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1. Introduction:

Hyperstructures were introduced in 1934 by a French mathematician, Marty 1934 at 8" congress of Scandinavian
mathematics [9] and plays a central role in the theory of algebraic hyperstructures .Since then this theory has enjoined
a rapid development [9,10,15,14,2,3,4]. In its general aspects, the connections with classical algebraic structures and
various applications (In geometry, topology, combinatorics, theory of binary relations, theory of fuzzy and rough sets,
probability theory ,cryptography and codes theory, automata theory ....and so on) have been investigated in [12]. In
particular, hyperlattices were introduced by Mittas and Konstantinidou in [9]. In [5] Rahnamai-Bhargi studied ideal
and prime ideal by considering join as hyper operation. The main goal of this paper is to study prime ideals and
minimal prime ideals of hyperlattices and to draw several conclusions and we prove analogue of stone’s theorem for
hyperlattices and also prove classical Nachbin theorem. In the last section we give characterizations of minimal prime
ideal and prove the theorem, If L is an ideal of L. Then a prime ideal P containing J is a minimal prime ideal

containing J if and only if for each x P there is y € L\P such that x® y < J.

2. Preliminaries:

We recall here some definitions and propositions on hyperlattices from [1] and we establish some results which we

need for the development of this chapter.

Definition 2.1: Let L be a non-empty set with two binary operations A and V. If for all x, y, z € L, the following

conditions are satisfied:
i)x Ny=x,xVy=x
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MxNy=pAx,xVy=yVyx
i) (x AN y) NZ=xA (YA Z), (x V) VZ=xV(yV2)
iv)(xNy) Vx=x, (xVyAx=xthenwecall (L, A,V ) is a Lattice.

Definition 2.2: Let H be a non empty set. Let P(H) be the power set of H, P"(H)=P(H) - { #}.The hyper operation “0”
on H is a map Hx H— P+ (H) such that for all x, y, z €H for all X,Y,Z € P*(H), we have that X o Y € P*(H),

zoX= J zox, Xoz=|Jxoz, XoY= ] xoy.

xeX, xeX xeX,yeY
Following definition of hyperlattice is from [8]

Definition 2.3: Let H be a non empty set and @ : H x H — P+ (H) be a hyper operation, and PAH)= P (H) — {7}
and ® : Hx H— P+*(H) be an operation. Then (H, @, ®) is a hyperlattice. if for all X, y,z € H:

)XEX D X, XEX ® X ;
XD y=y® x,x®y=y ®X;
XYY D z=x® YD 2);,xXVY) ®z=xQ (y ® 2);
MXEX® XD Y), XEX D (X ®Y)).
Where for all non empty subsets Aand Bof L,LA ® B=U{x ®y/x €A, yeB},A® B= U{x @ y/xeA,y €B}.

Following M.Konstantinidou and J.Mittas [9], we define a hyperlattice as a set H on which a hyperoperation

@ and an operation ® are defined which satisfy the following axioms

l.aea® aa® a=a

2.4a® b=b ® a,a®b=b ® a

3.(@®b)Dc=a® (b Dc),(@a® b) ® c=a ® (b® c).
4. a€(@® (@@ b)n(@a® (@a®h)

5.a €a @ aimplies that b=a ® b.
Throughout this paper, we refer definition 2.3 for hyperlattice.

Definition 2.4: A hyperlattice (L, ®, ®) is said to be distributive if for each x,y, z €L:
X® (YD 2)=x ®Y) @ (X ® 2).

Proposition 2.5: Let (L, @, ®) be a hyperlattice. Then the following holds:
(1) ACA ®A ACA DA
QA® A=AQ A, AD A=AD A

(3) (A1® Az) ® As=A ® (Ag ® Ag), (Al@ A2) @ A; =A1@ (Az@ Ag),
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B)ACA® AD A), ALCA® AR A).

Example 2.6: Let L= {a, b}, © and ® be two hyperoperations defined on L as

follows.
® a b ) a b
a {a,b} {b} a { a,b} {a,b}
b {0} {0} b {ab} (b}

It can be verified that @ and ® satisfy (i) to (iv) of hyperlattice and therefore (L, ©, ®) is a
hyperlattice. For any element x and any subset S of a hyperlattice L, x @ S means the set {/{x @ a| a€eStandx ®

S wemeantheset U{x ® a |a €S}

Example 2.7: Let L= {x, y}

® X y @ X y
X {x, v} {v} X {x} {v}
y {v} {v} y {x, v} {v}

(L, ®, ®) is not a hyperlattice since x ex ® (x @ y) =x ® {y} ={y}.

