
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 816 – 818

816

IJRITCC | July 2017, Available @ http://www.ijritcc.org

Implementing Sequential Prefixspan Algorithm by Using Static Load Balancing

1
Kokkonda Spandana

2
Mr. N Naveen Kumar

1
M.Tech, CSE Department, JNTUH School Of Information Technology, Village Kukatpally, Mandal Balanagar, Dist Medchal,

Telangana, India.

2Assistant Professor, Cse Department, JNTUH School Of Information Technology, Village Kukatpally, Mandal Balanagar, Dist

Medchal, Telangana, India.

Abstract: Repeated series mining is well known and well studied trouble in information mining. The productivity of the formula is used in

several alternative regions like chemistry, bioinformatics, and market basket analysis. A completely unique parallel algorithmic rule for mining

of frequent sequences supported a static load-balancing is planned. The static load balancing is done by measure the machine time using a

probabilistic algorithm. For cheap size of instance, the algorithms deliver the good speedups. The conferred approach is extremely universal: it is

often used for static load-balancing of alternative pattern mining algorithms like item set/tree/graph mining algorithms.

__*****__

1. INTRODUCTION

Incessant example mining is an important data mining

strategy with a large assortment of mined examples. The

mined incessant examples are sets of things (item sets),

successions, charts, trees, and so on. Regular grouping

mining was at the start represented. The GSP calculation

introduced within the initial to tackle the problem of normal

grouping mining. Because the continuous arrangement

mining is an augmentation of item set mining, the GSP

calculation is an augmentation of the A priori calculation.

The A priori and therefore the GSP calculations are

expansiveness initial pursuit calculations. The GSP

calculation endures with comparative problems because the

A priori calculation: it's moderate and memory expenditure.

As an outcome of the gradualness and memory utilization of

calculations represented, totally different calculations were

planned. The 2 noteworthy thoughts within the regular

succession mining are those of Zaki and I. M. Pei and Han

dynasty. These 2 calculations utilize the supposed prefix

based sameness categories (PBECs in short), i.e., speak to

the instance as a string and parcel the arrangement of all

examples into disjoint sets utilizing prefixes. The 2

calculations vary simply within the knowledge structures

won‟t to management the inquiry. The algorithms

represented are fast. In any case, at the purpose once the

consecutive calculation keeps running for an extremely long

term there's a demand for parallel calculations. For instance,

the one portrayed during this paper, there's a very regular

likelihood to position a subjective continuous grouping

mining calculation: section the arrangement of each single

regular succession utilizing the PBECs. The PBECs are

created, planned, and executed on the processors. Since the

PBECs are planned once, static burden parity of the

calculation is processed. This technique has one most well-

liked standpoint: it counteracts rehashed colossal exchanges

of data among hubs (the information is changed once among

processors); what is a lot of, one hindrance: assessing the

live of a PBEC may be a computationally troublesome issue.

As of now, there do not m exist versatile parallelization‟s of

those calculations. There are 2 varieties of parallel PCs:

shared memory machines and disseminated memory

machines. Parallelizing on the mutual memory machines is a

smaller amount difficult than parallelizing on disseminated

memory machines. The dynamic burden adjusting is

straightforward on shared memory machines, because the

instrumentation bolsters easy parallelization: the processors

have entry to the whole info. For this work, disseminated

memory machines, i.e., bunch of workstations, was utilized.

Inspecting system that statically stack alter the calculation of

parallel regular item set mining procedure, are planned; In

these 3 papers, the supposed twofold testing procedure and

its 3 variations were planned. This work amplifies the

thought exhibited to parallel continuous grouping mining

calculation. The twofold inspecting procedure is improved

by presenting weights that speaks to the relative making

ready time of the calculation for a particular PBEC.

