
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 8 31 – 40

__

31
IJRITCC | August 2017, Available @ http://www.ijritcc.org

Identification, Analysis & Empirical Validation (IAV) of Object Oriented Design (OO)

Metrics as Quality Indicators

Dr. Brajesh Kochar
1

Shailendra Singh Gaur
2

Dinesh Kumar Bhardwaj
3

1
Department of C.S.E.,Bhagwan Parshuram Institute of Technology, G.G.S.I.P.U.,Delhi, India
2
 Department of I.T.,Bhagwan Parshuram Institute of Technology, G.G.S.I.P.U.,Delhi, India

3
 Department of C.S.E.,Bhagwan Parshuram Institute of Technology, G.G.S.I.P.U.,Delhi, India

Abstract : Metrics and Measure are closely inter-related to each other. Measure is defined as way of defining amount, dimension, capacity or

size of some attribute of a product in quantitative manner while Metric is unit used for measuring attribute. Software quality is one of the major

concerns that need to be addressed and measured. Object oriented (OO) systems require effective metrics to assess quality of software. The

paper is designed to identify attributes and measures that can help in determining and affecting quality attributes.

The paper conducts empirical study by taking public dataset KC1 from NASA project database. It is validated by applying statistical techniques

like correlation analysis and regression analysis. After analysis of data, it is found that metrics SLOC, RFC, WMC and CBO are significant and

treated as quality indicators while metrics DIT and NOC are not significant. The results produced from them throws significant impact on

improving software quality.

Keywords:- CK object oriented (OO) design metrics , Software quality, C++, Internal and External attributes.

__*****___

1. INTRODUCTION

The metrics used in software engineering are being used by

every industry to enhance, develop and maintain given

software. Software metrics are magnanimous in number and

are dependent on type of software attributes that user wants

to estimate. There are mainly two categories of software

metrics viz process metrics and product metrics. Process

metrics deals with how much effort is required (Person-

Months), quantity of resources and methodology involved in

it. Product metrics deals with specifications of project like

requirements, complexity, cohesion, coupling, reliability and

maintenance. Software product involves finding number of

lines of code (LOC), complexity of code and test cases

generated during testing process.

It is not feasible to design full fault prone system due to

changing business requirements and complexity of software.

A magnanimous amount of research is being done by

researchers to improve software quality by innovating novel

techniques. Object oriented (OO) metrics are commonly

used for quality estimation. As the name suggests, OO

metrics are related to measurement of design characteristics

like encapsulation, inheritance, information hiding and

message passing. Software quality is measured in terms of

metrics. It is measured value that is assigned to product for

measuring its quality. So, it can be said that it is possible to

predict software processes by relying on software metrics.

Software metrics acts as crucial source of information for

decision making [22]. Testing and validation of all parts of

software is time consuming and cost effective. So, it is

essential to identify attributes that can predict fault

proneness and acts as measurable quality attributes. It

requires proper selection of product design metrics.

The objective of study defines exploring various metrics and

validating them by taking public KC1 dataset under NASA

project database. The remainder of paper is organized as

follows: Section 2 makes readers aware with the

methodology involved in study. Section 3 deals with some

terminologies and background of conducted studies by

various researchers. Section 4 conducts empirical study by

collecting, processing and analyzing data using various

statistical techniques. Section 5 provides answers to research

questions. Section 6 concludes the given paper.

2. METHODOLOGY

It is inevitable that research elements are not limited to

review literature on the analysis of metrics and measures of

quality factors being studied under Kitchenham and Charters

[1] unified approach.

Methodology covers following points:

 To explore various studies conducted by

researchers in context of OO metrics and software

quality.

 To make users aware of software related

terminologies by providing suitable examples.

 To identify OO metrics that can act as quality

indicators by predicting fault prone classes.

 To validate metrics by taking some dataset and

evaluate them through statistical techniques.

2.1 Research Questions that needs to be answered at the

end of study.

RQ1. How to estimate effort using Lines of Code (LOC)

measure?

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 8 31 – 40

__

32
IJRITCC | August 2017, Available @ http://www.ijritcc.org

RQ2: How to measure % error in length of program and

estimated program level if operands and operators are

given? Does error in length affects quality of software?

