Some Properties on Strong Roman Domination in Graphs

G. Suresh Singh^{#1}, Narges Mohsenitonekboni^{#2} [#]Department of Mathematics University of Kerala Kariyavattom-695581 Thiruvananthapuram-Kerala, India ¹sureshsinghg@yahoo.co.in ²narges.mtonekabni@gmail.com

Abstract—A Strong Roman dominating function (SRDF) is a function $f: V \to \{0,1,2,3\}$ satisfying the condition that every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=3 and every vertex u for which f(u)=1 is adjacent to at least one vertex v for which f(v)=2. The weight of an SRDF is the value $f(V)=\sum_{u\in V} f(u)$. The minimum weight of an SRDF on a graph G is called the *Strong Roman domination number* of G. In this paper, we attempt to verify some properties on SRDF and moreover we present Strong Roman domination number for some special classes of graphs. Also we show that for a tree T with $n \ge 3$

vertices, l leaves and s support vertices, we have $\gamma_{SR}(T) \le \frac{6n - l - s}{4}$ and we characterize all trees achieving this bound.

Keywords-Roman domination number, Strong Roman domination number, Graph, Tree, Star, Double star, Connected graph.

I. INTRODUCTION

Mathematical study of domination in graphs began around 1960, there are some references to domination related problems about 100 years prior. In 1862, De Jaenisch [2] attempted to determine the minimum number of queens required to cover a $n \times n$ chess board. Except as indicated otherwise, all terminology and notation follows [5, 4, 9]. Let G = (V, E) be a graph of order |V| = n. For any vertex $v \in V$ the open neighborhood of v is the set $N(v) = \{ u \in V \mid uv \in E \}$ and the closed neighborhood is the set $N[v] = N(v) \cup \{v\}$. For a set $S \subseteq V$ the open neighborhood of S is $N(S) = \bigcup_{v \in S} N(v)$ and the closed neighborhood is $N[S] = N(S) \cup S$. A set S of vertices is called a *vertex cover* if for every edge $uv \in E$ either $u \in S$ or $v \in S$. A graph G is said to be *connected* if there is at least one path between every pair of vertices in G. Otherwise, G is disconnected. A graph with no cycle is acyclic. A forest is an acyclic graph. A tree is a connected acyclic graph. A rooted tree T distinguishes a vertex r called the root. A vertex of degree 1 is called a *leaf* which denoted by l. A adjacent leafor vertex u in a tree T is a neighborhood of uthat is a leaf in T. A support vertex (also called a stem in the

literature) is a vertex of degree at least 2 that is adjacent to at least one leaf. A support vertex adjacent to two or more leaves is a *Strong support vertex*. A *Weak support vertex* is a support vertex that is adjacent to exactly one leaf. Also we denote the set of leaves in G by L(G) and the set of support vertices by S(G). A *Star* is the graph $K_{1,k}$ where $k \ge 1$. If k > 1, the vertex of degree k is called the *Center vertex* of the star. A *Double star* is formed from two disjoint stars by joining the center vertices of each by an edge. Thus a Double star is a tree with exactly two vertices that are not leaves.

We now introduce the concept of dominating sets in graphs. A set $S \subseteq V$ is a *dominating set* if N[S] = V or equivalently, every vertex in V - S is adjacent to at least one vertex in S. The *domination number* $\gamma(G)$ is the minimum cardinality of a dominating set in G and a dominating set S of minimum cardinality is called a $\gamma(G)$ -set of G, see [10]. Let $f: V \rightarrow \{0,1,2\}$ be a function having the property that for every vertex $v \in V$ with f(v) = 0, there exists a neighborhood $u \in N(v)$ with f(u) = 2. Such a function is called a *Roman dominating function* or just an RDF. The weight of an RDF is the value $f(V) = \sum_{u \in V} f(u)$. The minimum weight of an RDF on

G is called the *Roman domination number* of G and is denoted by $\gamma_R(G)$, see [1, 10].

K. Selvakumar et al. [8] introduced Strong Roman domination in 2016. A *Strong Roman dominating function* (SRDF) is a function $f: V \rightarrow \{0, 1, 2, 3\}$ satisfying the condition that every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=3 and every vertex u for which f(v)=3 and every vertex v for which f(v)=1 is adjacent to at least one vertex v for which f(v)=3 and every vertex v for which f(v)=1 is adjacent to at least one vertex v for which f(v)=1. The weight of an SRDF is the value $f(V) = \sum_{u \in V} f(u)$. The minimum weight of an SRDF on a graph G is called the *Strong Roman domination number* of G.

In 2004, Cockayne et al. [1] studied the graph theoretic properties of Roman dominating sets. In recent years several authors studied the concept of Roman dominating functions and Roman domination numbers [12, 6, 7, 11]. In this paper, we present some results on SRDF and Strong Roman domination number for some special classes of graphs. Also we show that for a tree T with $n \ge 3$ vertices, l leaves

and *s* support vertices, $\gamma_{SR}(T) \le \frac{6n-l-s}{4}$ and we characterize all trees achieving this bound.

Proposition: For any graph G , there exists an SRDF,

 $f = (V_0, V_1, V_2, V_3)$ of G, such that $V_1 = \phi$.

Proof:

Let $V_1 = \phi$ and $u \in V$. By the definition of SRDF, there exists a vertex $v \in V_2$ such that $v \in N(u)$. Hence a function $g = (V_0 \cup \{u\}, V_1 - \{u\}, V_2 - \{v\}, V_3 \cup \{v\})$ is an SRDF. Continuing with the same argument we find an SRDF with $V_1 = \phi$. Therefore, the proposition follows. \Box

Theorem 1: For any graph
$$G$$
,
 $2\gamma(G) \le \gamma_{SR}(G) \le 3\gamma(G)$.

