
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 7 786 – 791

786
IJRITCC | July 2017, Available @ http://www.ijritcc.org

The Design of Convoluted Kernel Architectural Framework for Trusted Systems

– CKA

Edward Danso Ansong
1
, James Ben Hayfron-Acquah

2

1
Research Scholar, Kwame Nkrumah University of Science & Technology, Department of Computer Science

2
Kwame Nkrumah University of Science & Technology, Department of Computer Science

1
edkan20002002@yahoo.com,

2
jbha@yahoo.com

Abstract: This paper presents the overview of the Convoluted Kernel Architectural framework and a comparative study with the traditional

Linux kernel. The architecture is specially designed for trusted sever environment. It has an integrated layer of a customized Unified Threat

Management (UTM) and Stealth-Obfuscation OK Authentication algorithm, which is a highly improved and novel zero knowledge

authentication algorithm, for secure web gateway to the kernel mode. The framework used is a combined monolithic and microkernel based

(hybrid) architecture code-named – the integrated approach, to trade in the benefits of both designs. The architecture serves as the base

framework for the Trust Resilient Enhanced Network Defense Operating System (TREND-OS) currently being experimented in the lab. The aim

is to develop an architecture that can protect the kernel against itself and applications.

Keywords: Convoluted Kernel Architecture, TREND-OS, UTM, Stealth-OK Authentication, MBR

__*****___

I. Introduction

An operating system (OS) kernel is the core of its

architecture upon which all other modules orprogramming

files(within the OS)are integrated. The kernel defines the

architecture of the operating system and the hardware it

supports. Over the past six decades, universities, research

institutions, corporations and operating systemengineers

have all contributed to the development and expansion of

Kernels. Since the late 1990’s,there has been a paradigm

shift in OS development from distributed environment to OS

Security. This paper introduces a novel Kernel architecture,

dubbed the –Convoluted Kernel – which is designed with

the goal of contributing to the on-going research on

operating system kernel security to protect the kernel against

itself from vulnerabilities such as un-authorized kernel

modification and privilege escalation. The scope of this

research is tailored to mechanisms in developing a novel

security architectural framework that could easily retrofit

into a monolithic kernel tofurther augmentthe already

existing frameworks that falls under the Linux Security

Module (LSM) to protect the kernel against itself and other

applications.

The traditional OS architecture is generally made up of four

major subsystems that work together to form a whole

complete system which can be further classified into Kernel

space and User space. The fundamental OS Architecture is

made up of the hardware Controllers, which encompasses all

the conceivable physical devicesin the OS installation such

as the CPU, memory module, network devices, Hard Drives

among others. The next upper layer is the OS Kernel which

serves as the integral part of the entire OS. In this layer, the

kernel abstracts and mediate access to the hardware

resources as captured in the previous layer which completes

the kernel space[1].

The proceeding layers forms the user space section of the

model. It is however made up of an interface level between

the kernel space and the user space called the OS Services

layer. This layer of the model essentially has two key sides.

The lower part interfacing the kernel, which has compiler

tools, libraries etc.,and are considered part of the Kernel

while the upper part interfacing the application, is

considered part of the OSlike the command shells etc. The

top most layer of the architecture is referred to us the User

Application which consists of set of applications executed

by clients and servers[2]. Users are more familiar with this

layer since their day to day interactions with the OS is

interfaced with the various applications they install. The

decomposition of an OS into four main subsystem

architecture is as shown below in figure 1.

User Applications

OS Services

Kernel

System Call Interface

Architecture-Dependent Kernel Code

Hardware Controllers

Fig. 1.–Breakdown of an Operating System into four major

Subsystem.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 7 786 – 791

787
IJRITCC | July 2017, Available @ http://www.ijritcc.org

II. Evolution of OS Security Framework

Traditional UNIX (the mother of Linux)architecture was

created without adequate emphasis to security[3]. This was

not however considered as a weakness to the architecture at

the time since data protection and operating system level

vulnerability did not exist at the time as a threat. In the early

90’s, the first worm attack across the globeexposed the

vulnerabilities of operating system and the debate of data

protection. The only form of protection at the time was the

Discretionary Access Control (DAC) which is user defined

to protect user files and directories and are subject to the

discretion of the user. The weaknesses of DAC became so

highly evident when during the over reliance on networking

and therefore led to the development of other frameworks.

The MAC framework where the mandatory access control is

managed was introduced to protect the kernel. Subsequently,

other framework such as the, SESBD, Flask and SELinux

frameworks were introduced to further enhance the

architecture of the monolithic kernel. In the next section, we

will delve into the various framework and their weakness to

attacks.

III. Security Enhanced Framework

There has been several security framework that over the

years have been developed to secure the Linux kernel and to

improve the security of the architecture in general. Several

kernel and operating system developers are beginning to

adopt the use of virtualization to protect the core kernel

structure from unauthorized manipulation from illegitimate

users to expose its vulnerabilities[4].