Example 2.8: Let L= { Xy, X, X3, X4}

@ X1 X5 X3 X4

X {x, %} {x} {xs X {x}

Xz {x2} { X1, X2} { xa} { X3 X4
X3 {xs X {3} {xs X {x}

X4 { X} { X3, X4 { x4} { X3, X4

http://www.ijritcc.org




® X1 X5 X3 Xa

X1 {x} { X1, X2} {x} {x}

X2 {x} {x2} {x} { X1, X2}
X3 {x} {x} {xs} {xs}

X {x} { X, Xo} { %} {%s Xe}

(H, ®, @) is a hyperlattice.

Definition 2.9: Let (L, ®, @) be a hyperlattice. A nonempty subset A of L is called a subhyperlattice of L if
(A, ®, @) isitself a hyperlattice.

It is easy to see that a nonempty subset A of (L, ®, @) is a subhyperlattice of L if and only if A holds: for all z, 4 €
Aa® HS A a® HCA Thatistosay, Aisa

Subhyperlattice of (L, ® , @) ifand only if 4 ® 4SA4, A D ACA.

Now we consider following example.

Example 2.10: Let (L, ©, ®) be a lattice .Define the hyperoperations & and

® on L as follows:

® X y ® X y
X {x} {v} X {x} {x}
y {v} {v} y {x} {v}

X@y={x Ay}, x@y=xVy/xex@ x®y)=x@{x}={}, yey® x®y)=yQ {X}={y}(L. ®, D)
forms a Hyperlattice. From the above example every lattice is a hyperlattice.

Proposition 2.11: Every lattice is Hyperlattice but converse may not be true.

Proof: Let (L, ®, @ ) is a lattice. It is sufficient to prove properties (i) and (iv) of hyperlattice. By property (i) of

lattice x =x @ x, Clearly x must be element of x @ x and by property (iv) of lattice x=x ® (x @ y) thatis x ®

(x @ y) contains element x. Therefore, x €(x ® (x @ y)). Similarly we can prove for &. u

But Converse is not true. For this, consider the hyperlattice as shown in following table.
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S 0 X y 1
0 L {x1} {v.1} {1}
X {x1} {x1} {1} {1}
y {y,1} {1} {v. 1} {1}
1 {1} {1} {1} {1}
® 0 X y 1
0 {0} {0} {0} {0}
X {0} {x} {0} {x}
y {0} {0} v} v}
1 {0} {x} {v} {1}

Similarly, associative property can be easily verified. Therefore, (L, @, ® ) which is a hyperlattice.
x @ x ={x, 1} = x. Therefore, Idempotent law is not satisfied.
Therefore (L, ©, ® )is not a lattice.

Now from the above example , it is clear that every hyperlattice may not be a lattice.

3. Ideal of hyperlattice

Definition 3.1: Let (L,®, @) be a hyperlattice and let A be a non-empty subset of L
1. Aiscalled an ideal of L if foralla,b € Aandx € L

Na@bSA

iij)a®xEA
2. Ais called a filter of Lifforalla,be Aandxe L

Da ®bS A

ia ® xS 4

Obviously, a subhyperlattice A of (L, ®, @) is a ideal of L if and only if A ® LS A. Similarly a subhyperlattice
Aof (L, ®, @) isafilter of L ifand only if A® L & A.
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Proposition 3.2: Let (£, ®, @) be a hyperlattice and let A be a non empty subset of L. Then the following conditions

are equivalent.
1. Aisanideal of (£,®,®)
2.a®bEA and a®x EAforallab €A and xeL

AGAS Aand A®QL EA.
Similarly, the following conditions are equivalent
1. Aisafilterof (£, ®, @)

2.a®bEA and a®x = Aforallab €Aand xelL
JARAEAand ADL EA.

Example 3.3: Let (£, ®, @) be a hyperlattice.

® 0 X1 X2 1

0 {0} {0} {0} {0}

X1 {0, x.} {0, x1} {x:} {x:}

X2 {0} {x} {0, x2} {x:}
1 {0} {x} {x:} {1}
® 0 X1 Xz 1
0 {0} { X¢, X2} { x2} {1}
X1 { %1, x2,1} {1} {x21} {1}
X2 {x21} {x21} { x2} {1}
1 {1} {1} {1} {1}

I= {0, X1 X, } is an ideal of Hyperlattice L.