Proof:

Suppose that
$$f = (V_0, V_1, V_2, V_3)$$
 is a
 $\gamma_{SR}(G) - function$ and $|V_0| = n_0$, $|V_1| = n_1$,
 $|V_2| = n_2$ and $|V_3| = n_3$.
 $\gamma_{SR}(G) = f(V)$
 $= \sum_{u \in V} f(u)$
 $= 3n_3 + 2n_2 + n_1$.
 $V_3 > V_0 \rightarrow$ The set V_3 dominates the set V_0 .
 $V_2 > V_1 \rightarrow$ The set V_2 dominates the set V_1 .

It is implied that $V_2 \bigcup V_3$ is a dominating set of G. So $\gamma(G) \leq |V_2| + |V_3|$, thus

$$2\gamma(G) \le 2|V_2| + 2|V_3|$$
$$\le |V_1| + 2|V_2| + 3|V_3|$$
$$= \gamma_{SR}(G).$$

Hence

$$2\gamma(G) \leq \gamma_{SR}(G). \tag{1}$$

Now, let *S* be a γ -set of *G*. Then $\gamma(G) = |S|$. We can define an SRDFon *G*, for all $v \in S$ we have f(v) = 3 and also for all $u \notin S$ we have f(u) = 0. Therefore $(V_0, V_1, V_2, V_3) = (\phi, \phi, \phi, S)$ is an SRDF. It is implied that $|V_0| = 0$, $|V_1| = 0$, $|V_2| = 0$ and $|V_3| = |S|$. Therefore

$$\gamma_{SR}(G) \le 3 |V_3|$$
$$= 3 |S|$$
$$= 3\gamma(G).$$

Hence

$$\gamma_{SR}(G) \leq 3\gamma(G). \qquad (2)$$

From (1) and (2) we get $2\gamma(G) \leq \gamma_{SR}(G) \leq 3\gamma(G). \square$

Theorem 2: For any graph G of order n, $\gamma_{SR}(G) = 2\gamma(G)$ if and only if $G = \overline{K}_n$.

Proof:

Suppose that $f = (V_0, V_1, V_2, V_3)$ isa $\gamma_{SR}(G) - function$. Thus $V_2 \cup V_3$ is a dominating set of the graph G. Therefore $\gamma(G) \leq |V_2| + |V_3|$. The equality $\gamma_{SR}(G) = 2\gamma(G)$ implies that we have equality in

$$2\gamma(G) \le 2|V_2| + 2|V_3| = 2|V_2| + 3|V_3| = \gamma_{SR}(G).$$

So $|V_3| = 0$, which implies that $V_0 = \phi$. Hence all vertices are assigned with 2 and therefore

$$\gamma_{SR}(G) = 2|V_2| = 2n.$$

This implies that $\gamma(G) = n$ which shows that $G = \overline{K}_n$.

Conversely, It is obvious that if $G = \overline{K}_n$, then $\gamma_{SR}(G) = 2\gamma(G)$. \Box

Theorem 3: For any graph G, $\gamma_R(G) \neq \gamma_{SR}(G).$

Proof:

Suppose that $f = (V_0, V_1, V_2, V_3)$ is a $\gamma_{_{SR}}(G)$ – function . Let $g = (Y_0, Y_1, Y_2)$ be an RDF on G where $Y_0 = V_0$, $Y_1 = V_2$ and $Y_2 = V_3$. Therefore $\gamma_{R}(G) \leq |Y_{1}| + 2|Y_{2}|$

$$= |V_2| + 2|V_3|$$

$$< 2|V_2| + 3|V_3|$$

$$= \gamma_{SR}(G). \Box$$
Thus $\gamma_R(G) \neq \gamma_{SR}(G). \Box$

Based on above theorem, we know that $\gamma_{\scriptscriptstyle SR}(G) \geq \gamma_{\scriptscriptstyle R}(G) + 1$. In the next theorem, we will discuss the equation of this inequality

Theorem 4: $\gamma_{SR}(G) = \gamma_R(G) + 1$ if and only if $\Delta(G) = n - 1.$

Proof:

Suppose that $\gamma_{SR}(G) = \gamma_R(G) + 1$ and $f = (V_0, V_1, V_2, V_3)$ is $\gamma_{SR}(G) - function$. Define $g = (Y_0, Y_1, Y_2)$ is an RDF on G where $Y_0 = V_0$, $Y_1 = V_2$ and $Y_2 = V_3$. Therefore

$$\gamma_{R}(G) \leq |Y_{1}| + 2|Y_{2}|$$
$$= |V_{2}| + 2|V_{3}|.$$

On the other hand, if $|V_2| \neq 0$ and also $|V_3| \neq 0$, then $|V_2| + 2|V_3| \le |V_2| + 2|V_3| + (|V_2| - 1) + (|V_3| - 1)$ $= 2|V_2| + 3|V_3| - 2.$

Hence

$$\gamma_{R}(G) + 1 \leq |V_{2}| + 2|V_{3}| + 1$$

$$\leq 2|V_{2}| + 3|V_{3}| - 1$$

$$= \gamma_{SR}(G) - 1.$$

Thus $\gamma_R(G) + 1 \neq \gamma_{SR}(G)$, which is a contradiction. Therefore $|V_3| = 0 \text{ or } |V_2| = 0$.

Let $|V_3| = 0$ and if $|V_2| > 1$, then $\gamma_{P}(G) \leq |V_{2}|$ $\leq 2 |V_2| - 2$.