OS-level integrated level virtualization technique was

therefore implemented into the framework in order to

enhance the security of the core kernel to improve the

resilience of the architecture[5].

The diagram presented in figure 3 shows an expansion of

the virtualization component of TrendOS System

architecture which is the prototype of the convoluted

architecture. Starting from the bottom, we installed Linux

Containers (LXC) as the underlying technology behind the

virtualization component. LXC (which is an abbreviated

way of saying LinuX Containers) is an operating system-

level virtualization method for running multiple isolated

Linux systems which are called containers on a single

control host. This creates a high performance environment

for the VMS (sometimes referred to as containers).

Above this layer exists the virtual machines or containers

which essentially achieves virtualization at the OS Level.

This is achieved through Linux cgroups and is beyond the

scope of our discussion[6].

As established earlier, the virtual machines share the host's

kernel facilities. Above that is Bridge networking rules

configured directly into every VM. This allows packets

flowing from and to these containers to be analyzed by our

UTM layer to protect application services from possible

attack. Above this layer lies system libraries Application

services make constant repetitive use during their execution.

On top of this lies the actual application services that clients

make use of. This is the ultimate goal of a secure server

environment - To protect its application services [7].

IV. Traditional OS Kernel Design

OS kernel architecture is changing and expanding very fast

to meet the ever changing complexities of computer

hardware designs and ever improving sophistication of

software applications. The multicore hardware designs of

processes has made it possible for a complex programs

which hitherto could only run on huge, high-end and

expensive servers, to currently run on low-end personal

computers. These developmenthas also been engineered by

the numerous research by universities, corporations and

computer engineers, to meet the growing need for secured

yet fast kernel designs with minimal vulnerabilities.

However, core Linux architecture is monolithic by design

and thereby,lack a resilient self-protection scheme when the

security of the kernel space is breached[8].Due to this

characteristic feature, a single bit exploit in the kernel could

lead to a fissureof the entire kernel mode of the OS

including the MBR, memory module and other

resourcedependencies.Furthermore, vulnerabilities in most

Linux based monolithic kernels have also made it

predisposed to an array of kernel malware which exploits an

internal kernel breach without any defense mechanism

against internal attacks.

Even though copious developmentshave been made over the

past decades to mitigate the drawback associated with

theinitial architectural design - the monolithic kernels –the

evolvement of a principal alternative architecture to the

traditional design became imperative. The Microkernel

therefore became a perfect substitute to the monolithic. The

principal difference between the monolithic and the

microkernel is that, in the former, every part of the kernel is

executed in the unwieldly bottom-large kernel space which

incidentally, happens to also run in the same address space.

The key drawback therefore is a single process failure in any

part of the kernel could have a grave consequence on the

entire address space which frequently lead to a kernel panic.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 7 786 – 791

788
IJRITCC | July 2017, Available @ http://www.ijritcc.org

Fig 2. Monolithic Design

In the microkernel however, unlike the monolith’s huge

kernel space, part of it is moved from the risky kernel space

into a convenient and safer user space which is not

susceptible to frequent crash of the kernel. This approach is

considered less dangerous for the reason that, in the user

space, each process runs in an isolated mode (aka servers)

and therefore any bug in this design will obviously have a

far less consequence since the processes involved may crash

but the rest of the kernel will be operating in a safe mode.

Even though the microkernel appeared to have resolved the

key challenges of the monolithic kernel, it also brought

other limitations which are alien to the monolithic. Those

weaknesses are code complexities which also leads to

performance overheads[9]. Unlike the monolithic kernel’s

huge disproportionate kernel space with respect to the user

space, the microkernel has the reverse forming its design.

With this new design in the microkernel, it is therefore

expedient to have effective communication of the various

services which hitherto was located in the kernel space now

situated in the user space. This service in the microkernel is

referred to as the inter-process communication.

V. Linux Kernel Security Framework

LSM Framework creates an Application Programming

Interface (API) to permit the Linux kernels to provide

support to the several kernel security models that has

implemented the framework’s standard. The motivation

behind its creation is to allow uninhibited selection of kernel

security model of choice while avoiding a fixed hard-wired

module.

The LSM project was developed to effectively implement

Mandatory Access Control (MAC) without altering the base

kernel yet augmenting the traditional Unix Discretionary

Access Control (DAC) service already provided by the

Linux kernel. The rationale behind the development of an

additional security mechanism (MAC) to enhance the kernel

security is because, the extent to which DAC is

implemented relies on user discretion on access constraints.

While DAC provides restrictions for file system access, the

need for security mechanism to enforce defenseagainst

threats of secured objects in systems such as Network

Sockets, IPC among others which cannot be circumvented

by users became inevitable.