3. STATE OF ART & TERMINOLOGY

3.1 State of Art

A continuous efforts and studies have been conducted in

finding and measuring metrics for Object oriented design

(OO) systems. The external metrics deal with features like

portability, reliability, usability etc while internal factors

deal with factors that lead to internal movement of software

modules. They are cohesion and coupling.

Anna et. Al proposed framework for measuring reusability

by refining CK metrics [4,5]. Zhao and Xu [6, 7] defined

cohesion and coupling metrics that works on dependency

graphs between software modules and dependencies.

Coupling is implemented with the help of Aspect J. The

coupling measures are identified by dependencies between

aspects and classes only. Kumar et. al [8] designed

framework for measuring complexity of software but model

failed to measure interaction among various components of

software.

Several OO metrics have been proposed in order to predict

software quality with the help of classification and

prediction models. It is important to know the metrics that

needs to be measured like effort, productivity, fault

tolerance etc. Use of OO methodology is widespread in all

applications that need development of software. Previous

research studies are being referenced that tells about

empirical validation of various product metrics like NOC,

LCOM, McCabe metric [23] [24], [25]. Li and Henry [12]

have proposed prediction model consisting of ten OO

metrics using statistical analysis technique in order to derive

relationship between maintenance and metrics. Khoshgaftar

et .al [13] used NN to estimate software quality. They

compared parametric model and ANN model to estimate

accuracy. Giovani [14] maintains relationship between static

metrics and software fault proneness by computing static

metrics (Cyclomatic complexity) and dynamic metrics

(dataflow coverage). Emam et. al [15] devised model to

predict faulty classes in java application. K, Rakesh., Kaur,

Gurvinder 2011 [16] studied on Comparing Complexity in

Accordance with Object Oriented Metrics. The study

highlighted the object-oriented software metrics proposed in

90s‟ by Chidamber, Kemerer and several studies were

conducted to validate the metrics and discovered several

deficiencies. Gyimothy, T., Ferenc, R., & Siket, I. 2005

[17] conducted a study on Empirical Validation of Object-

Oriented Metrics on Open Source Software for Fault

Prediction. The study is based on source code of the well-

known open source Web and e-mail suite called Mozilla.

The study also used these modified metrics and added one

more object-oriented metric i.e. Lack of cohesion on

methods (LCOM) and the well-known lines of code metric

(LOC). The study used logistic regression and machine

learning methods to predict the fault proneness of the code.

Few software organizations like TRW [26] and SEI [27]

have designed their own product metrics to build cost and

fault prone models.

3.2 Terminology

Before going to literature study, it is mandatory to make

users aware of some software related terminologies.

Software Complexity: - According to Basili [2], complexity

is defined as measure of resources needed by system while

performing given task. Complexity has no units as it is

measured as function of time and space. It is measured on

basis of number of inputs. There is quite difference between

terms complicated and complex. Complicated means the

solution is not known presently but it has possibility to get

solved later. Complex specifies interactions between

software modules are difficult to understand.

Entity and Attributes:-

Measurement is done on entities and attributed. Entity is

defined as an object, event or action over specific time. An

attribute is characteristic of an entity like size of program.

Both entities and attributes are dependent on each other i.e.

saying only measure a program is vague sentence because

its attribute is not specified. “Measure size of program” is

valid sentence holding both entity and attribute.

Table 1: Types of Attributes

Internal Attributes External Attributes

1. These attributes depend only on entity. 1. They depend both on entity as well as

context of entity.

2. It is easy to measure.

Examples: Size, cost, effort etc.

2. It is difficult to measure because it requires

several other factors and parameters to be

tested under consideration.

Examples: Maintenance, reliability etc.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 8 31 – 40

__

33
IJRITCC | August 2017, Available @ http://www.ijritcc.org

Table 2: Definition of External Attributes

Attributes Definition

1. Effectiveness & Extendibility Allows adaptive changes in system design as

per user requirements. It covers inheritance

metric.

2. Functionality & Reusability Allows redefining existing component in

software system and reusing it in order to

achieve higher outcome. It relates to

complexity metric.

3. Understandability Measures the degree of complexity and level

of programmer to understand design of

software. It relates to coupling and cohesion

metric.

Types of Measures

Measures depend on size of program, structure and nature of

modules. Few measures that are commonly used in software

industry:

(a) Lines of Code (LOC):- It is simplest and well understood

measure that is used for prediction of effort and fault

proneness. LOC helps in finding number of executable lines

in given code.