Hence

$$\gamma_{R}(G) + 1 \leq |V_{2}| + 1$$
$$\leq 2|V_{2}| - 1$$
$$= \gamma_{SR}(G) - 1.$$

Thus $\gamma_{R}(G) + 1 \neq \gamma_{SR}(G)$ which is a contradiction. Therefore in this case, $|V_2| = 1$ and thus $G = K_1$. Now, assume that $\left| V_2 \right| = 0$ and if $\left| V_3 \right| > 1$, then

$$\gamma_R(G) \leq 2 |V_3|$$
$$\leq 3 |V_3| - 2.$$

Similarly, we get $\gamma_R(G) + 1 \neq \gamma_{SR}(G)$, which is a contradiction. Therefore in this case, $|V_3| = 1$ and if $V_3 = \{v\}$, then deg(v) = n - 1. Thus G has a vertex of degree n-1.

Therefore in each case $\Delta(G) = n - 1$.

Conversely, If
$$\Delta(G) = n - 1$$
, then $\gamma_{SR}(G) = 3$
and $\gamma_R(G) = 2$. So $\gamma_{SR}(G) = \gamma_R(G) + 1$. \Box

Theorem 5: For any path P_n ,

$$\gamma_{SR}(P_n) = \begin{cases} n & , \quad n \equiv 0 \pmod{3} \\ n+1 & , \quad n \not\equiv 0 \pmod{3} \end{cases}.$$

Proof:

Suppose that a, b and c are consecutive vertices and $f = (V_0, V_1, V_2, V_3)$ is a $\gamma_{SR}(G)$ - function of P_n , respectively. If two vertices of $\{a, b, c\}$ belongingto V_0 , then either one of those vertices belongs to V_3 , which in this case we have

$$f(a)+f(b)+f(c)\geq 3,$$

or $a, c \in V_0$ and $b \in V_2$. In this case, all vertices which are adjacent to a and c are named x and y should belong to V_3 . Therefore

$$f(x) + f(a) + f(b) + f(c) + f(y) \ge 8.$$

So, always
$$\gamma_{SR}(P_n) = f(V)$$
$$\ge n.$$

Now, we use an induction on the order n. Assume the result is true for $n \le 6$. Suppose that $n \ge 7$ and it is true for m < n. If $n \equiv 0 \pmod{3}$ and $P_n = v_1 v_2 \cdots v_n$, we put

$$f(v_i) = \begin{cases} 3 & , i \equiv 2 \pmod{3} \\ 0 & , i \not\equiv 2 \pmod{3} \end{cases}.$$

Hence, f is an SRDF and also

$$f(V) = \sum_{i=1}^{n} f(v_i)$$
$$= n.$$

Therefore $\gamma_{SR}(P_n) \leq n$.

On the other hand, we have shown for any $n, \gamma_{SR}(P_n) \ge n$. Hence $\gamma_{SR}(P_n) = n$. Now, let $n \ne 0 \pmod{3}$ and $f = (V_0, V_1, V_2, V_3)$ be a $\gamma_{SR}(G) - function$.

If $V_2 = \phi$, then it is easy to show that $\gamma_{SR}(P_n) = f(V) \ge n+1$.

If $V_2 \neq \phi$, then assume that for $1 \le i \le n$, $f(v_i) = 2$. We consider the following cases:

Case 1:
$$i = 1$$
 or $i = n$.

Without loss of generality, suppose that i = 1, $f(v_1) = 2$. Hence $P_n - v_1 = P_{n-1}$. By the induction, we know that $\gamma_{SR}(P_{n-1}) \ge n-1$. On the other hand, it is clearly, $g = f|_{P_{n-1}}$ be an SRDFon P_{n-1} . Thus $g(V) \ge \gamma_{SR}(P_{n-1})$ $\ge n-1$.

Therefore

$$\gamma_{SR}(P_n) = f(V)$$
$$= g(V) + 2$$
$$\geq (n-1) + 2$$
$$= n+1.$$

Hence $\gamma_{SR}(P_n) \ge n+1$.

Similarly, we can prove that the result is true for i = n.

Case 2: $i \neq 1$, *n*.

Hence we put $P_{i-1} = v_1 v_2 \dots v_{i-1}$ and $P_{n-i} = v_{i+1} v_{i+2} \dots v_n$. We know that $\gamma_{SR} (P_{i-1}) \ge i - 1$, $\gamma_{SR} (P_{n-i}) \ge n - i$. On the other hand, it is clearly, the functions $q_i = f_i^{[i]}$ and $q_i = f_i^{[i]}$ are two

 $g_1 = f \Big|_{P_{i-1}}$ and $g_2 = f \Big|_{P_{n-i}}$ are two SRDFs on P_{i-1} and P_{n-i} , respectively. Thus

$$g_{1}(V) \geq \gamma_{SR}(P_{i-1})$$

$$\geq i-1,$$

$$g_{2}(V) \geq \gamma_{SR}(P_{n-i})$$

$$\geq n-i.$$

Therefore

$$\gamma_{SR}(P_n) = f(V)$$

$$= g_1(V) + g_2(V) + 2$$

$$\geq (i-1) + (n-i) + 2$$

$$= n+1.$$

Hence $\gamma_{SR}(P_n) \ge n+1$.

Therefore in both cases $\gamma_{SR}(P_n) \ge n+1$.

Now we define the function f on path P_n if $n \neq 0 \pmod{3}$ as follows:

1) If
$$n \equiv 1 \pmod{3}$$
, then
 $f(v_i) = \begin{cases} 3 & , i \equiv 2 \pmod{3} \\ 0 & , i \not\equiv 2 \pmod{3}, i < n \\ 2 & , i \equiv n \end{cases}$

2) If
$$n \equiv 2 \pmod{3}$$
, then

$$f(v_i) = \begin{cases} 3 & , i \equiv 2 \pmod{3} \\ 0 & , i \neq 2 \pmod{3} \end{cases}$$

In both cases f is an SRDF on path P_n of weight n+1. Hence $\gamma_{SR}(P_n) \le n+1$.