~

Fig 3. Linux security module architecture

A more intelligent implementation of the Linux Security

Module architecture is the preventive access control

mechanism. The architecture of the LSM is as shown in

figure 3. It uses a technique of hooks by adding a security

field to the Linux structure. In so doing it loads the

credentials of the program in order to know the module to

load and whether it meets the policy requirements [10].

VI. Drawback of Linux Security Module

With the adoption of LSM as a standard API for loadable

access control modules for the kernel to enhance the security

of the architecture, there were however some challenges

associated with the implementation of the framework. While

some engineers were considering the use of an integrated

kernel structure, the founder of Linux and top maintenance

group rejected such idea. Such kernel implementation were

considered to be inflexible and uncompromising and as a

result, some earlier development modules which could not

adopt to the framework such as GRsecurity and RSBAC

were obliterated from the list of standardized loadable

modules because of their un-support for LSM API [11].

This therefore denies an otherwise potentially best approach

to enhancing security. With this reason, it also denies

majority of users the opportunity to experiment and select

from their own best kernel security module. Reason for the

deprecation of others could be attributed to inactivity and

excessive inflexibility in allowing the modules to easily port

and other compatibility issues [12].

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 7 786 – 791

789
IJRITCC | July 2017, Available @ http://www.ijritcc.org

Even though modules such as SELinux, AppArmor,

SMACK, TOMOYO and YAMA are among others are

highly rated, the first two appears in some distributions as

the default kernel security module precompiled, they also

have their own vulnerabilities that keeps operating system

developers a bit apprehensive on the best option to choose

from as far as kernel security modules were concerned. The

key challenge arising out of the use of Linux Security

Modules is the capability to disable and enable the module

as and when it becomes required [13].

VII. The Convoluted Kernel Architecture
Due to various concerns raised on the adoption of a single

framework (Linux Security Module) to interface kernel

security modules, the need for the development of an

integrated kernel framework to provide enhanced security

and resilience became indispensable. Even though some

efforts have been made by operating system engineers and

scientists such as capsicum and Secure Virtual Architecture

(SVA) which are the two widely pronounced kernel

architectural framework, however, their emphasis do not

involve amalgamation of other useful features of kernels

such as High Availability and cryptography using zero

knowledge [14].

In the absence of a kernel which could harness these

functionalities to support server environment, the idea of an

integrated kernel architecture with sandbox-virtualization

and its prime focus on High Availability and secured

authentication scheme was conceived. This kernel with

these framework was referred to as the Convoluted Kernel

architecture.

Beginning from the bottom "Kernel mode" division. The

Linux Kernel Layer contains the various subsystems that

make up the kernel namely, the IO Manager, the Device

Drivers, the Process manager, Virtual Memory Manager and

more.

Above this layer is the TrendOS Linux Security Module

(TLSM) which aims at enabling the efficient and concurrent

use of multiple LSMs in a well-coordinated manner. This

module is included as a built-in module in the TrendOS

Linux Kernel. TLSM enables capabilities that allow the

coexistence of multiple LSMs (e.g. SELinux, AppArmor

etc.) which greatly enhances system wide security [15].

Above this layer is the system call interface where standard

system call function (e.g. exec) are evaluated and handled.

This layer denotes the beginning of the Kernel Mode

Division. Moving upwards, the User mode Division also

known as Secure Trust Level 1 (STL1). This layer begins

with System binaries the libraries that eventually make

contact with the System call interface (Bridge).

Above this Layer lies the High Availability Monitoring Unit

which lies as a backbone to the Sandbox Environment. This

layer is responsible for ensuring the all sandboxes are

available 99.9% of the time. The services and operation of

the High Availability technology ensures that continuous

service is available between the private and secondary

services at all times.

Fig 4. Convoluted Kernel Architectural Design

Techniques including the Heart Beat mechanism are utilized

efficiently to ensure downtime and recovery time is greatly

reduced (Shahapure, 2015).Next above the HA Monitoring

Unit is the Sandbox Environment where Application

services run in a safe isolated environment that is actively

protected by UTM enabled system-default sandboxes.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 7 786 – 791

790
IJRITCC | July 2017, Available @ http://www.ijritcc.org

Fig. 5 Heartbeat architecture of the of the Convoluted

Architecture.

This Layer allows the creation of as many application

sandboxes as desired that will run in a Secure Sandbox

environment that is protected by system-default UTM

enabled sandboxes using state-of-the-art techniques such as

Content Inspection as shown in Figure 6.

Fig. 6. Simplified High Availability (HA)

The Depiction shows the Architectural breakdown of the

Secure UTM Layer of the Main Architecture. In the design,

several Unified Threat Management (UTM) modules that

make up the UTM stack. This stack consists of applications

like snort and ipfw.