Proposition 3.4: Let A; and A, be two ideals of hyperlattice (L, ®, @) such that AN\ 4, # 8 then A; N 4, is also

an ideal of hyperlattice.
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Proof: Suppose A; and A, be ideals of hyperlattice L with A; N A, = 6. For all a;, a,€ A; N A,, then a; € A;N A,, and
a; € AJN A,. Thisimpliesa; @ a, € AN A,. Forallae AjN A; and forall x eL impliesa®x € A, a®x < A,
This gives,a®x < A;N A,. Therefore A;N A; is an ideal of L.

Let us consider the following caylay table for an hyperlattice L = {0, a, b, c,1}

® 0 a b C 1

0 |{0} 10} 10} 10} 10}
a |{0} {a} 10,1} 10} {a}
b {0} {0.1} {00} {0} {0.1}
c |{0} {0} {0} {c} {a}

1 1{0} {a} 10,1} {a} {1}

@ |0 a b c 1

0 | {0} {1} {1} {1} {1}
a |{1} {a} {abc}  {c} {1}
b [ {1} {abc}  {b} {c} {1}
c |{1} {c} {c} {c} {1}
1 {1} {1} {1} {c} {1}

Then 1;={0, a,1} and 1, ={0,b,1} are the ideal of hyperlattice L. I, N I,={0,1} is also an ideal. and 1, U 1,={0, a,b,
1} isnotanideal asa @ b={a, c} € I, U I,.

Remark 3.5: Union of two ideals of hyperlattice need not be an ideal.

Proposition 3.6: Let (L, ©®, ® ) be a lattice .Let | be ideal of lattice of L. Then | is ideal of Hyperlattice L.

Proof:

Let L be a lattice and | be an ideal of L (1 € L). Let X3, X, €= x; @ x, € land x; € I, X, <X, = x; € |. But
every lattice is hyperlattice.

Therefore L is hyperlattice and | € L. By definition of ideal of lattice ,
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X, Xo EI X @D X€ 1.
Therefore x; @ x, € 1.
By property (ii) of ideal of lattice x €/, a< xanda€eL =a €l.Asa el andx el impliesx ® acl .

Itis clear that, Iis ideal of hyperlattice L.
[ ]

Example 3.7: Let (L, A, v) be a lattice. Define the hyperoperations ® and @ on L as follows: foralla,b € L,a ® b
={anb},a® b={av b}, then (L, ®, @) isa hyperlattice. Every ideal and filter of the lattice (L, A, v) are ideal
and filter of the hyperlattice (L, ®, @), respectively.

Lemma3.8: Let (L, @, ®) be a distributive hyperlattice. If p €L, then
(Pl={a €Ll aep ® a} isan ideal.

Proof: Leta, b €(p] ,thena €p ® aandb ep ® b.a @b c(p ® 2) ® PO D) =22@ b cp® (2D b)
.Therefore « @ b <(p] .To prove second property of ideal, Let a €(p]and x eL.Thena ® x<S(p ® 2 ® x=
a® xcp® (a® x)=a® xc (p]. Therefore (p] is an ideal.

Dually, we can prove [p) is a filter.
Lemma 3.9: Let L be a distributive hyperlattice . If P is an ideal of Land a €L, then P @ (a/is an ideal of L.
Proof:

Letx,y eP @ (a] thenx=p; ® a andy=p,Pa ,p1 po EP.XDYy<Cc(pPp:®@a)® (p.® a)=xDyc
P @ p) @ (a®a >2xBDycPD®bc P® (a] forsomeb e(@a]. Nowlet x P @ (a]thenx=p @ a
andqeL.x®qgc(p@a)®qcpP®q)®D (a® q). AsPisanideal ,pePandqg eL impliessp ® q <P
andP cP ® (a] andas a€(a],q eLbyLemma, 2.3.8 (a] is an ideal .This implies p ® q £(a] . Proving x ®
qcP @ (a].

Lemma 3.10: (x/ N (y/=(x ® y]

Proof:let e (x/ N(y] 2 a€e(X]and @ € (]2 2ex® cand cey® a=2a® ac X ® o) ® (YO @) =2a
®acx®yYy) ®(a® a)=>a® ac x® y] .But by first property of hyperlattice z€ 2 ® «. Therefore z €
(x® y].Conversely, let z€ (x ®y] 22e (X ®Y) ® a=>a€e (X By) ® (¢ ® a)asa€ a ® a always. z€ (x ®
Q@ Y®a=>ae (x® adanda € (Y® @).Thisgives z€ (x] and z€ (y] = @€ (x] N (y].

4 Prime ldeals of Hyperlattices
We define the prime ideals of hyperlattice and definition of prime filter is taken from [9].
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Definition 4.1: Let J and F be respectively a proper ideal and a proper filter of a hyperlattice L .
(i) Jissaidtobe primeifx,y eLandx® y Climpliesx €lory €1.
(i) Fissaidtobeprimeifx,y eLand (x @ y) N F = gdimpliesx eFory €F.