Since we have shown that before $\gamma_{SR}(P_n) \ge n+1$, therefore if $n \ne 0 \pmod{3}$, then we have $\gamma_{SR}(P_n) = n+1$. \Box

II. A NEW UPPER BOUND IN TREES

It has been shown that the domination number of a connected graph G of order n is at most $\frac{n}{2}$ [4]. Regarding the fact that $\gamma_{SR}(G) \leq 3\gamma(G)$, we get

$$\gamma_{SR}(G) \leq 3\gamma(G) \leq \frac{3n}{2}.$$

Our aim in this section is improve this bound on trees. We show that for any tree T of order n with l leaves and s support vertices, we have $\gamma_{SR}(T) \leq \frac{6n - l - s}{4}$. Moreover, we characterize all trees achieving this bound.

S

Theorem 6: If T is a tree of order $n \ge 3$ with l leaves and s support vertices, then

$$\gamma_{SR}(T) \leq \frac{6n-l-s}{4}.$$

Proof:

We prove this by induction on order n of tree T. If diam(T)=2, then T is a Star. Therefore l=n-1, s=1 and $\gamma_{SR}(T)=3$. Hence

$$\gamma_{SR}(T) = 3$$

$$< \frac{6n - l - s}{4}$$

$$= \frac{6n - (n - 1) - 1}{4}$$

$$= \frac{5n}{4}.$$

Now, assume that diam(T) = 3. In this case, T is a Double Star $S_{a,b}$ with central vertices u and v with degrees of a and b, respectively. Without loss of generality, suppose that $a \ge b$.

If a = 2, then b = 2 and thus $T = P_4$. Therefore $\gamma_{SR}(T) = 5$

$$=\frac{6n-l-s}{4}$$

Now, let $a \ge 3$. If b = 2, then the function $f = (N(u), \phi, N(v), \{u\})$ is a $\gamma_{SR}(T)$ -function. Since $n \ge 5$, l = n - 2 and s = 2, we have

$$Y_{SR}(T) = f(V)$$

= 2|V₂|+3|V₃|
= 2|N(v)|+3
= 5
< $\frac{6n-l-s}{1}$.

Now, let $b \ge 3$. In this case, $n \ge 6$, l = n - 2, s = 2 and the function $f = (V(T) - \{u, v\}, \phi, \phi, \{u, v\})$ is an SRDF on tree T. Hence

$$\begin{aligned} \gamma_{SR}(T) &\leq f(V) \\ &= 2 |V_2| + 3 |V_3| \\ &= 6 \\ &< \frac{6n - l - s}{4}. \end{aligned}$$

So, we can assume that $diam(T) \ge 4$. If T has a Strong support vertex u and also v and w are adjacent leaves to u, then we consider T' = T - w. Let n', l' and s' be order, number of leaves and number of vertices of tree T', respectively. Since $diam(T) \ge 4$, we get $n' \ge 3$. Therefore by induction $\gamma_{SR}(T') \le \frac{6n' - l' - s'}{4}$. Suppose that $g = (V_0, \phi, V_2, V_3)$ is a $\gamma_{SR}(T') - function$. If g(u) = 3, then extension of g by assigning the weight 0 to w is an SRDF on tree T. Thus, since l' = l - 1 and s' = s, we have

$$\gamma_{SR}(T) \leq g(V)$$

$$= \gamma_{SR}(T')$$

$$\leq \frac{6n'-l'-s'}{4}$$

$$= \frac{6(n-1)-(l-1)-1}{4}$$

$$= \frac{6n-l-s}{4}.$$

Now, let $g(u) \neq 3$. Then g(v) = 2. Therefore the function f with f(w) = f(v) = 0, f(u) = 3 and for any other vertex x, we have f(x) = g(x) is an SRDF on tree T. Hence

$$\gamma_{SR}(T) \leq f(V) = g(V) + 1 = \gamma_{SR}(T') + 1 \leq \frac{6n' - l' - s'}{4} + 1 = \frac{6(n-1) - (l-1) - s}{4} + 1 < \frac{6n - l - s}{4}.$$

Therefore, we can consider the following Fact.

Fact: T has no Strong support vertex.

We root the tree T at vertex x_0 . Support that $P = x_0 x_1 \cdots x_d$ is a diagonal path. Based on Fact, $\deg(x_{d-1}) = 2$. We consider the following cases:

Case 1: deg
$$(x_{d-2}) \ge 3$$
.

In this case, every child of x_{d-2} is either a leaf or a support vertex of degree 2. Since based on Fact, Tdoes not has a Strong support vertex, we consider $T' = T - \{x_d, x_{d-1}\}$. So, n' = n - 2, l' = l - 1 and s' = s - 1. Suppose that $f' = (V'_0, V'_1, V'_2, V'_3)$ isa $\gamma_{SR}(T')$ – function. If $f'(x_{d-2}) = 2$, then the function $f = (V_0, V_1, V_2, V_3)$ where $V_0 = V'_0 \cup \{x_d, x_{d-2}\}$, $V_1 = V'_1 = \phi$ $V_2 = V'_2 - \{x_{d-2}\}$ and $V_3 = V'_3 \cup \{x_d\}$ is an SRDF on tree T. Thus $\gamma_{SR}(T) \le f(V)$

$$= f'(V) + 1$$
$$= \gamma_{SR}(T') + 1.$$

Since $diam(T) \ge 4$, we get $n' \ge 3$. Then under the hypothesis

$$\gamma_{SR}(T) \le \gamma_{SR}(T') + 1$$

$$\le \frac{6n' - l' - s'}{4} + 1$$

$$= \frac{6(n-2) - (l-1) - (s-1)}{4} + 1$$

$$< \frac{6n - l - s}{4}.$$

Now, let $f'(x_{d-2}) = 3$. So, the function $f = (V'_0 \cup \{x_{d-1}\}, \phi, V'_2 \cup \{x_d\}, V'_3)$ is an SRDF on tree T. Thus by hypothesis we have $\gamma_{sp}(T) \le f(V)$

$$SR(r) = f'(V) + 2$$

= $\gamma_{SR}(T') + 2$
 $\leq \frac{6n' - l' - s'}{4} + 2$
= $\frac{6(n-2) - (l-1) - (s-1)}{4} + 2$
 $< \frac{6n - l - s}{4}.$

Therefore, we can assume that for each $\gamma_{SR}(T')$ -function, the weight of the vertex x_{d-2} is equals to 0.

