
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 7 502 – 506

502

IJRITCC | July 2017, Available @ http://www.ijritcc.org

Vigorous Module Based Data Management

M. P. Bidve

Department of Computer Science and Engineering

M.S.Bidve Engg. Collage

Latur, Maharastra, India

manishabidve2@gmail.com

Prof. N. J. Pathan

Department of Computer Science and Engineering

M.S.Bidve Engg. Collage

Latur, Maharastra, India

pathan_nj@rediffmail.com

Abstract— Data is important in today’s life and it must be saved using less amount of memory. Data is important in day to day life for many

purposes, like Government activities, any organization needs their own database, hospitals, schools etc. It is necessary to save data into database

as per the user’s query generation with less memory conjunction. One of the novel techniques we have developed for saving data into database

by using file similarity algorithm. This technique is used to split the text file into number of paragraphs and save these paragraphs using

appropriate reference number. These reference numbers are stored in database, whenever same paragraph will appeared in another text file it will

check database and then save the other references of that file which are new for that file. This technique requires less memory and data can be

stored in appropriate manner.

.

Keywords-component: OWL, DL-Lite, File-Similarity

__*****___

I. INTRODUCTION

The Web Ontology Language is a family

of knowledge representation languages for

authoring ontologies. Ontologies are a formal way to describe

taxonomies and classification networks, essentially defining the

structure of knowledge for various domains: the nouns

representing classes of objects and the verbs representing

relations between the objects. Ontologies resemble class

hierarchies in object-oriented programming but there are

several critical differences. Class hierarchies are meant to

represent structures used in source code that evolve fairly

slowly (typically monthly revisions) whereas ontologies are

meant to represent information on the Internet and are expected

to be evolving almost constantly. Similarly, ontologies are

typically far more flexible as they are meant to represent

information on the Internet coming from all sorts of

heterogeneous data sources. Class hierarchies on the other hand

are meant to be fairly static and rely on far less diverse and

more structured sources of data such as corporate databases[1].

The history of artificial intelligence shows that knowledge is

critical for intelligent systems. In many cases, better knowledge

can be more important for solving a task than better algorithms.

To have truly intelligent systems, knowledge needs to be

captured, processed, reused, and communicated. Ontologies

support all these tasks. The term "ontology" can be defined as

an explicit specification of conceptualization. Ontologies

capture the structure of the domain, i.e. conceptualization. This

includes the model of the domain with possible restrictions.

The conceptualization describes knowledge about the domain,

not about the particular state of affairs in the domain. In other

words, the conceptualization is not changing, or is changing

very rarely. Ontology is then specification of this

conceptualization - the conceptualization is specified by using

particular modeling language and particular terms. Formal

specification is required in order to be able to process

ontologies and operate on ontologies automatically.

Ontology describes a domain, while a knowledge base

(based on an ontology) describes particular state of affairs[2].

Each knowledge based system or agent has its own knowledge

base, and only what can be expressed using ontology can be

stored and used in the knowledge base. When an agent wants to

communicate to another agent, he uses the constructs from

some ontology. In order to understand in communication,

ontologies must be shared between agents[2][3]. The OWL

languages are characterized by formal semantics. They are built

upon a W3C XML standard for objects called the Resource

Description Framework (RDF). OWL and RDF have attracted

significant academic, medical and commercial interest[1].

In many application domains (e.g., medicine or

biology), comprehensive schemas resulting from collaborative

initiatives are made available. For instance, Systematized

Nomenclature of Medicine (SNOMED) is an ontological

schema containing more than 400,000 concept names covering

various areas such as anatomy, diseases, medication, and even

geographic locations. Such well-established schemas are often

associated with reliable data that have been carefully collected,

cleansed, and verified, thus providing reference ontology-based

data management systems (DMSs) in different application

domains. A good practice is therefore to build on the efforts

made to design reference DMSs whenever we have to develop

our own DMS with[5].