Example 4.2: L={x, y} be a hyperlattice .

® X y ¢ " ’
X (xy} v} X {xy} {xy}
y {Y} {y} y {x,y} {Y}

I={y}beanideal. x ® y={y} €1 and lis prime idealas x ® y I implies x& landy €l.

Definition 4 .3: Anideal M is a maximal ideal in L if it is a maximal element in the set of all ideals of L.
Following definitions are from [2].

Definition 4.4: A hyperlattice (L, ®, @) is said to be distributive hyperlattice if a® (b® c) = (a®b) ® (a®c)
anda® (b® c)=(a@®b) ® (a@®c) holds for every a,b,c€L.

Definition 4.5: Let (L, ® ,@®) be a hyperlattice. An element a €L is said to be anall elementof Lifa€a @ x and x

€a ® xforeach x €L. The set of all, all element of L, is denoted by I.

Definition 4.6: An element b in a hyperlattice (L, ®, @) is said to be azeroelementof Lifxeb @ xandbeb ®

x for each x €L. The set of all zero elements of L is denoted by O.

Definition 4.7: A hyperlattice (L, ®, @ ) is said to complemented if for every a € L there exists elementsa’ € L, a

i€l, a,e0Osuchthat a;e a ® a’and a,ea® a

Definition 4.8: A hyperlattice (L,®, @) with O, | is said to be a hyperboolean algebra if L is distributive and

complimented.

Lemma 4.9: In distributive hyperlattice, Every maximal ideal is prime.

Proof: Let L be a distributive hyperlattice .Leta ® b €M and a M. Then McM @ (a] € L.M is maximal .This
impliessM © (a] =L AsbeL =beM® (a] =be U{m @ a;} Asbeb ®beb ® fm Da}=UbBX® (m
@a)=U(b ®m) ® (b® a))e MasMisan ideal and me M, b ® m <M. Therefore b € M. Hence the proof.
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Remark 4.10: Converse of the lemma 4.9 is not true.  Following result is by the lemma 4.9.

Corollary 4.11: In a hyperboolean algebra , Every maximal ideal is prime .

Lemma 4.12: Let L be a hyperboolean algebra .Then every prime ideal of L is maximal.

Proof: Let P be a prime ideal of L and Q be any ideal such that P &£ Q € L. Since P = Q there exist x € Q such that x
¢ P.As L is hyperboolean algebra. L is complemented, There exist a, € L and a; € L such that a; € x @ y and a, € x
®y. Letx ® ycPandx &P .Thisimplies yeP=Q.xeQandyeQ =x ® y cQ.a,€ Q. Therefore Q=L .P
is maximal ideal of L.

[ ]
Following corollary is by the corollary 4.11 and lemma 4.12.
Corollary 4.13: In a Boolean algebra the prime ideals and maximal ideals coincides.
Following definition is an extension from lattice structure to hyperlattice structure.
Definition 4.14 : A sequence of idealsinL ,l; € L <c.....c |, <c...... is called an ascending chain of ideals.
Definition 4.15 : A sequence of idealsinL ,1;21,=......2 |, 2...... is called an descending chain of ideals.
A chain is said to be stabilize, if there exist N € N such that Iy=Iy.« forall k € V.
Proposition 4.16: Let L be a hyperlattice .Then following are Equivalent.
i) Every ascending chain condition (ACC) in L stabilizes.
ii) Hyperlattice L has a maximal element.
Proof: i) =ii)
If ii) is false, then there is no maximal element exist in L, So
3 1, e L,such that
I, cl, forsome L, e L,
I, cl,cl; forsomel; €L
So continuing ........ Hence the contradiction. Therefore L has a maximal element.
(i) =) .
If (ii) holdsand I, S I,<.................. cle........ Then {1, 1,,.....L,.../has a maximal element , say Iy so for every
m2Kk. Therefore I, 2 I, 21,
Hence equality, proving ( i) holds.
[ ]

We have the following lemma 4.17 and Theorem 4.19, are extensions of [16] for hyperlattices.

Lemma 4.17: In a bounded hyperlattice L,
1) L is distributive

2) For any non-empty subset A €L the set

AO={beL|xeb®x,beb ®x, x € L} is an ideal in L and let
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A'={aeL |xea @ x,x€ea®x,xeL}isafilterinL.
3) Every maximal ideal and maximal filter in L is prime.
4) N{P | P is a prime ideal in L, a € P} = (4]

5) For any distinct elements a and b in L , there exist a prime ideal P of L containing one of a and b and not
containing the other.