Assume that x_{d-2} is a support vertex. Based on Fact, T has only an adjacentleaf .we consider u as an adjacent leaf to x_{d-2} . If x_{d-2} has a support child v other than x_{d-1} , then since $f'(x_{d-2}) = 0$, we can assume f'(v) = 3, f'(u) = 2 and the child weight of v is equals to 0. By changing the weight of the vertices u and vto 0, x_{d-2} to 3 and child of v to 2 a new $\gamma_{SR}(T')$ – function is obtained where weight of x_{d-2} is not equals to 0, which is a contradiction. Since we assume that for each $\gamma_{SR}(T')$ - function, we have the weight of x_{d-2} is 0. So, we can assume that the only support child x_{d-2} is the vertex x_{d-1} . We put $T' = T - T_{x_{d-2}}$. In this case, n' = n - 4. Since diam $(T) \ge 4$, we get $n' \ge 2$.

If n' = 2, then $T = F_1$ shown in the figure (1). In this case, n = 6, l = s = 3 and $\gamma_{SR}(T) = 7$. Therefore

$$\gamma_{SR}(T) = 7$$

$$< \frac{30}{4}$$

$$= \frac{6n - l - s}{4}.$$

Now, assume that $n' \ge 3$. Therefore based on inductive hypothesis $\gamma_{SR}(T') \le \frac{6n'-l'-s'}{4}$. Any $\gamma_{SR}(T')$ – function can be extended to an SRDF on tree T by assigning the weight 3 to x_{d-2} , 2 to x_d and 0 to x_{d-1} and u. Thus $\gamma_{SR}(T) \le \gamma_{SR}(T') + 5$. If deg $(x_{d-3}) = 2$, then l' = l - 1 and $s' \ge s - 2$. Therefore $\gamma_{SR}(T) \le \gamma_{SR}(T') + 5$ $\le \frac{6n'-l'-s'}{4} + 5$ $= \frac{6(n-4)-(l-1)-(s-2)}{4} + 5$ $< \frac{6n-l-s}{4}$. Now, let deg $(x_{d-3}) \ge 3$. In this case, l' = l - 2

Now, let deg $(x_{d-3}) \ge 3$. In this case, l' = l - 2and s' = s - 2. Hence

$$\begin{split} \gamma_{SR}(T) &\leq \gamma_{SR}(T') + 5 \\ &\leq \frac{6n' - l' - s'}{4} + 5 \\ &= \frac{6(n-4) - (l-2) - (s-2)}{4} + 5 \\ &= \frac{6n - l - s}{4}. \end{split}$$

Therefore in this case, if x_{d-2} is a support vertex,

then
$$\gamma_{SR}(T) \leq \frac{6n-l-s}{4}$$

Now, assume that x_{d-2} is not a support vertex.

If x_{d-2} has three children u, v and w other than x_{d-1} , then we put $T' = T - \{x_d, x_{d-1}\}$. We already assumed that for each $\gamma_{SR}(T')$ – function the weight of x_{d-2} is equals o 0. We consider that the function f' is a $\gamma_{SR}(T')$ - function, therefore $f'(x_{d-2}) = 0$. Hence we can assume f'(u) = f'(v) = f'(w) = 3 and the child weight of each of the vertices u, v and w are 0. In this case, by changing the weight of the vertices u, v and w to 0, childof each of the vertices u, v and W to 3 and x_{d-2} to 3, we obtain a $\gamma_{\scriptscriptstyle SR}(T') - {\it function}$ where the weight of the vertex x_{d-2} is not equals to 0 which is a contradiction, since we previously assumed that for each $\gamma_{SR}(T')$ – function, we have the weight of the vertex x_{d-2} is equals to 0.

So, we can assume that x_{d-2} has at most two support children other than x_{d-1} .

First, assume x_{d-2} has two support children u and v other than x_{d-1} . We put $T' = T - T_{x_{d-2}}$. Since $diam(T) \ge 4$, we get $n' \ge 2$.

If n' = 2, then $T = F_2$ shown in the figure (1). In this case, n = 9, l = s = 4 and $\gamma_{SR}(T) = 11$. Thus $\gamma_{SR}(T) < \frac{6n - l - s}{4}$.

Now, let $n' \ge 3$. In this case, n' = n - 7 and under the hypothesis $\gamma_{SR}(T') \le \frac{6n' - l' - s'}{4}$. Any $\gamma_{SR}(T') - function$ can be extended to an SRDF on tree T by assigning the weight 3 to the vertices

$$\leq \frac{6n' - l' - s'}{4} + 9$$

= $\frac{6(n-7) - (l-3) - (s-3)}{4} + 9$
= $\frac{6n - l - s}{4}$.

Now, we support that x_{d-2} has only one support child other than x_{d-1} . Let u be a support child x_{d-2} other than x_{d-1} . We put $T' = T - T_{x_{d-2}}$. So n' = n - 5, $l' \ge l - 2$ and $s' \ge s - 2$. Since $diam(T) \ge 4$, we get $n' \ge 2$. If n' = 2, then $T = F_3$ shown in figure (1). So, n = 7, l = s = 3 and $\gamma_{SR}(T) = 9$. Hence $\gamma_{SR}(T) = \frac{6n - l - s}{4}$.