(b) Halstead Software:- It is used to identify basic elements

of program and measures them to predict their attributes. It

states that program is combination of operators and

operands.

(c) Cyclomatic Complexity:- It measures complexity of

given code from control flow graph. It counts base paths that

start from one point and end till the program is finished.

This approach is used to find number of independent paths

through a program. An independent path is any path through

the program that contains at least one new condition. The

calculation of paths is given by Mc Cabe‟s Cyclomatic

Metric [3] by using formula:

V (g) = e-n+2p (Equation 1)

Where v= vertices of graph, e = edges, n = number of nodes

in graph and p= connected components.

Fig 1: Flow Graph

Each node in a graph represent block of code in a program

and arcs represent branches in program. In flow graph, the

flow is sequential and it is based on assumption that each

node can be reached by starting node and ending node.

From above graph, the value of Cyclomatic complexity is

given as:

V (G) = 9 – 6 + 2 = 5 where e=9, n=6 and p=1

There are 5 independent paths in flow graph as:

Path 1 : acf

Path 2: abef

Path 3: adcf

Path 4: abeacf

Path 5: abebef

There are other two methods for calculating complexity as

follows:

(1) It is equal to number of predicate (decision) nodes plus

one V (G) = P + 1 where P = predicate nodes in graph.

(2) It is equal to number of regions of flow graph.

Object Oriented (OO) Metrics

(a) CK Metrics

The word CK stands for Chidamber and Kemerer [21].

They are of six types:

(1) Depth of Inheritance Tree (DIT):- This metric is defined

as length of root to the deepest leaf node in tree. In this

metric, the class becomes more complex on going from top

to bottom. Depth of tree is also called as height of tree.

(2) Number of Children (NOC):- This metric calculates

number of classes in inheritance tree down from class. It

relates to reusability attribute that gets affected. If NOC

increases, then amount of effort required in testing also

increases.

(3) Coupling between objects (CBO):- It relates the number

of other modules that are coupled to the current module

either as a client or supplier. Increase in CBO will decrease

the usability. It is used to measure complexity, reusability

and quality.

(4) Response for a class (RFC):- It defines number of

methods that are executed in context of messages received

by objects of class and that methods are called as local

methods. Greater number of methods more will be

complexity of class.

 a

 e

 c
 b

 d

 f

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 8 31 – 40

__

34
IJRITCC | August 2017, Available @ http://www.ijritcc.org

(5) Lack of Cohesion on Methods (LCOM):- LCOM is the

difference between the number of methods whose similarity

is zero and the methods whose similarity is not zero. It is not

a good metric of quality.

(6) Weighted Methods per Class (WMC): - WMC is the

number of all member functions and operators defined in

each class. It is used to measure the understandability,

reusability, maintainability and complexity and quality.

(b) MOOD Metrics

Srinivasan et.al [9] defined object oriented design metrics

commonly known as MOOD metrics. MOOD deals with

structural phases like polymorphism, inheritance, cohesion

and coupling. They are defined as below:

(1) Method Inheritance Factor (MIF):- This metric is

defined as ratio of number of inherited methods (NIM) to

the sum of number of inherited methods and number of

defined methods (NDM) in the class.

Mathematically,

MIF = NIM / NIM + NDM (Eq. 2)

(2) Attribute Inheritance Factor (AIF):- This metric is

similar to MIF except the methods are replaced by

attributes. It is defined as ratio of number of inherited

attributes (NIA) to the sum of number of inherited attributes

and number of defined attributes (NDA) in the class.

Mathematically,

AIF = NIA / NIA + NDA (Eq. 3)

(3) Polymorphism Factor (PF):- This metric is defined as

ratio of number of overriding methods to total possible

number of overridden methods in given class. Its value

ranges from (0 – 100) %.

(4) Coupling factor (CF):- Coupling means inter-relatedness

among modules. This metric is defined as ratio of number of

possible couplings (NPC) of given class with other classes

to the number of actual classes (NAC) minus 1.

Mathematically,

CF = NPC / (NAC -1)

Table 3: Quality factors belonging to various metrics and

measures

4. EMPIRICAL STUDY

4.1. Constituents of empirical study

The first step is to select dependent and independent

variables that needs to be measures and validated using OO

metrics. Prediction of fault prone classes in system can be

treated as good indicator to tell about quality of software.