Then(l) = ) = Q@) =@ = 0O =D

Proof: (1) = (2) To prove first property , Leta,b € A°. Thenx€a @ x,a€a ® x and XEb® x and b e
b ® x.Thisimpliesx @ xc(@a® x) @ (b@® x)and a@® b c(@® Xx) D (b®Xx)= xex®xc(@a®h) D
(x@ x)anda® b c(@a® b) ® xe(@a® b) ® x® x. Asx @ x is also element of L .Therefore by definition
of A°, a @b < A°. To prove second property of ideal, leta€ A°andy € L, Thenx€a @ x, a€ a ®xandy € L
impliecsa® ye (a ® x) ® y andx® y e (a @ x) ® y By distributivity , x ® ye (a ® y) @ (x ® y) and By
associativity , andy € y® y implies a® y € a®y) ® (x® y).So forany a € A°andy € L gives a® y < A°.
Therefore from property 1 and 2 of ideala ® b €A° and a® y £ A°. A° is an ideal. Dually we can prove A' = {a €

Lixea @ x,x€a ®x, xe L}isafilterin L.

(2) = (3) Let (2) holds. Thereexista’€ L, a; € landa, € A°suchthat a;€a ® a'anda, €a ® a’. ThenL is
complimented lattice. L is complimented lattice, by Lemma 2.4.11, every maximal ideal is prime. Dually maximal

filter is prime.

(3) = (4) Let (3) holds, Obviously (a] € N {P/Pisaprimeideal inL, a € P}. Let if possible there existb € N {P
P isaprimeideal inL,a € P}suchthatb ¢ (a].By ACC, there exist a maximal filter say M such that b € M, by
assumption M being a prime filter L\M is a prime ideal. By the choice of b, b € L\ M , a contradiction.
Hence N /P |PisaprimeidealinL, a € P} = (a].

(4) = (5) Leta, b €L, suchthat a = b .Therefore b & (a] by (4).There exist a prime ideal P containing (a] not

containing b. Thereforeae P andb ¢ P.

5)> (1) Leta,b,c eLand(@® b)® @ ® c)ca® bD ).If a® (b )G (a® b) ® @ ® c), then by
(5),there exist a prime ideal P in L suchthat (a ® b) ® @ ® ¢c) cPanda ® (b® ¢) £ P. Then (a ® b)S Pand
@ ® c) cPandagP = b eP,ceP(Since P is prime ideal and a P ) and hence b @ ¢ < P. This leads to a

contradiction.a ® (b® ¢)=(@@a ® b) ® @ ® c). u
Following Corollary can be proved by Lemma 3.8 and lemma 4.17
Corollary 4.18: For any ideal | of a hyperlattice L,

I=N{P | PisaprimeidealinL,a € P}
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Theorem 4.19: In a hyperlattice L
1) L is complemented
2) Every prime filter in L is maximal
3) Complement of a maximal ideal in L is a maximal filter.
4) Every prime ideal in L is maximal
5) Complement of a maximal filter in L is a maximal ideal.
Then (1) = (2) =(3) = (1) and (1) = (4) =(5) =(1).

Proof: (1) = (2) Let Q be any prime filter in L (a® b) N Q = ¢, thisimpliessae Qorbe Qand Q= F <L for
some filter Fin L, xé F and x & Q. Since L is Complemented, x” exist thatis a, € x ® x’ €L. Since zero element
a, existinQ.x ® x’€Qsuchthatx& Q=x"€Q =x"€F.x ® x’éF,a, €x ® x’€F = F=L. F contains

complement for each element. This proves that Q is a maximal.

(2) = (3) Let (2) holds. As any maximal ideal is prime (by Lemma 2.4.9) we get L\ M is a maximal filter in L.

(3) = (1) - Let L be not complemented. There does not exista’elL anda; € | , a, €0 suchthat a, €a ® a’,
& €a ® a’ and O | -0. There exist maximal ideal M containing O disjoint with I. Therefore L\ M is a maximal

filterasae L\M, be L\Msuchthat a,ca ® bbutthen b €0 €M = b €M, a contradiction. Hence there exist

number a in L such that | 7O-@ L is complemented. .

Dually we can prove (1)= (4)= (5) = ().

As an immediate consequence of the theorem, we have
Corollary 4.20: Let L be a distributive hyperlattice .

1) L is a Boolean algebra
2) Complement of every maximal filter in L is a maximal ideal.

