
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 8 45 – 49

45
IJRITCC | August 2017, Available @ http://www.ijritcc.org

A Dynamic and Improved Implementation of Banker’s Algorithm

Ms. Kshipra Dixit (M.Tech. Student)

Department of Computer Science & Engineering,

Poornima College of Engineering,

Jaipur, Rajasthan, India

Dr. Ajay Khuteta

Department of Computer Science & Engineering,

Poornima College of Engineering,

Jaipur, Rajasthan, India

Abstract— Banker’s algorithm can be described as deadlock avoidance and resource allocation algorithm which ensure the execution safety by

simulating the allocation of already determined maximum possible of resources and makes the system into s-state by checking the possible

deadlock conditions for all other pending processes.

It needs to know how much of each resource a process could possibly request. Number of processes is static in algorithm, but in most of system

processes varies dynamically and no additional process will be started while it is in execution. The number of resources is not allowed to go

down while it is in execution.

In this research an approach for Dynamic Banker's algorithm is proposed which allows the number of resources to be changed at runtime that

prevents the system to fall in unsafe state. It also gives details about all the resources and processes that which one requires resources and in

what quantity.

This modified banker’s algorithm performs the process arrangement on the basis of their needs that leads to solve the problem in less time.

Keywords: Banker’s Algorithm, Improved Banker’s Algorithm, Deadlock

__*****___

I. INTRODUCTION

A set of processes is deadlocked if each process in the set is
waiting for an event that only another process in the set can
cause. Generally this event is release of a currently held
resource.

No process can execute and free the resources.

In an operating system, a deadlock occurs when a process or

thread enters a waiting state because a requested system

resource is held by another waiting process, which in turn is

waiting for another resource held by another waiting process. If

a process is unable to change its state indefinitely because the

resources requested by it are being used by another waiting

process, then the system is said to be in a deadlock [1].

A. Conditions for Deadlock

Deadlock is possible if following four conditions occurs

simultaneously

(i) Mutual exclusion condition: Only a single process at a

time can execute and utilize a non sharable resource. Either

each resource is allocated to a process or is available.

(ii) Hold and wait condition: A process holding at least one

resource can request for additional resources.

(iii) No preemption condition: A resource can be released

only voluntarily by the process holding it. That is previously

granted resources cannot be forcibly taken away.

(iv) Circular wait condition: There exists a set {P0,P1,…,P0}

of waiting processes such that P0 is waiting for a resource that

is held by P1, P1 is waiting for a resource that is held by

P2,…,Pn–1 is waiting for a resource that is held by Pn, and P0

is waiting for a resource that is held by P0.

Figure 1: Circular wait

B. Banker's Algorithm

For resource categories that contain more than one instance the

resource-allocation graph method does not work, and more

complex (and less efficient) methods must be chosen.

The Banker's Algorithm is called Banker’s algorithm because

it is a process which bankers could use to ensure that when

they lend out resources they will still be able to satisfy all their

customers. A banker won't loan out a little money to start

building a house unless they are assured that they will later be

able to loan out the rest of the money to finish the house [3].

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 8 45 – 49

46
IJRITCC | August 2017, Available @ http://www.ijritcc.org

When a process starts its execution, it must state in advance

the maximum allocation of resources it may request, up to the

amount available in the system.

When a request is made, the scheduler computes whether

approving the request would leave the system in a safe state. If

not, then the process should wait until the request can be

approved safely [5].

The banker's algorithm relies on several key data structures:

(where n is the number of processes and m is the number of

resource categories.)

a. Available[m] indicates how many resources are

currently available of each type.

b. Max[n] [m] indicates the maximum demand of each

process of each resource.

c. Allocation[n] [m] indicates the number of each

resource category allocated to each process.

d. Need[n] [m] indicate the remaining resources needed

of each type for each process.

Note that Need[i][j] = Max[i][j] - Allocation[i][j] for

all i, j.)

For simplification of discussions, we make the following

notations / observations:

a. One row of the Need vector, Need[i], can be treated

as a vector corresponding to the Needs of process i,

and similarly for Allocation and Max.

b. A vector X is considered to be <= a vector Y if

X[i] <= Y[i] for all i.

