l'Analyse Mathematique au Jeu des Echecs. Petrograd.
[3] Dreyer, P. A. (2000). Applications and variations of domination in graphs. The State University of New Jersey, New Brunswick, NJ.
[4] Haynes, T. W., Hedetniemi, S. T., and Slater, P. J. (1998). Fundamentals of domination in graphs, volume 208 ofmonographs andtextbooks in pu -reand applied mathematics.
[5] Haynes, T. W., Hedetniemi, S. T., and Slater, P. J. (1998). Domination in graphs: advanced topics, volume 209 of monographs and textbooks in pure and applied mathematics.
[6] Henning, M. A. (2003). Defending the roman empire from multiple attacks. Discrete Mathematics, 271(1):101-115.
[7] Pavlic, P. and Zerovnik, J. (2012). Roman domination number of the cartesian products of paths and cycles. The electronic journal of combinatorics, 19(3):P19.
[8] Selvakumar, K. and Kamaraj, M. (2016). Strong roman domination in graphs. International Journal of Mathematical Archive (IJMA) ISSN 2229-5046, 7(3).
[9] Singh, G. S. (2010). Graph Theory. PHI Learning Private Limited, New Delhi.
[10] Stewart, I. (1999). Defend the roman empire! Scientic American, 281:136-138.
[11] Sumenjak, T. K., Pavlic, P., and Tepeh, A. (2012). On the roman domination in the lexicographic product of graphs. Discrete Applied Mathematics, 160(13):2030-2036.
[12] Xueliang, F., Yuansheng, Y., and Baoqi, J. (2009). Roman domination in regular graphs. Discrete Mathematics, 309(6):1528-1537.