3) Complement of every maximal ideal in L is a maximal filter
4) Every prime filter in L is maximal

5) Every prime ideal is a maximal ideal.

Then (1)= (2)= (3)= (4) = (5).

Now we have the following Lemma.
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Lemma 4.21: Let Q be a hon empty proper subset of a hyperlattice L. Then Q is a filter if and only if L\ Q is a prime

ideal.

Proof: Let Q be filter of hyperlattice L. To prove L\ Qisan ideal. Leta,b e L\Q. Thatisa,b £Q .Qis afiltera
@ b < Q. Thisimpliesa ©® b< L\Q. Nowletae L\Q,xeLandxgL\Q.Sox € Q €L impliessa ® x < L and
a®x £Q .Thereforea ® x < L\Q. Toprove L\Q isaprimeideal. Letx,yeLsuchthat x ® y € L\Q.Sox® y
Z Q and hence either x €Q ory &Q as Q is Filter .This implies, either x € L\Q ory € L\ Q. Therefore L\ Q is a
prime ideal. Conversely, let L\ Q be a prime ideal and x, y € Q. Clearly x, y& L\ Q and hence x® y £ L\ Q as L\Q is

a prime ideal. Thus x® y € Q. Suppose x € Q = x L\ Q. Since L\Q is an ideal , we have y £L\Q .Hencey € Q.

This implies Q is a filter. "

Dually we can prove the following Lemma 2.4.22.

Lemma 4.22: Let P be a non empty proper subset of hyperlattice L. Then P is a prime ideal if and only if L\P is a

prime filter.
Now we prove Stone’s Separation theorem for hyperlattices.

Theorem 4.23: Let (L, ®, @) be a distributive hyperlattice. If | and D are an ideal and filter respectively such that |
N D =@ .Then there exists a prime ideal P of L suchthat | CP and P N D = @.

Proof:
Let F={A | Alisanideal of L,J €A, AN F =@ }.Clearly ‘Fsatisfies Ascending chain condition. Therefore

F has a maximal element M .Now we prove M is prime . Leta @b €M for a, b € L also a and b does not belongs to
MAsa €M =M cM @ (a] € F Thisimplies M ® (a] N F£ o .Thereexists x€ M ® (a/ N F.Andas b M
>M ® (b NF = 0. Thereexistsye M @ (b] N F .Thereforex ®y € (M @ (a] ) N\(M @ (b]) EM @ ((a] N

(b)) M @ (@a®b] (by Lemma2.3.12) a ® bcM thenx ® y € M. Also,x e F,y € F and Fisafilterx ®y cF

. Therefore x ® y €M N F = ©.A contradiction , Provinga ® bcM =a€eMorb e M. "

Dually,we have

Theorem 4.24: Let (L, ®, @) be a hyperlattice. If J and F are an ideal an filter respectively such that J N F =@
.Then there exists a prime filter Q of L suchthatF € Q and J N Q = @.

Corollary 4.25: Let L be a distributive hyperlattice. Let a¢ J, J is an ideal in L. Then there exist a prime ideal
containing J and not containing a.

Proof:

AsagJ,weget/a) NJ=0.1fx€fa)NJ =2x€[a) and x € Jwhich impliesxea @ x andx € J Jisan
ideal , impliesa @ x <J ifand only ifa € J, a contradiction. Hence by stone theorem there exist a prime ideal P
suchthat) € Pand [a) NP =0.A4s [a) NJ=0=a¢&P,

This proves the theorem.

Following corollary can be proved by theorem 4.24 and corollary 4.25
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Corollary 4.26: Let L be a distributive hyperlattice. Let a ¢ D, J is an ideal in L. Then there exist a prime filter
containing F and not containing a.

Now we prove the following corollary.

Corollary 4.27: Let a # b in L. where L is a distributive hyperlattice .Then there exist a prime ideal containing

exactly one of a and b.

Proof: Let J= (a] and F=[b) .ThenJ N F=8. Hence by stone’s theorem there exist a prime ideal P such that (a] € P
and PN [ b)=0.Thatisa € Pand b & P. Therefore there exist a prime ideal P < (a/and not containing /b).
[]

Following corollary can be proved by stone’s theorem and corollary 4.26

Corollary 4.28: Let a= b in L. where L is a distributive hyperlattice .Then there exist a prime filter containing exactly
one ofa and b.

The following theorem extends the classical result of Nachbin for hyperlattices. This theorem is proved for 0-1
distributive lattice by Pawar and Lokhande [17].

Theorem 4.29 (Nachbin’s theorem): Let L be a bounded distributive hyperlattice. L is complemented if and only if the
set of all prime ideals of L is not ordered.