C. Limitations of Banker’s Algorithm

Like all the other algorithms, the Banker’s algorithm has some

limitations when implemented in practical scenario. Few

limitations are as follows:

i. It needs to know how much of each resource a

process could possibly request.

ii. In most systems, the information about resource and

processes is unavailable, which makes it impossible

to implement the Banker’s algorithm.

iii. It is unrealistic to assume that the number of

processes is static since in most systems the number

of processes varies dynamically.

iv. Moreover, the requirement that a process will

eventually release all its resources (when the process

terminates) is sufficient for the correctness of the

algorithm, however it is not sufficient for a practical

system.

v. Waiting for hours (or even days) for resources to be

released is usually not acceptable.

vi. It does not give any information when system is not

in safe state. It does not give details about the process

which was failed during the execution and also does

not give information also about the reason due to

which it was not able to give the appropriate safe

sequence.

vii. Banker’s Algorithm does not show that particular

process which needs more resources of what type. It

just shows that it is not in the safe sequence, so it is
very difficult to identify that which resource is needed

to which process so the problem of unsafe sequence

can be solved.

D. Problem Statement

One of the Major problem in Banker's Algorithm is that it does

not provide the details about the process which was failed

during the execution and also information about the reason due

to which it was not able to give the appropriate safe sequence.

Banker’s Algorithm does not show that particular process

which needs more resources of what type. It just shows that it is

not in the safe sequence, so it is very difficult to say that which

resource is needed to which process so the problem can be

solved.

The Proposed approach will give the details about all the

resources and processes that require resources in what quantity.

This approach also performs the process arrangement on the basis

of their needs that leads to solve the problem in less time.

II. LITERATURE SURVEY

In 2014, Pankaj Kawadkar, Shiv Prasad, Amiya Dhar
Dwivedi in their research "Deadlock Avoidance based on
Banker’s Algorithm for Waiting State Processes" proposed an
algorithm for deadlock avoidance used for Waiting State
processes.

They proposed that if process is going to waiting state then
the consideration of number of allocated resources and/or
number of instances as well as need of resources in order to
select a waiting process for the execution will make Banker’s
Algorithm more efficient. But they didn't give any solution
when the system is in unsafe state [2].

In 2013, Smriti Agrawal, Madhavi Devi Botlagunta and
Chennupalli Srinivasulu in their research titled ―A Total Need
based Resource Reservation Technique for Effective Resource
Management‖ and proposed an approach for Total Need Based
Resource Reservation (TNRR) that suggests reserving some
resources so as to ensure that at least one process will complete
after it [4].

The simulation results indicate that the frequency of deadlocks
has reduced by approximately 75% for higher load (above
80%) as compared to the Deadlock Recovery technique, while
for lower load it tends to be zero.

The turnaround time of the TNRR is approximately 9% better
than the existing Banker’s algorithm. But in case of insufficient
resources when there is no safe sequence is possible they didn’t
provide details for resources and processes that causes the
deadlock if executed or no safe sequence [4].

In 1999, Sheau-Dong Lang in his research titled ―An
Extended Banker’s Algorithm for Deadlock Avoidance‖
proposed an approach for safety in banker’s algorithm
assuming that the control flow of the resource-related calls of
each process forms a rooted tree, they proposed a quadratic-
time algorithm which decomposes these trees into regions and
computes the associated maximum resource claims, prior to
process execution. This information is then used at runtime to

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 8 45 – 49

47
IJRITCC | August 2017, Available @ http://www.ijritcc.org

test the system safety using the original banker’s algorithm. But
this approach was unable to recognize patterns of resource-
related calls in real-time system and the practicality was also
not proven [6].

TABLE 1

RELATED IMPROVEMENTS DONE IN BANKER’S ALGORITHM

Year Research Title

(Author/s)

Improvements in Banker’s

Algorithm

2014 Deadlock

Avoidance based on

Banker’s Algorithm

for Waiting State

Processes.

(PankajKawadkar,

Shiv Prasad, Amiya

DharDwivedi)

if process is going to waiting

state then consideration of

number of allocated

resources and instances as

need of resources in order to

select a waiting process for

the execution

2013 A Total Need based

Resource

Reservation

Technique for

Effective Resource

Management.