What happens is that when network traffic arrives from the

internet to or from the virtual machines. The UTM layer

filters all traffic to ensure all network traffic is safe and

provides some level of protection to the sandboxes. It does

so through a chaining mechanism that allows packets to be

filtered thoroughly before they are finally routed to their

final destinations.

The UTM stack has been built in such a way that, it is able

to co-locate with third party security tools without any

conflict. This UTM stack works transparently with the

virtual machines and sandbox technique.

Fig. 3.6 Expanded Unified Threat Management

Above these levels is the ZKP Security module. This layer is

essentially a Pluggable Authentication Module (PAM)

responsible for System-wide authentication using the Zero-

Knowledge Authentication technique. Using such a

transparent framework, the all great benefits of using the

ZKP technique can be realized seamlessly through PAM-

aware system-based application like "ssh" (Soares, 2013).

The Last Layer that ends the STL1 is the Web Based

Control Panel. This layer presents a Web GUI that provides

a general overview of system performance and enables

system administrators to regulate TrendOS system

functionality in as simple a manner as just turning knobs and

setting values. This Control

panel is the official TrendOS dashboard that Trend System

Administrators will be familiar with.

VIII. Conclusion

In conclusion, we presented]discussed the overview of the

Convoluted Kernel Architectural framework and a

comparative study with the traditional Linux kernel. This

architecture is specially designed for trusted sever

environment. It has an integrated layer of a customized

Unified Threat Management (UTM) and Stealth-

Obfuscation OK Authentication algorithm, which is a highly

improved and novel zero knowledge authentication

algorithm, for secure web gateway to the kernel mode. The

framework used is a combined monolithic and microkernel

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 7 786 – 791

791
IJRITCC | July 2017, Available @ http://www.ijritcc.org

based (hybrid) architecture code-named – the integrated

approach, to trade in the benefits of both designs. The

architecture serves as the base framework for the Trust

Resilient Enhanced Network Defense Operating System

(TREND-OS) currently experimented in the lab. The aim is

to develop an architecture that can protect the kernel against

itself and applications

References

[1] B. Spengler, "SSTIC 2016 Keynote," Grsecurity, Rennes,

France, 2016.

[2] I. T. Bowman, Hybrid Shipping Architectures, Waterloo:

University of Waterloo, 2001.

[3] C. Alm, Analysis of Manipulation Methods in Operating

System Kernels and Concepts of Countermeasures ,

Considering FreeBSD 6 . 0 as an Example, Hamburg:

University of Hamburg, 2006.

[4] D. C. B. D. W. K. S. W. M. S. J. M. P. G. N. J. W. Robert

N.M. Watson, Capability Hardware Enhanced RISC

Instructions: CHERI User’s guide, Cambridge: University

of Cambridge, 2014.

[5] T.-c. C. X. W. Zhiyong Shan, "Virtualizing System and

Ordinary Services in Windows-based OS-Level Virtual

Machines," in 2011 ACM Symposium on Applied

Computing, Cornel Univerisity Library, 2011.

[6] Intel Security, "Security Best Practices. Moving to Office

365," Osterman Research, Inc., Black Diamond,

Washington , 2015.

[7] Information Assurance Technology Analysis Center

(IATAC), Information Assurance Tools Report:

Vulnerability analysis, Information Assurance Technology

Analysis Center, 2009, 2009.

[8] T. K. W. D. J. C. V. A. Nathan Dautenhahn, "Nested

Kernel: An Operating System Architecture for Intra-Kernel

Privilege Separation," in ACM, Turkey, 2015.

[9] M. v. Q. F. B. M. H. S. K. Nikolaus Huber, "A Method for

Experimental Analysis and Modeling of Virtualization

Performance Overhead," Karlsruhe Institute of Technology

(KIT), Karlsruhe, Germanay, 2011.

[10] C. C. ,. J. M. ,. S. S. ,. G. K.-H. C. Wright, "Linux security

modules: general security support for the linux kernel," in

Linux security modules: general security support for the

linux kernel, Los Alamitos, CA,, 2003.

[11] C. C. J. M. S. S. G. K.-H. Chris Wright, "Linux Security

Module Framework," in Ottawa Linux Symposium,

Ottawa, 2002.

[12] E. Karlsson, "Evaluation of linux security frameworks,"

Umeå University, Umeå, 2010.

[13] P. M. &. B. M. S. S. Backes, "Android Kernel Extension

Login on Lab Machines," SAARLAND UNIVERSITY,

2013.

[14] W. Mauerer, "Linux Kernel Architecture Auding," Linux,

2008.

[15] M. Gorman, Understanding the Linux Virtual Memory

Manager, Dublin: Bruce Peren's Open Source Series, 2004.

[16] A. S. a. M. Salama, "Cloud Computing: Paradigms and

Technologies".

http://www.ijritcc.org/