So, it is treated as dependent variable of our study. The

relationship between CK OO design metrics and this

dependent variable is also being presented in paper.

Now, its turn to measure size of classes involved in project.

It is known that various metrics like LOC, FPA are language

dependent [28, 29]. So, we have used concepts of C++

programming language among these metrics. They are

defined as follows:

 Table 4: Definitions of OO metrics in context of C++

CK OO design metrics Definition in context of C++

WMC (Weighted methods per class) Number of member functions and operators defined in each class. It is

invalid if we take member functions and operators inherited from super

class.

DIT (Depth of Inheritance Tree) Classes are organized into directed acyclic graphs (DAG) instead of trees

because C++ allows multiple inheritances. It is inheritance related OO

metric.

NOC (Number of children) Number of direct children of each class. It is inheritance related OO

metric.

CBO (Coupling between objects) If a class uses member functions of other class, it is said to be coupled.

RFC (Response for Class) Number of C++ functions directly called by member functions or

operators of given class.

LCOM (Lack of Cohesion on Methods) It is given as member functions (x,y) without variables – member

functions (x,y) with variables.

4.2. Hypothesis

It is performed in order to validate and maintain relationship

with OO metrics and fault proneness dependent variable.

The results later on are used to describe above metrics as

quality indicators. For each metric, hypothesis is given

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 8 31 – 40

__

35
IJRITCC | August 2017, Available @ http://www.ijritcc.org

below that is validated by taking public data set in further

section.

HWMC- A class with more member functions is more

complex and thus more fault prone.

HDIT- The class located in deepest level hierarchy is treated

as more fault prone.

HCBO- Highly coupled classes are more fault prone

because they depend more on methods and objects of other

class.

HNOC- Classes with large number of children are more

faults prone and requires more testing.

HRFC- Classes having larger response sets in response to

member functions are likely to more fault prone.

HLCOM- Classes that binds member functions and

variables are more likely to fault prone i.e. low cohesion.

4.3. Data Collection

The following components that need to be collected are:

 LOC of C++ programs at end of implementation

phase related to developed project

 Data about C++ programs

 List of erroneous data found in testing phase

 Replaced source code of C++ programs at

maintenance phase.

Source of data:

The study involves usage of public dataset KC1 from NASA

IV and V Facility Metrics Data Program Repository (MDP)

[30]. The dataset consists of 43 KSLOC of C++ code with

145 classes and 2107 instances.

Data processing:

Empirical analysis of OOCK metrics and code metric

(SLOC) has been done in order to predict number of faults

associated with different severity levels by making use of

public data set KC1 (NASA program metric data program

database). The dataset contains faulty data at method level

(faulty classes according to severity level) while metric

information is at class level.

Different severity levels represent impacts of faults on

performance of system. In KC1 NASA dataset, severity of

faults decreases from 1
st
 to 5

th
 level. But for simplicity,

faults that have similar impacts on system can be treated as

single fault. According to [31], fault data is categorized into

three levels-high (severity 1), medium (severity 2) and low

(severity 3,4,5).

Table 5: Distribution of classes among three severity levels

[31]

Level No. of

 faulty

classes

% of

faulty

classes

No. of

 faults

% of faults

High 24 16.55 49 7.63

Medium 58 40 449 69.94

Low 38 26.20 144 22.43

The intention of this study is to compare and validate effect

of OO metrics on quality of software.

4.4. Data Analysis

This section presents statistical analysis of six OO metrics

and 1 code metric (SLOC) using descriptive method,

correlation analysis and regression analysis.

(a) Descriptive Analysis

It includes different categories of values for all seven

metrics namely Minimum (Min), Maximum (Max), Mean,

Mode, Standard Deviation (SD) and Median.

Below table shows statistics of 145 classes from KC1

dataset.

Table 6: Descriptive statistics of 145 studied C++ classes of

KC1 [32]

Metric

s

Mi

n

Ma

x

Mea

n

Mod

e

S.D. Media

n

WMC 0 110 17.42 8 17.4

5

12

RFC 0 222 34.38 7 36.2

0

28

CBO 0 24 8.32 0 6.34 8

DIT 1 7 2 1 1.26 2

NOC 0 5 0.20 0 0.70 0

LCOM 0 100 68.71 1 36.8

9

84

SLOC 0 231

3

211.1 0 345.