2. RELATED WORK

In the Load equalization necessary things are estimation of

load, comparison of load, stability of various system,

performance of system, interaction between the information

sets, nature of labor to be transferred, choosing of

information sets and lots of alternative ones to think about

whereas developing such algorithm Sampling technique that

statically load-balance the computation of parallel frequent

item set mining method, are projected within the double

sampling method is increased by introducing weights that

represents the relative time interval of the algorithmic rule

for a specific PBEC. Alternative algorithms were projected.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 816 – 818

817

IJRITCC | July 2017, Available @ http://www.ijritcc.org

The 2 major ideas within the frequent sequence mining are

those of Zaki and architect and Han. These 2 algorithms use

the alleged prefix primarily based equivalence categories

(PBEC sin short), i.e., represent the pattern and partition the

set of all patterns into disjoint sets exploitation prefixes. The

2 algorithms take issue only within the knowledge structures

won‟t to management the search. The sequent algorithmic

rule runs for too long there's a necessity for parallel

algorithms. Like the one delineate during this paper. There‟s

a really natural chance to lay an arbitrary frequent sequence

mining algorithm: partition the set to fall frequent sequences

exploitation the PBECs. The GSP algorithm given in is that

the initial to resolve the matter of frequent sequence mining.

Because the frequent sequence mining is an extension of

item set mining, the GSP algorithmic rule is an extension of

the A priori algorithm. The A priori and also the GSP

algorithms are breadth initial search algorithms. The GSP

algorithm suffers with similar issues because the A priori

algorithm: it's slow and memory consuming. Free span

algorithm is an example of 1 of the primary DFS algorithms.

The algorithm was increased within the Prefix- span

algorithm that uses the pseudo projected information format,

introduced for frequent item set mining. The pseudo-

projected information is actually terribly the same as the

vertical illustration of the information utilized in the Spade

algorithm. Our technique uses the Prefix span algorithm and

its operations as a base sequent algorithm. There‟s

additionally AN algorithm that extends the tree projection

algorithm for mining of frequent things to sequences.

3. FRAME WORK

Proposed could be a novel parallel technique that statically

load-balance the computation. That is: the set of all frequent

sequences is initial split into PBECs, the relative execution

time of every PBEC is calculable and eventually the PBECs

are assigned to processors. The strategy estimates the

interval of 1 PBEC by the consecutive Prefix span formula

exploitation sampling. During this section, we tend to make

a case for the intuition behind the method. It‟s necessary to

remember that the period of time of the serial formula scales

with: 1) the information size; 2) the amount of frequent

sequences; 3) the amount of embeddings of a frequent

sequence in information transactions.

3.1 The whole database D is used to run a consecutive

formula on the information and sample the output of the

formula, i.e., the set of all frequent sequences F. Such

approach doesn't create sense: the consecutive formula is

dead on the complete information D. Therefore, it runs for a

minimum of constant quantity of time because the

consecutive formula we tend to use for comparison of the

speed of our parallel formula.

3.2 A Database sample Ď⊆D is used to run a sequent

formula exploitation the relative support, manufacturing F „.

F‟ is used as an approximation to F, however, F‟ will be

quite vast. Therefore, the sample F‟s ⊆F‟ is used for

partitioning and planning. Such an algorithmic rule reduces

the execution time of the serial formula by reducing the

information size: |Ď|<<|D|. For a PBEC [S], the value |[S]

∩F‟|/|F‟| estimates the relative processing time of a

PBEC.|[S] ∩F‟|/|F‟| is estimated by |[S] ∩F‟s|/|F‟s|. We call

this approach the double sampling process.

The Prefixspan algorithm is build on the operations

described above, see Algorithm 1 and 2. Initial pseudo-

projection is performed in Algorithm 1 Collection of

frequent extensions is performed in Algorithm 2. The two

projection operations are used. Please note that there are two

kinds of items of the Algorithm 2. The items that open new

event and items that are appended to the last event. From the

previous description follows that the overall computational

complexity of the algorithm depends solely on the database

D and the minimal support value.