Now, let $n' \ge 3$. So based on inductive hypothesis $\gamma_{SR}(T') \le \frac{6n' - l' - s'}{4}$. Any

 $\gamma_{SR}(T') - function$ can be extended to an SRDF on tree *T* by assigning the weight 3 to the vertices *u* and x_{d-1} and 0 to all their neighboring vertices. So, $\gamma_{SR}(T) \le \gamma_{SR}(T') + 6$. And therefore

$$\begin{split} \gamma_{SR}(T) &\leq \gamma_{SR}(T') + 6 \\ &\leq \frac{6n' - l' - s'}{4} + 6 \\ &\leq \frac{6(n-5) - (l-2) - (s-2)}{4} + 6 \\ &< \frac{6n - l - s}{4}. \end{split}$$

Case 2: $\deg(x_{d-2}) = 2$.

We put $T' = T - T_{x_{d-2}}$. Since $diam(T) \ge 4$, we get $n' \ge 2$.

If
$$n' = 2$$
, then $T = P_5$. Thus
 $\gamma_{SR}(T) = 5$

$$= \frac{6n - l - 4}{4}$$

Now, let $n' \ge 3$. In this case, n' = n - 3, $l' \ge l - 1$ and $s' \ge s - 1$. Any $\gamma_{SR}(T') - function$ can be extended to an SRDF on tree T by assigning the weight 3 to the vertices u and x_{d-1} and 0 to all their neighboring vertices. Therefore $\gamma_{SR}(T) \le \gamma_{SR}(T') + 3$. Hence with the hypothesis we have $\gamma_{SR}(T) \le \gamma_{SR}(T') + 3$

$$\leq \frac{6n' - l' - s'}{4} + 3$$

$$\leq \frac{6(n-3) - (l-1) - (s-1)}{4} + 3$$

$$\leq \frac{6n - l - s}{4}$$

So the problem is solved. \Box

In the following, we characterize all the trees subjected to the condition $\gamma_{SR}(T) = \frac{6n-l-s}{4}$. Let F be a family of trees T where it comes from a sequence of trees T_1, T_2, \ldots, T_j , $(j \ge 1)$ such that $T_1 = P_4$ or $T_1 = F_3$ (Shown in Fig 1) and if $j \ge 2$, then T_{j+1} can be obtained from T_j with one of two operations O_1 or O_2 .

A. Operation O_{1} Let $u \in V(T_{j})$, $\gamma_{SR}(T_{j} - u) \ge \gamma_{SR}(T_{j})$ and $\deg(u) \ge 1$ T_{j} this case, T_{j+1} is obtained from T_{j} by adding a with the support vertex v and adding the edge t'

B. Operation O_2 Let $u \in V(T_j)$, $\gamma_{SR}(T_j - u) \ge \gamma_{SR}(T_j)$ and $\deg(u) \ge 2_{T_j}$. In this case, T_{j+1} is obtained from T_j by adding a tree F_3 , with adding the edge uv where v is a central vertex of tree F_3 . (See Fig 3)

Figure 3.0 peration O_2 .

To prove that each tree $T \in F$ satisfy the condition $\gamma_{SR}(T) = \frac{6n-l-s}{4}$, the following two Lemmas will be useful. For each $k \ge 1$, let n_k , l_k and s_k denote order, number of leaves and number of support vertices of tree T_k , respectively.

Lemma 1: Let
$$\gamma_{SR}(T_j) = \frac{6n_j - l_j - s_j}{4}$$
 and T_{j+1} is

obtained by T_i with operation O_1 , then

$$\gamma_{SR}(T_{j+1}) = \frac{6n_{j+1} - l_{j+1} - s_{j+1}}{4}$$

Proof:

Suppose that the path $P_4 = xvyz$ and the vertex u is operation dependent. Any $\gamma_{SR}(T_j) - function$ can be extended to an SRDF on tree T by assigning the weight 3 to v, 2 to z and 0 to x and y. Therefore $\gamma_{SR}(T_{j+1}) \leq \gamma_{SR}(T_j) + 5$. Now, suppose that f is a $\gamma_{SR}(T_{j+1}) - function$.

If $f(u) \neq 0$, then $f|_{T_j}$ is an SRDF on tree T_j . So, in this case, we have

$$\gamma_{SR}(T_j) \leq f(V|_{T_j})$$
$$= f(V) - f(V(P_4)).$$

Now, assume that f(u) = 0. Hence $f|_{T_j - u}$ is an SRDF on $T_j - u$. Therefore $\gamma_{SR}(T_j - u) \le f(V|_{T_j - u})$ and so by the assumption

$$\begin{split} \gamma_{SR}\left(T_{j}\right) &\leq \gamma_{SR}\left(T_{j}-u\right) \\ &\leq f\left(V\left|_{T_{j}-u}\right) \\ &= f\left(V\right) - f\left(V\left(P_{4}\right)\right), \end{split}$$

On the other hand, always $f(V(P_4)) \ge 3$. So, in both cases we have

$$\gamma_{SR}(T_j) \leq f(V) - f(V(P_4))$$

$$\leq f(V) - 5$$

$$= \gamma_{SR}(T_{j+1}) - 5.$$

$$\gamma_{SR}(T_{j+1}) = \gamma_{SR}(T_j) + 5 .$$

Therefore

$$\deg(u) \ge 2, \text{ we get } l_{j+1} = l_j + 2 \text{ and } s_{j+1} = s_j + 2.$$

So, by induction we have
$$\gamma_{SR}(T_{j+1}) = \gamma_{SR}(T_j) + 5$$
$$6n_i - l_i - s_j = -$$

$$= \frac{6n_{j+1} - 2j}{4} + 5$$

= $\frac{6(n_{j+1} - 4) - (l_{j+1} - 2) - (s_{j+1} - 2)}{4} + 5$
= $\frac{6n_{j+1} - l_{j+1} - s_{j+1}}{4}$.