6

108

In above table, high mean value of LCOM indicates classes

are less cohesive.

0

500

1000

1 2 3 4 5 6

WMC distribution

RFC No. of faulty classes % of faulty classes No. of faults % of faults

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 8 31 – 40

__

36
IJRITCC | August 2017, Available @ http://www.ijritcc.org

Fig 2: WMC metric distribution among faulty classes

Fig 3: Combined distribution results of all metrics

From above graph, DIT, NIC metrics states that inheritance

is not well properly suited to KC1 project. SLOC shows

classes are larger in size. Values of DIT, NOC are very low

so it is not observable in various classes of KC1 dataset.

Rest of features like abstraction, encapsulation, and

complexity are observable.

(b) Correlation Analysis

This technique is used to find dependency among dependent

and independent variables. Metrics are taken as independent

while fault prone is dependent. The formula is given by

Spearman‟s rank function:

ρ=1-6∑di
2
 /n (n

2
-1) [33]

Where di=xi-yi, n is sample size of project

Table 7: Correlation results after Spearman‟s rank

Metric WMC RFC CBO DIT NOC LCOM SLOC

WMC 1

RFC 0.528 1

CBO 0.234 0.379 1

DIT 0.134 0.654 0.460 1

NOC 0.026 0.015 --0.001 --0.0.32 1

LCOM 0.218 0.30 0.217 0.217 --0.28 1

SLOC 0.625 0.509 0.572 0.345 --0.034 0.217 1

Categorization of correlation values according to Hopkins

[34] is shown in table

Table 8: Category wise distribution of values

Range of values category

<0.1 Trivial

0.1-0.3 minor

0.3-0.5 moderate

0.5-0.7 large

0.7-0.9 very large

0.9-1.0 perfect

From table 7, it is seen that SLOC, CBO, WMC and RFC

are strongly connected with each other. So, these metrics are

not independent and they lead to redundancy.

(c) Logistic Regression Analysis

It is most widely statistical technique for predicting faulty

classes in system. It is of two types- univariate and

multivariate.

Univariate logistic regression- It is used to analyze

individual effect of each independent variables and

dependent variables. It is given by equation:

P(X1, X2,…. ,Xn)= e
(A0+A1X

)/ 1+e
(A0+A1X)

 [33]

Where P is probability that fault was found in system and

series of A are regression coefficients.

Multivariate logistic regression- It is used to find combined

effect of both variables.

P(X1,X2,…., Xn)=e
(A0+A1X1+….+AnXn

)/1+e
(A0+A1X1+….+AnXn)

[33]

The detail of regression model includes coefficient (coeff),

constant, pvalue(statistical effect), R
2
 value (coefficient of

determination) and std err for estimation.

0

500

1000

1500

2000

2500

SLOC RFC CBO DIT NOC LCOM WMC No. of
faulty
classes

% of
faulty
classes

No. of
faults

% of
faults

Series1

Series2

Series3

Series4

Series5

Series6

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 8 31 – 40

__

37
IJRITCC | August 2017, Available @ http://www.ijritcc.org

Table 9: Univariate regression analysis for severity fault as high

 WMC RFC CBO DIT NOC LCOM SLOC

Coeff 0.12 0.0004 0.016 0.010 --0.39 0.002 0.001

Constant 0.085 0.118 --0.13 0.301 0.371 0.105 0.101

R
2
 0.61 0.051 0.117 0.0 0.02 0.012 0.131

p value 0.001 0.002 0.0 0.694 0.117 0.121 0

std err 0.87 0.98 0.95 1.01 1 1.004 0.93

From above table, four metrics SLOC, CBO, RFC and WMC have less p values thus they are significant. SLOC has maximum R
2

value and NOC has negative coefficient which means large number of children leads to less faults. DIT, NOC, LCOM is non

significant metrics.