Proof: If L is complemented , then every prime ideal of L is maximal (by lemma 4.12). Hence the set of all prime
ideals of L is unordered. Conversely, Let L be not complemented such that A° N A' = o .

where, A°={beL|x€b® x,beb ® x,x€L}
A'={aeL|xea® x,x€a ®x,x€eL}.
As L is distributive, A' is filter in L (by lemma 4.17) .

consider the filter F=A' @ [a), IfA° CF thenbeb® aforsomeb e A'anda e b @ a for some a € [a)
by definition of filter [a) and b € A' , Therefore be A°. But then b € A° N 4' = 9, a contradiction. A° & F and this will
imply that F is a proper filter of L. AsA° € L, F € G € L. F must be contained in some maximal filter say G of L.
Now, define P=L\G. Then P is prime ideal of L (by Lemma 4.21).Therefore F N P =@ . As a € F we get ag P.
Consider the ideal Q =P @ (a]. IfA' € Q,thenb € b @ a, by definition of ideal Q for some b € P and by
definition of (a],a€ a® b, forsomeb e P, b €A C F andthus b € F N P = 8. a contradiction

Therefore A' ¢ Q. Q is proper. Q & M < L.L is being distributive hyperlattice; M is prime (by lemma 2.4.9).
a € M and ag P shows that P < M. This not possible as the set of all prime ideals of L is not ordered .Hence for each
a€L, (A° N A4") = o .Hence L is complemented.

]
Theorem 4.30 : Let J be an ideal of hyperlattice L.A filter M disjoint from J is a maximal filter disjoint from J if and
onlyifforall,agM, 3 be Mst a® bcJ.

Proof: Let M be a maximal filter such that it is disjoint from Jand a & M. Leta ® b & J for all b € M. Consider M;
={x €L ;x€b® x, b € M}. Clearly M; is filter by the proof of lemma 2.4.17. For any b € M, b € b® b always,
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which implies M €M;. AlsoM;NJ= @ . Ifnotlet,ae MyNJ >a€l, aeM; Soaeb® a, andbe M SLand Jis
an ideal b® a < J, a contradiction. Hence M; N J = @. Now Mc M; .which is the contradiction to the maximality of
M. Hence there must exist b € M such that a ® b < J. Conversely, if M is not maximal among the filters disjoint from
J, then there exist a filter M; D M and disjoint from J. For any , a € M; \ M ,there exist b € M such thata ® b = J.

Hence a, b € My M;is afilter , this impliesa ® b = M;, a contradiction .Hence M must be a maximal filter disjoint
from A.
[ ]

5. Minimal prime ideals of hyperlattice:

Definition 5.1: A prime ideal P of L is said to be minimal prime ideal if there is no prime ideal which is properly
contained in P. A prime filter G of L is said to be maximal prime filter if there is no prime filter which is properly
contains the filter G.

Lemma 5.2: Let F be a non empty subset of a hyperlattice L . F is a maximal filter if and only if L \ F is a minimal
prime ideal.

Proof:
Let F be a maximal filter and L\ F is not a minimal prime ideal. Then there exists a prime ideal such that P €
L\ F which implies that F € L\ P. which contradicts to the maximality of F. Hence L\ F is minimal prime ideal.
Conversely, Let L\ F be a minimal prime ideal and F is not a maximal filter .Thus there exist a proper filter Q such
that F € Q which implies F is maximal filter.
]

The following lemma can be proved dually.

Lemma 5.3: P is a Minimal prime ideal of L if and only if L \ P is a only maximal prime filter.
Now we have the following result.

Theorem 5.4: Every prime ideal of hyperlattice contains a minimal prime ideal.

Proof: Let P be a prime ideal of L. Let F=L\ P. Then F is a prime filter .Then by ACC. There is a maximal prime filter

GinL. FEG=L\GCL|F =P. Therefore (by lemma 5.3) L-G is a minimal prime ideal contained in P. u
Definition 5.5: Let L be a hyperlattice. For Ac L,
we define A ={x€L[x® acJforallacA}
Lemma 5.6: Aj ={x€eL | x® ac) ,forallae€A}isan ideal.
[]

Proof: The proof is straight forward.

Now we have the following result which is a generalization of theorem 6 in [11].