Since

Now, hence the proof. \Box

Lemma 2: Suppose that $\gamma_{SR}(T_j) = \frac{6n_j - l_j - s_j}{4}$ and T_{j+1} is obtained with the operation O_2 of T_j , then

$$\gamma_{SR}(T_{j+1}) = \frac{6n_{j+1} - l_{j+1} - s_{j+1}}{4}$$

Proof:

Let F_3 be a tree with central vertex v and vertex $u \in V(T_j)$ is dependent to operation O_2 . Suppose that f is a $\gamma_{SR}(T_{j+1})$ -function.

If
$$f(u) \neq 0$$
, then $f|_{T_j}$ is an SRDF on tree T_j . Thus
 $\gamma_{SR}(T_j) \leq f(V|_{T_j})$
 $= f(V) - f(V(F_3)).$

Now, let f(u) = 0. In this case, we have

$$\gamma_{SR}(T_j) \leq \gamma_{SR}(T_j - u)$$
$$\leq f(V|_{T_j - u})$$
$$= f(V) - f(V(F_3))$$

On the other hand, always $f(V(F_3)) \ge 9$.

So, in both cases we have

$$\gamma_{SR}(T_j) \leq f(V) - f(V(F_3))$$
$$\leq f(V) - 9$$
$$= \gamma_{SR}(T_{j+1}) - 9.$$

Also any $\gamma_{SR}(T_j)$ – *function* can be extended to an SRDF on tree *T* by assigning the weight 3 to the support vertices of tree F_3 and 0 to other vertices of tree F_3 . Thus

$$\gamma_{SR}(T_{j+1}) \le \gamma_{SR}(T_j) + 3|S(F_3)|$$

= $\gamma_{SR}(T_j) + 9.$
re $\gamma_{SR}(T_{j+1}) = \gamma_{SR}(T_j) + 9.$ Clearly

Therefore $\gamma_{SR}(T_{j+1}) = \gamma_{SR}(T_j) + 9$. Clearly $n_{j+1} = n_j + 7$ and since $\deg(u) \ge 2$, we get $l_{j+1} = l_j + 3$ and $s_{j+1} = s_j + 3$. So, by induction we have $\gamma_{SR}(T_{j+1}) = \gamma_{SR}(T_j) + 9$

$$= \frac{6n_{j} - l_{j} - s_{j}}{4} + 9$$

= $\frac{6(n_{j+1} - 7) - (l_{j+1} - 3) - (s_{j+1} - 3)}{4} + 9$
= $\frac{6n_{j+1} - l_{j+1} - s_{j+1}}{4}$.

Now, hence the proof. \Box

IJRITCC | August 2017, Available @ http://www.ijritcc.org

Theorem 7: For any tree *T* of order $n \ge 3$ with *l* leaves and *s* support vertices, $\gamma_{SR}(T) = \frac{6n - l - s}{4}$ if and only if $T \in F$.

Proof:

Suppose that $\gamma_{SR}(T) = \frac{6n - l - s}{4}$. We proceed

by an induction on the order n of a tree T.

If $diam(T) \le 3$, then based on proof of Theorem 6, we get $T = P_4$ and thus $T \in F$.

Now, let $diam(T) \ge 4$. We root the tree T at vertex x_0 . Suppose that $P = x_0 x_1 \dots x_d$ is a diagonal path.

Based on proof of Theorem 6, T does not have a Strong support vertexand if $T \neq F_3$, then only in following two cases are $\gamma_{SR}(T) = \frac{6n - l - s}{4}$ holds:

Case 1: deg $(x_{d-2}) = 3$, deg $(x_{d-2}) \ge 3$ and x_{d-2} is a support vertex.

In this case, we put $T' = T - T_{x_{u-2}}$. Let u be adjacent leaf to x_{d-2} . Hence $T_{x_{d-2}} \cong P_4$. To prove that T is obtained from T' with operation O_1 , it is enough to show $\gamma_{SR}(T' - x_{d-3}) \ge \gamma_{SR}(T')$. Let $T' \in F$. On contrary, suppose that $\gamma_{SR}(T' - x_{d-3}) < \gamma_{SR}(T')$. Any $\gamma_{sr}(T' - x_{d-3}) - function$ can be extended to an SRDF on tree T by assigning the weight 3 to x_{d-2} , 2 to x_d and 0 to x_{d-1} , x_{d-3} and u. Therefore $\gamma_{SR}(T) \leq \gamma_{SR}(T' - x_{d-3}) + 5$. Thus $\gamma_{SR}(T) \leq \gamma_{SR}(T' - x_{d-3}) + 5$ $<\gamma_{SR}(T')+5$ $\leq \frac{6n'-l'-s'}{4}+5$ $=\frac{6(n-4)-(l-2)-(s-2)}{4}+5$ $=\frac{6n-l-s}{4}.$

Therefore $\gamma_{SR}(T) < \frac{6n-l-s}{4}$ which is a contradiction. So, $\gamma_{SR}(T'-x_{d-3}) \ge \gamma_{SR}(T')$.

Now, let $T' \notin F$. In this case, $\gamma_{SR}(T') < \frac{6n' - l' - s'}{4}$. Any

 $\gamma_{SR}(T')$ – *function* can be extended to an SRDF by assigning the weight 3 to v, 0 to u and x_{d-1} and 2 to x_d . Thus

$$\gamma_{SR}(T) \leq \gamma_{SR}(T') + 5$$

$$< \frac{6n' - l' - s'}{4} + 5$$

$$= \frac{6(n-4) - (l-2) - (s-2)}{4} + 5$$

$$= \frac{6n - l - s}{4}.$$

Therefore $\gamma_{SR}(T) < \frac{6n-l-s}{4}$ which is a contradiction.