Table 10: Univariate regression analysis for severity fault as medium

 WMC RFC CBO DIT NOC LCOM SLOC

Coeff 0.200 0.051 0.412 0.116 --1.11 0.013 0.16

Constant --0.500 1.140 --0.290 2.71 2.91 1.190 0.17

R
2
 0.116 0.071 0.112 0.0 0.09 0.012 0.391

p value 0 0.02 0.0 0.82 0.193 0.14 0

std err 5.91 7.62 7.12 6.91 7.81 7.82 06.87

Table 11: Univariate regression analysis for severity fault as low

 WMC RFC CBO DIT NOC LCOM SLOC

Coeff 0.031 0.032 0.13 0.16 --0.17 0.005 0.004

Constant 0.210 0.510 --0.18 0.65 1.1 0.512 0.100

R
2
 0.110 0.031 0.147 0.007 0.002 0.008 0.421

p value 0 0.012 0.0 0.2 0.5 0.34 0

std err 2.14 2.18 1.98 2.27 2.17 2.27 1.95

The results show that overall four metrics (SLOC, RFC, CBO and WMC) are significant.

Table 12: Multivariate regression analysis for severity fault as high

 WMC RFC CBO DIT SLOC

Coeff --0.007 0.001 0.021 --0.32 0.001

std err 0.007 0.04 0.12 0.07 0.0

p value 0.201 0.16 0.12 0.001 0.07

From above table, WMC, DIT are negative here that are positive in univariate analysis. It occurs due to interaction between

various metrics included in regression model.

Table 13: Multivariate regression analysis for severity fault as medium

 NOC DIT SLOC

Coeff --0.9 --1.40 0.12

std err 0.59 0.41 0.01

p value 0.15 0.41 0.0

NOC is still negative but DIT is also negative here that leads them as non quality indicators.

5. ANSWERING RESEARCH QUESTIONS

RQ1. How to estimate effort using Lines of Code (LOC) measure?

Boehm devised a formula for estimating maintenance costs and uses a quantity called as Annual Change Traffic (ACT) which is

related to number of times the requests are handled to perform changes in software.

It is given as:

ACT = KLOCadd + KLOCdel / KLOCtot

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 8 31 – 40

__

38
IJRITCC | August 2017, Available @ http://www.ijritcc.org

Then Annual Maintenance Effort is being computed on basis of ACT as:

AME (person –months) = ACT * SDE

where SDE is software development effort (person-months)

Justification of above formula:

It is given that ACT in software system is 25% per year. The initial development cost was Rs 20 lacs. Total lifetime for the

software is 10 years. What is total cost of software system?

Total cost= software development cost + 0.10 * (software development cost * 0.25)

 = 20 + 0.10 (20 * 0.25)

 = 20.5 lacs

RQ2. How to measure % error in length of program and estimated program level if operands and operators are given? Does error

in length affects quality of software?

The table consisting of operands and operators are given below:

Operators Occurrences Operands occurrences

main () 1 - -

; 1 extern variable 1

for 2 main function 3

== 3 found 2

!= 4 lim 3

getchar 1 -

() 1 -

&& 3 e 4

return 1 t 2

++ 4 i 1

printf 6 -

if 1 k 3

getline 1 0 4

while 3 MAXLINE 2

Total (n1 = 14) Total (N1= 32) Total (n2=10) total (N2= 25)

Program vocabulary is given by n (n1 +n2) = 24

Program length N = N1+N2 = 57

Estimated Length = NL = n1 log n1 + n2 log n2

 = 14 log 14 + 10 log 10

 = 25.4

% error = (57 -25.4) / 57 = 0.55 * 100 = 55%

Yes error in length affects the quality of software as less

error means there is less improvement of making changes in

software design.

6. CONCLUSIONS & FUTURE WORKS

Software developers and researchers have acknowledged

that software quality prediction plays vital role in Object

oriented design metrics. Metrics play an important role in

software engineering. There are mainly two categories of

software metrics viz process metrics and product metrics.

Process metrics deals with how much effort is required

(Person-Months), quantity of resources and methodology

involved in it. Product metrics deals with specifications of

project like requirements, complexity, cohesion, coupling,

reliability and maintenance. Categorization of faults on basis

of their severity can be helpful in performing validation of

OO design metrics to predict number of faults in system.

The paper validates the CK OO design metrics by

employing statistical methods like correlation, regression

(univariate, multivariate) under study from KC1 dataset by

NASA MDP.

After applying statistical techniques, it is observed that

metrics SLOC, WMC, RFC and CBO are significant and

related to each other in low, medium and high severity

levels. DIT and NOC are non significant metrics due to their

inheritance concept and low p values. The SLOC metric is

most significant that is termed as quality attribute. The study

also concludes that metrics (SLOC, CBO, WMC, RFC)

measuring class size, complexity, cohesion, coupling are

linked more tightly rather than inheritance metrics (DIT,

NOC).