Theorem 5.7: Let A be a non empty subset of a hyperlattice L. Then Aj is the intersection of all minimal prime

ideals not containing A.
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Proof: Let L be a hyperlattice. Let x € Aj thenx ® a cJ foralla€eA.p e X.since AZP,y e Abut y &P then x

®ycd,Jisprime.J cP =x €PasPisprime,x €X. Conversely, IetxeX,ifxe‘Aj‘ x® y&J forye

A LetD =[x ® y). Dis filter disjoint from J. Then by lemma (Filter disjoint from ideal I is contained maximal
filter disjoint from 1). There is a maximal filter M 2 D but disjoint from J. Then by duality of lemma 5.3, L\ M is
minimal prime ideal containing J. Now xgL\ M, x €D =x € M. Moreover A £L\Masy €A. L\ M is minimal

prime ideal.y € A ,butx ® yZJ,yeL\M .Therefore AZ L\M.But yeM(yeD)=yeL\M. u

Now we have the following result which is a generalization of theorem 3.1 in [13]

Theorem 5.8: Let L be a hyperlattice. Then the following Statements (1) to (4) are equivalent and any one of them
implies (5) ,(6),(7)

1) L is distributive hyperlattice
2) Every maximal filter of L is prime.
3) If M is a maximal filter of L, L\M is a maximal prime ideal.
4) Every proper filter of L is disjoint from a minimal prime ideal.
5) For each non zero element a of L, there is a minimal prime ideal not containing a
6) For each non zero element a of L, there is a prime ideal not containing a
7) Prime filter contain each non zero element of L .
Proof: (1) = (2) by lemma 4.17
(2) = (3) Suppose (2) holds. Let M be any maximal filter of L. By lemma 5.3 (Duality) ,
L\ M is a minimal prime ideal.

(3) = (4) Suppose (3) holds .Let A be any proper filter of L. A S M for some maximal filter M. by (3) ,L\Misa
minimal prime ideal. Clearly An (L\M) =@ .

(4= (1) Letx,y,zeLsuchthat x® y) @ (x® 2) € x® (y® z) .Let(x® y) ® x® z)] =l and[ x® (y®
2)=F.As(x® y) ® x® 2)) c x® (y® z) we get | NF=a.By (4), there exist a prime ideal P such that Pn F=g.
and ISP (x® y) ® (x®z) )=l cPand (x® (y® z))nP =0 butthen (Xx® y) ® (x® z)) €P and [x® (Y&
7)) £P (Since Pn F=0). Furthermore, If x € P and y @ z is an element of L .Therefore x® (y® z) € P asP isan
ideal, a contradiction. Therefore L is distributive.

(4) = (5) Suppose (4) holds. Let a be any non zero element of L and Q be a minimal prime ideal of L , by (4), [a) is
disjoint from a minimal prime ideal Q. Therefore a Q.

(5) = (6) obvious.

(6)= (7) Suppose (6) holds. Let a be any non zero element of L. By (6), there is a prime ideal A such that a £ A. By

duality of lemma 4.21, L\ A'is a prime filter and clearlya e L\ A . u
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Theorem 5.9: L be an ideal of L. Then a prime ideal P containing J is a minimal prime ideal containing J if and only
if for each x € P there isy € L\P such that x® y <J.

Proof: Let P be a minimal prime ideal containing J . Let x € P. Suppose forall y e L\Pand x® y £J. Set D = (L \
P) @ [x). Suppose D N J = @.Then by corollary 2.4.26 of stones theorem, There is a prime filter Q such that D £ Q
and Q NJ = @. As Q is prime filter. Therefore L\ Q is a prime ideal and J €L\ Q. Since L\P €D £Q. We get L\
Q c€Pandhence L\Q =P = Q=L \P. Sothatx € L\P. This is a contradiction. Therefore DNJ=@.LetzeDNJ
impliesze [(L\P) ® /x)) NJ=z€(L\P) ® [x)andz€ J. Asz€ (L\P) ® [x) =z €y ® awherey e L\P and a
€E[X) .zey ® a, Since [x) principal filter = zey ® (a®x) =2z€ (y® a) ® (y ® x). Now let us assume
(y® a) £€J.Ifsoye L\Pand asJcL\QcP , y &J.

Moreover a € [x) € P .So x € P for some x € J. Therefore a € J. A contradiction.So y ® a c€J. AlsozeJ,z€
Y® a)® (y® x)and y ® a cJimplies y ® x €J. That is for every x € Pthereisy ¢P suchthaty ® x<J.
Conversely, Let P be a prime ideal of L containing J such that the given condition holds. Let Q be a prime ideal
containing J such that Q€ P. Let x € P. Then there isy € L\P such that x ® y < J,as Q containing J. Since Q is prime

and yZQ, implies x € Q. Hence P £Q. Q = P. Therefore P is a minimal prime ideal containing ).
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