Hence $T' \in F$. Thus T is obtained from T' with operation O_1 .

Case 2: deg $(x_{d-2}) = 4$, deg $(x_{d-2}) \ge 3$ and x_{d-2} has exactly two support children u and v other than x_{d-1} .

We put $T' = T - T_{x_{d-2}}$. In this case, $T_{x_{d-2}} \cong F_3$. Any $\gamma_{SR}(T') - function$ can be extended to an SRDF by assigning the weight 3 to x_{d-1} , u and v and 0 to all their neighboring vertices. Thus $\gamma_{SR}(T) \leq \gamma_{SR}(T') + 9$.

If $T' \notin F$, then $\gamma_{SR}(T') < \frac{6n' - l' - s'}{4}$. Therefore

$$\gamma_{SR}(T) \le \gamma_{SR}(T') + 9$$

$$< \frac{6n' - l' - s'}{4} + 9$$

$$= \frac{6(n - 7) - (l - 3) - (s - 3)}{4} + 9$$

$$= \frac{6n - l - s}{4}.$$
So, $\gamma_{SR}(T) < \frac{6n - l - s}{4}$ which is a

So, $\gamma_{SR}(T) < \frac{4}{4}$ which is a contradiction. Hence $T' \in F$.

To prove that T is obtained from T' with operation O_2 , it is enough to show that

$$\begin{split} \gamma_{SR}\left(T'-x_{d-3}\right) &\geq \gamma_{SR}\left(T'\right) \qquad \text{Any} \\ \gamma_{SR}\left(T'\right) - function \text{ can be extended to an SRDF} \\ \text{by assigning the weight 3 to } x_{d-2}, 0 \text{ to } x_{d-3} \text{ and} \\ \text{vertices } S\left(T_{x_{d-2}}\right) \text{ and } 2 \text{ to } L\left(T_{x_{d-2}}\right). \text{ Thus} \\ \gamma_{SR}\left(T\right) &\leq \gamma_{SR}\left(T'-x_{d-3}\right) + 9. \text{ Therefore} \\ \gamma_{SR}\left(T\right) &\leq \gamma_{SR}\left(T'-x_{d-3}\right) + 9 \\ &\leq \gamma_{SR}\left(T'\right) + 9 \\ &\leq \frac{6n'-l'-s'}{4} + 9 \\ &= \frac{6(n-7)-(l-3)-(s-3)}{4} + 9 \\ &= \frac{6n-l-s}{4}. \end{split}$$
Thus $\gamma_{SR}\left(T\right) &\leq \frac{6n-l-s}{4} \quad \text{which is a} \end{split}$

Thus $\gamma_{SR}(T) < \frac{6n-l-s}{4}$ which i contradiction.

So $\gamma_{SR}(T' - x_{d-3}) \ge \gamma_{SR}(T')$. Therefore T is obtained from T' with operation O_2 . Hence $T \in F$

Hence in both cases $T \in F$.

Conversely, let $T \in F$. We apply induction on the number of operations performed to construct a tree T.

If $T = P_4$ or $T = F_3$, then clearly $\gamma_{SR}(T) = \frac{6n - l - s}{4}$.

Now, let $T \neq P_4$ and $T \neq F_3$. Based on the structure of F, let T be obtained of $T' \in F$ with operations O_1 and O_2 . Under the hypothesis we have $\gamma_{SR}(T') = \frac{6n' - l' - s'}{4}$

where n', l' and s' denote order , number of leaves and number of vertices of tree T', respectively.

If T is obtained from T' with operation O_1 , then based on

Lemma 1 we have $\gamma_{SR}(T) = \frac{6n-l-s}{4}$.

Also, if *T* is obtained from *T'* with operation O_2 , then from the Lemma 2 it follows that $\gamma_{SR}(T) = \frac{6n - l - s}{4}$.

Hence the proof. \Box

REFERENCES

- Cockayne, E. J., Dreyer, P. A., Hedetniemi, S. M., and Hedetniemi, S. T. (2004). Roman domination in graphs. Discrete Mathematics, 278(1):11-22.
- [2] De Jaenisch, C.F. (1862) Applications de l'Analyse Mathematique au Jeu des Echecs. Petrograd.
- [3] Dreyer, P. A. (2000). Applications and variations of domination in graphs. The State University of New Jersey, New Brunswick, NJ.
- [4] Haynes, T. W., Hedetniemi, S. T., and Slater, P. J. (1998).
 Fundamentals of domination in graphs, volume 208 ofmonographs andtextbooks in pu -reand applied mathematics.
- [5] Haynes, T. W., Hedetniemi, S. T., and Slater, P. J. (1998). Domination in graphs: advanced topics, volume 209 of monographs and textbooks in pure and applied mathematics.
- [6] Henning, M. A. (2003). Defending the roman empire from multiple attacks. Discrete Mathematics, 271(1):101-115.
- [7] Pavlic, P. and Zerovnik, J. (2012). Roman domination number of the cartesian products of paths and cycles. The electronic journal of combinatorics, 19(3):P19.
- [8] Selvakumar, K. and Kamaraj, M. (2016). Strong roman domination in graphs. International Journal of Mathematical Archive (IJMA) ISSN 2229-5046, 7(3).
- [9] Singh, G. S. (2010). Graph Theory. PHI Learning Private Limited, New Delhi.
- [10] Stewart, I. (1999). Defend the roman empire! Scientic American, 281:136-138.
- [11] Sumenjak, T. K., Pavlic, P., and Tepeh, A. (2012). On the roman domination in the lexicographic product of graphs. Discrete Applied Mathematics, 160(13):2030-2036.
- [12] Xueliang, F., Yuansheng, Y., and Baoqi, J. (2009). Roman domination in regular graphs. Discrete Mathematics, 309(6):1528-1537.