Future Works

As future work, this study can be replicated by taking

industrial project database in C++, Ada95 and Java. We can

extend this empirical investigation to some soft computing

methods like applying machine learning techniques (neuro

fuzzy, neural networks) in order to produce more refined

results. It will lead to better understanding of prediction

capabilities of suite of CK OO metrics. The best subsets of

classes in multivariate regression model can be used to

produce more significant values of metrics. It is called

introducing Mallow CP in multivariate analysis.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 8 31 – 40

__

39
IJRITCC | August 2017, Available @ http://www.ijritcc.org

REFERENCES

[1] B. Kitchenham and S. Charters, “Guidelines for

performing systematic literature reviews in

software engineering ”(version 2.3),Keele

University, UK, Tech. Rep. EBSE Technical

Report EBSE-2007-01, 2007

[2] Basili, V., Briand, L., & Melo, W. A Validation of

Object-Oriented Design Metrics as Quality

Indicators. IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. 22, NO. 10,

OCTOBER 1996

[3] Puja Sexsena, Monika Saini ,” Empirical studies to

predict fault proneness: a Review, Interntional

journal of computer application (0975-8887)

Volume 22- No 8 may 2011

[4] Sant'Anna, C., Garcia, A., Chavez, C., Lucena, C.,

and Staa, A.V., On the Reuse and Maintenance of

Aspect-Oriented software: An Assessment

Framework, Proceedings of Brazilian Symposium

On Software Engineering (SEES‟03), pp. 19-34,

2003.

[5] Chidamber, S. R. and Kemerer, C. F., A Metrics

Suite for Object-Oriented Design, IEEE

Transactions on Software Engineering, vol. 20 no.

6, pp. 476–493, 1994

[6] Zhao, J. and Xu, B., Measuring aspect cohesion,

Proceedings of 7
th

 International Conference on

Fundamental Approaches to Software Engineering

(FASE‟04), Lecture Notes in Computer Science,

Volume 2984, Springer-Verlag, pp. 54–68, 2004.

[7] Zhao, J., Measuring coupling in aspect-oriented

systems”, Technical report, Information Processing

Society of Japan (IPSJ), 2004.

[8] Kumar, R., Grover, P.S., and Kumar, A., A Fuzzy

Logic Approach to Measure Complexity of Generic

Aspect-Oriented Systems, Journal of Object

Technology, Vol. 9, No. 3, 2010.

[9] K.P. Srinivasan, Dr. T.Devi, “A Complete and

Comprehensive Metrics Suite for Object-Oriented

Design Quality Assessment”, International Journal

of Software Engineering and Its Applications 8(2),

2014, 173-188.

[10] Vanitha N, “A Report on the Analysis of Metrics

and Measures on Software Quality Factors – A

Literature Study”, IJCSIT, Vol. 5, 2014

[11] Mukesh Bansal, Dr. C.P. Agarwal, Dr. P. Sasikala,

2012, “Predict Software Fault Proneness Using

Object Oriented Metrics”, international journal of

computing, intelligent an communication

technology, ISSN 2319-748X

[12] W. Li and S. Henry, ―Object-Oriented Metrics

that Predict Maintainability‖, Journal of Systems

and Software, vol 23, no.2, pp.111-122, 1993.

[13] T.M. Khoshgaftaar, E.D. Allen, J.P. Hudepohl and

S.J. Aud "Application of neural networks to

software quality modeling of a very large

telecommunications system," IEEE Transactions on

Neural Networks, Vol. 8, No. 4, pp. 902--909,

1997.