(Smriti Agrawal,

Madhavi Devi

Botlagunta and

ChennupalliSrinivas

ulu)

Reserving resources so as to

ensure that at least one

process will complete after

it, results indicate that the

frequency of deadlocks has

reduced.

1999 An Extended

Banker’s Algorithm

for Deadlock

Avoidance.

(Sheau-Dong Lang)

Based on control flow of the

resource-related calls

computes the associated

maximum resource claims,

prior to process execution

TABLE 2

LIMITATIONS OF RELATED WORKS

Year Research Title

(Author/s)

Limitations

2014 Deadlock

Avoidance based

on Banker’s

Algorithm for

Waiting State

Processes.

(PankajKawadkar,

Shiv Prasad,

Amiya

DharDwivedi)

This method does not give

any solution when the

system is in unsafe state.

2013 A Total Need

based Resource

Reservation

Technique for

Effective Resource

Management.

(Smriti Agrawal,

Madhavi Devi

Botlagunta and

Chennupalli

Srinivasulu)

Didn’t provide details for

resources and processes that

causes the deadlock if

executed or no safe

sequence

1999 An Extended

Banker’s

Algorithm for

Deadlock

Avoidance.

(Sheau-Dong

Lang)

Unable to recognize patterns

of resource-related calls in

real-time system and the

practicality was also not

proven.

A. Motivation

Many researchers have been done for the improvement of

Banker’s Algorithm. Most of the researchers has worked on the

limitations of waiting time and resource allocation to improve

the performance or minimizing the deadlocks. But if at the end

when system is not in safe state and traditional Banker’s

algorithm cannot be applied then what? We do not have any

information about the process or resources due to which the

system was in unsafe state. This specific problem leads us

towards this approach.

Proposed approach gives the details about all the resources and

processes that require resources in what quantity. This also

allocates the resource automatically to the stopped process for

the execution and will always give the appropriate safe

sequence for the given processes.

III. PPOPOSED APPROACH

Banker's algorithm was originally designed to check
whether the allocation of resources leave the system in safe
state or not and if it is in safe state then it gives the safe
sequence of processes and allocate the resources.

In banker's algorithm when, a new process enters the
system, it must declare the maximum number of instances of
each resource type that it may need. This number may not
exceed the total number of resources in the system.

When a user requests a set of resources, the system must
determine whether the allocation of these resources will leave
the system in a safe state. If it will, the resources are allocated;
otherwise, the process must wait until some other process
releases enough resources.

Several data structures must be maintained to implement
the banker's algorithm. These data structures encode the state of
the resource-allocation system.

A. Modified Banker’s Algorithm:

Input:

A stack of Needed Resources (Min Need will be on top

always).

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 8 45 – 49

48
IJRITCC | August 2017, Available @ http://www.ijritcc.org

N = total number of process; i = current process

Available = total number of resources which are free to use

Allocation (i) = number or resources already held by Process

(i).

Output: Safe sequence for Process Execution.

Algorithm:

1. FOR Process (i)

 WHERE i=0 to n-1

 CHECK Need (i)

2. IF Need (i)<= Available

 THEN

a. Available = Available – Need (i);

b. execute (i);

c. Available = Available + Allocation;

d. write process execute

e. go to next process

3. ELSE

 INSERT Need INTO STACK

4. END

B. Example

Example to find safe sequence for process execution with five

processes and three resources.
TABLE 3

TOTAL NUMBER OF RESOURCES

R1 R2 R3

11 5 10

TABLE 4

AVAILABLE RESOURCES:

R1 R2 R3

0 2 3

TABLE 5

PROCESS EXECUTION

Process Max

Demand

Allocation Need

R1 R2 R3 R1 R2 R3 R1 R2 R3

P0 11 3 4 3 0 2 8 3 2

P1 8 3 4 3 0 0 5 3 4

P2 1 3 5 0 1 3 1 2 2

P3 2 3 4 2 1 1 0 2 3

P4 3 3 7 3 1 1 0 2 6

Allocated

resources

11 3 7

Algorithm Working:

Step1: For Process P0 check if need is more than available

then PUSH Process P0 into STACK.

Step 2: For Process P1 check if need is more than available

then PUSH process P1 into STACK.

(Compare stacks values and arranges process in ascending

order in accordance with their need)

Step 3: For Process P2 check if need is more than available

Then PUSH Process P2 into STACK and arrange STACK.