This section contains the main contribution of the paper. All

the ideas presented in the previous sections are integrated

here, showing how to execute the Prefixspan in parallel. The

parallel Prefixspan algorithm has four phases. In the Phase

1, the method produces the weighting tree T containing the

estimates of the relative processing time of the PBECs. In

the Phase 2, the method partitions the set F into PBECs,

using the tree T, and schedule PBECs on processor. In the

Phase 3, the method distributes the database in such a way

that each processor can process independently its assigned

PBECs. In the Phase 4, the method executes the Prefixspan

algorithm in parallel on all processors, processing its

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 7 816 – 818

818

IJRITCC | July 2017, Available @ http://www.ijritcc.org

assigned PBECs. The algorithm is summarized in the

motivation behind Algorithm 3 is that the algorithm time

increase when: 1) dataset size increase; 2) the support

decreases, or in another words when the size of F increase.

4. EXPERIMENTAL RESULTS

In this section, we through an experiment valuate the

proposed technique. The entire algorithm was implemented

in C++ (compiled with gcc 4.4) exploitation MPI, resulting

in _ 30‟000 lines of code. The implementation was executed

on the CESNET metacentrum on the zegox cluster. Every

zegox‟s node contains 2 Intel E5-2620 equipped with 1_-

Infiniband. Nodes were completely allocated for these

measurements and used a maximum of five cores per node

(to avoid influences from different jobs).

One event was made up of ids of the resources fetched in a

very window of 10 seconds by one IP address. From the

transactions, items were removed if conferred in each

transaction. In Figure four are shown the speedups of our

methodology. All of the projected methods have speedups

up to 20– 32 on 40 processors for lower values of support.

These 3 ways exhibits similar performance on the datasets

generated exploitation the IBM generator. The speedups are

lower, for higher values of support. for instance, the

T1000I0.3P500PL5SL5TL15 dataset has quite good

speedups for supports 10‟000 an 8‟750 and unhealthy

speedups for supports 30‟000 and 20‟000.

5. CONCLUSION

We proposed an algorithmic program for mining of frequent

sequences exploitation static load equalization. The strategy

creates a sample of frequent sequences and uses this sample

for estimating the relative quantity of the rule inside the

PBECs. Assess of the relative amount is in reality performed

by estimating method quality of process varied PBECs. The

relative interval is then used for partitioning and

programming of the PBECs. The matter is that the

computable size of a PBEC depends on the event of the

PBEC. This dependency may be altogether chance removed

by exploitation.

References

[1] (2016). Description of the round robin tournament on

Wikipedia. [Online]. Available:

http://en.wikipedia.org/wiki/Round_ robin_tournament

[2] R. Agrawal and J. C. Shafer, “Parallel mining of

association rules,” IEEE Trans. Knowl. Data Eng., vol. 8,

no. 6, pp. 962–969, Dec. 1996.

[3] R. Agrawal and R. Srikant, “Fast algorithms for mining

association rules,” in Proc. 20th Int. Conf. Very Large

Data Bases, 1994, pp. 487–499.

[4] R. Agrawal and R. Srikant, “Mining sequential patterns,”

in Proc. 11th Int. Conf. Data Eng., 1995, pp. 3–14.

[5] V. Chv atal, “The tail of the hypergeometric

distribution,” Discr. Math., vol. 25, no. 3, pp. 285–287,

1979.

[6] S. Cong, J. Han, J. Hoeflinger, and D. Padua, “A

sampling-based framework for parallel data mining,” in

Proc.10th ACM SIGPLAN Symp. Principles Practice

Parallel Program., 2005, pp. 255–265.

[7] R. L. Graham, “Bounds on multiprocessing timing

anomalies,” SIAM J. Appl. Math., vol. 17, no. 2, pp.

416–429, 1969.

[8] D. Gunopulos, R. Khardon, and R. S. Sharma,

“Discovering all most specific sentences,” ACM Trans.

Database Syst., vol. 28, pp. 140–174, 2003.

[9] D. Gunopulos, H. Mannila, and S. Saluja, “Discovering

all most specific sentences by randomized algorithms,”

in Proc. 6th Int. Conf. Database Theory, 1997, pp. 215–

229.

[10] V. Guralnik, N. Garg, and G. Karypis, “Parallel tree

projection algorithm for sequence mining,”in Proc. 7th

Int. Euro-Par Conf. Euro-Par Parallel Process., 2001, pp.

310–320.

http://www.ijritcc.org/