[14] Giovanni (2000), ‖Estimating Software Fault-

Proneness for Tuning Testing Activities‖

Proceedings of the 22nd International Conference

on Software Engineering (ICSE2000), Limerick,

Ireland, Jun.2000

[15] E.L. Emam, W. Melo and C.M. Javam ―The

Prediction of Faulty Classes Using Object-Oriented

Design Metrics‖, Journal of Systems and Software,

Elsevier Science, pp. 63-75, 2001

[16] Dr. Rakesh Kumar and Gurvinder

Kaur,”Comparing Complexity in Accordance with

Object Oriented Metrics. International Journal of

Computer Applications”, Published by Foundation

of Computer Science. BibTeX 15(8):42–45,

February 2011

[17] Gyimothy, T., Ferenc, R., & Siket, I.Empirical

Validation of Object-Oriented Metrics on Open

Source Software for Fault Prediction. IEEE

TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 31, NO. 10, OCTOBER

2005

[18] Rohitt Sharma, Paramjit Singh, Sumit Sharma, “An

Approach Oriented Towards Enhancing a Metric

Performance”, International Journal On Computer

Science And Engineering (IJCSE), 4(5), 2012, 743-

748

[19] Sonia Montagud, Silvia Abrahao, Emilio Insfran,

“A systematic review of quality attributes and

measures for software product line”, Software

Quality Journal, 20(3-4), 2012, 425-486.

[20] Sharma Aman Kumar , Kalia Arvind , Singh

Hardeep,” Metrics Identification for Measuring

Object Oriented Software Quality”, International

Journal of Soft Computing and Engineering

(IJSCE) ISSN: 2231-2307, Volume-2, Issue-5,

November 2012.

[21] Chidamber, Shyam R., and Chris F. Kemerer. "A

metrics suite for object oriented design." Software

Engineering, IEEE Transactions on 20.6 (1994):

476-49

[22] W. Harrison, ”Software Measurement: A Decision-

Process Approach,” Advances in Computers, vol.

39, pp. 51-105,1994

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 8 31 – 40

__

40
IJRITCC | August 2017, Available @ http://www.ijritcc.org

[23] V Basili and D Hutchens, ”Analyzing a Syntactic

Family of Complexity Metrics,” IEEE Trans.

Software Eng, vol 9, no. 6, pp. 664-673, June 1982

[24] V. Basili, R. Selby, and T.-Y. Phdips, ”Metric

Analysis and Data Validation Across Fortran

Projects,” IEEE Trans Software Eng, vol.9, no. 6,

pp 652-663, June 1993

[25] S.D. Conte, H.E. Dunsmore, and V.Y. Shen,

Software Eng. Metrics and Models,

Benjamin/Cummings, 1989.

[26] B. Boehm, Softzkre Eng. Economics, Prentice-Hall,

1981

[27] F. McGarry, R. Pajersk, G. Page, S. Waligora, V.

Basili, and M. Zelkowitz, Software Process

Improvement in the NASA Software Eng.

Laboratory. Camegie Mellon Univ., Software Eng.

Inst., Technical Report CMU/SEI-95-TR-22, Dec.

1994

[28] N.I. Churcher and M.J. Shepperd, ”Comments on

„A Metrics Suite for Object-Oriented Design,”‟

IEEE Trans. Software Eng., vol. 21, no. 3, pp. 263-

265, Mar. 1995

[29] Chidamber, S.R. and C.F. Kemerer, 1994. A

metrics suite for object-oriented design. IEEE

Trans. Software Eng., 20: 476-493. DOI:

10.1109/32.295895.

[30] Sayyad Shirabad, J. and Menzies, T.J. (2005) The

PROMISE Repository of Software Engineering

Databases., School of Information Technology and

Engineering, University of Ottawa, Canada.

Available:

http://promise.site.uottawa.ca/SERepository

[31] Yogesh Singh, Arvinder Kaur & Malhotra,

Ruchika (2010). Empirical validation of object-

oriented metrics for predicting fault proneness

models. Software Quality Journal, 18(1), 3-35.

[32] http://promise.site.uottawa.ca/SERepository/dataset

s/kc1.arff

[33] Akhilendra Singh Chouhan, Sanjay Kumar Dubey.

Analytical Review of Fault Proneness for Object

Oriented Systems. IJSER, ISSN 2229-5518, vol.3,

Issue 12, Dec 2012

[34] Hopkin, W.G. (2006). A new view of statistics,

Sport science, MDP. Available online

http://sarpresults.nasagov/viewresearch

[35] R. Subramanayam and M. Krishanan, “Empirical

Analysis of CK Metrics for Object Oriented Design

Complexity: Implications for Software Defects.”

IEEE Transactions on Software Engineering,

29(4):297-310, 2003.

http://www.ijritcc.org/
http://promise.site.uottawa.ca/SERepository
http://promise.site.uottawa.ca/SERepository/datasets/kc1.arff
http://promise.site.uottawa.ca/SERepository/datasets/kc1.arff
http://sarpresults.nasagov/viewresearch