Step 4: For Process P3 check if need is less than available

then Process is executed.

GOTO the next Process.

5 For Process p4 check if need is more than available

Then PUSH Process P4 into STACK and arrange STACK.

Process STACK Values:

P2

P4

P1

P0

Now the Process will be executed from the top of the stack.

IV. RESULTS AND ANALYSIS

Figure 2: Execution Time Vs Number of Process

The effect of the increasing number of process with fixed

number of resources over the average execution time can be

seen in the figure 2.

The average execution time increases for both the techniques

as the process increases. This is because, more process leads to

higher contention for the resources and more frequent

deadlocks.

However, the performance of the proposed is better for all

ranges because the overhead involved for resource allocation

is much lower than that of the Banker’s algorithm (BA). The

average improvement is approximately 9%.

V. CONCLUSION AND FUTURE SCOPE

A. Conclusion

This research shows the Banker’s Algorithm working,
problem in original algorithm to identify the reason for failing

0

200

400

600

800

1000

1200

1400

3 6 9 12

Modified
Banker's

Banker's
Algorithm

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 8 45 – 49

49
IJRITCC | August 2017, Available @ http://www.ijritcc.org

the process execution. Here Dynamic Banker’s algorithm
solves the existing problem of the original Banker’s algorithm.

Results prove that modified Banker’s Algorithm shows that
particular process which needs more resources of what type. It
also shows that it is in the safe sequence or not, so it is very
easy to add which resource is needed to the process so the
problem can be solved by this approach.

B. Future Scope

The present and future of this area is bright, and full of
opportunities and great challenges as it processes high
demands.

In future it can be used for the auto added process and killing
the undesired process.

REFERENCES

[1] Goswami, Vaisla and Ajit Singh, ―VGS Algorithm: An

Efficient Deadlock Prevention Mechanism for Distributed

Transactions using Pipeline Method‖ International Journal of

Computer Applications (0975 – 8887) Volume 46–No.22, May

2012.

[2] Pankaj Kawadkar, Shiv Prasad, Amiya Dhar Dwivedi,

Deadlock Avoidance based on Banker’s Algorithm for Waiting

State Processes, International Journal of Innovative Science

and Modern Engineering, Volume-2 Issue-12, November 2014

[3] N. Ramasubramanian, Srinivas V.V., Chaitanya V, ―Studies on

Performance Aspects of Scheduling Algorithms on Multicore

Platforms,‖ International Journal of Advanced Research in

Computer Science and Software Engineering, Vol 2, Issue 2,

February 2012.

[4] Smriti Agrawal, Madhavi Devi Botlagunta and Chennupalli

Srinivasulu; A Total Need based Resource Reservation

Technique for Effective Resource Management",

International Journal of Computer Applications (0975 – 8887),

Volume 68– No.18, April 2013

[5] B Madhavi Devi, Smriti Agrawal, Ch. Srinivasulu, ―An

Efficient Resource Allocation Technique for Uni-Processor

System‖ International Journal of Advances in Engineering &

Technology (IJAET) Volume 6 Issue 1, March 1, 2013.

[6] Sheau-Dong Lang, An Extended Banker’s Algorithm for

Deadlock Avoidance, IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. 25, NO. 3, MAY/JUNE

1999

[7] H. S. Behera, Ratikanta Pattanayak, Priyabrata Mallick, ―An

Improved Fuzzy-Based CPU Scheduling (IFCS) Algorithm for

Real Time Systems,‖ International Journal of Soft Computing

and Engineering (IJSCE) (2231-2307), Volume-2, Issue-1,

March 2012.

[8] Saroj Hiranwal, Dr. K.C.Roy, ―Adaptive Round Robin

Scheduling using Shortest Burst Approach Based on Smart

Time Slice,‖ International Journal of Data Engineering (IJDE),

Volume 2, Issue 3 2012.

[9] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating

Systems Concepts, 6th edition, Addison-Wesley, Reading,

Mass, pp. 204, 243, 244, 266, 2002.

[10] G. Nutt, Operating Systems, a Modern Perspective, 2nd

edition, Addison-Wesley, Reading, Mass, Pages.150-279,

2000.

http://www.ijritcc.org/