II. DL-LITE

As usual in DLs, DL-Lite allows for denoting binary

relations between objects. DL-Lite concepts are defined as

follows:

B ::= A ǀ ƎR ǀ ƎR¯

C ::= B ǀ ¬B ǀ C1 ∏ C2

where A denotes an atomic concept and R denotes an

(atomic) role; B denotes a basic concept that can be either an

atomic concept, a concept of the form ƎR, specifically, the

standard DL construct of unqualified existential quantification

on roles, or a concept of the form ƎR¯, which involves an

inverse role. C (possibly with subscript) denotes a (common)

concept. Note that thwy uses reversal of basic concepts only,

and we do not allow for disjunction.

http://www.ijritcc.org/
https://en.wikipedia.org/wiki/Knowledge_representation
https://en.wikipedia.org/wiki/Ontology_(computer_science)
https://en.wikipedia.org/wiki/Class_hierarchies
https://en.wikipedia.org/wiki/Class_hierarchies
https://en.wikipedia.org/wiki/Class_hierarchies
https://en.wikipedia.org/wiki/Object-oriented_programming
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
http://www.obitko.com/tutorials/ontologies-semantic-web/communication-between-agents.html
http://www.obitko.com/tutorials/ontologies-semantic-web/communication-between-agents.html
http://www.obitko.com/tutorials/ontologies-semantic-web/communication-between-agents.html
http://www.obitko.com/tutorials/ontologies-semantic-web/communication-between-agents.html
https://en.wikipedia.org/wiki/Semantics_of_programming_languages
https://en.wikipedia.org/wiki/W3C
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Resource_Description_Framework
https://en.wikipedia.org/wiki/Resource_Description_Framework
https://en.wikipedia.org/wiki/Resource_Description_Framework

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 7 502 – 506

503

IJRITCC | July 2017, Available @ http://www.ijritcc.org

A DL-Lite knowledge base (KB) is constituted by two

apparatus: a TBox used to represent intensional knowledge,

and an ABox, used to represent extensional information. DL-

Lite TBox assertions are of the form:

B ∈ C inclusion assertions

(funct R), (funct R¯) functionality assertions

 An inclusion declaration expresses that a basic

concept is subsumed by a common concept, while a

functionality assertion expresses the (inclusive) functionality

of a role, or of the inverse of a role.

As for the ABox, DL-Lite allows for assertions of the form:

B(a), R(a, b) membership assertions

where a and b are constants. These assertions utter

respectively that the object denoted by a is an instance of the

basic concept B, and that the pair of objects denoted by (a, b)

is an instance of the role R.

Although DL-Lite is fairly simple from the language

point of vision, it allows for querying the extensional

knowledge of a KB in a much extra authoritative way than

common DLs, in which only membership to a concept or to a

role can be asked. Expressly, DL-Lite allows for using

conjunctive queries of random complexity. A conjunctive

query (CQ) q over a knowledge base K is an look of the form:

where are the so-called well-known variables,

are existentially quantified variables called the non- well-

known variables, and conj(,) is a conjunction of atoms of

the form B(z), or R(z1, z2), where B and R are respectively a

basic concept and a role in K, and z, z1, z2 are constants in K

or variables in or . Sometimes, for simplifying details,

we will use the Datalog sentence structure, and write queries

of the above form as q() ←body(,) where the

existential quantification Ǝ has been ready inherent, and the

symbol “,” is used for conjunction in body(,).

The semantics of DL-Lite is specified in terms of

interpretations over a permanent endless domain Δ. They

assume to have one constant for each object, denoting

accurately that object. In other terms, they have standard

names [15], and they will not differentiate among the alphabet

of constants and Δ.

An interpretation I = (Δ,.
I
) consists of a initial order

arrangement over Δ with an interpretation function .
I
 such

that:

A
I ⊑ Δ R

I
 ⊑ Δ × Δ

(¬B)
I
 = Δ\ B

I
 (ƎR)

I
 = {cǀƎc

’
. (c, c’) ∈ R

I
}

(C1 ⊓ C2)
I
=C1

I
 ∩ C2

I
 (ƎR¯)

I
 ={cǀƎc

’
. (c, c’) ∈ R

I
}

An interpretation I is a model of an inclusion

assertion B ⊑ C if and only if B
I
 ⊑ C

I
; I is a model of a

functionality assertion (funct R) if (c, c’) ∈ R
I ∧ (c, c”) ∈ R ⊃

c’= c”, similarly for (funct R¯); I is a form of a membership

assertion B(a) (resp. R(a, b)) if a ∈ BI (resp. (a, b) ∈ R
I
). A

model of a KB K is an interpretation I that is a model of all the

assertions in K. A KB is satisfiable if it has at least one model.

A KB K sensibly implies an assertion α if all the models of K

are also models of . A query q()Ǝ ← ,conj (,) is

interpreted in an interpretation I as the set q
I
 of tuples ~c ∈ Δ

× ... × Δ such that when replace with the variables with

the constants ~c, the method Ǝ .conj (,) evaluates to

true in I.

 Ever since DL-Lite deals with conjunctive queries,

the vital logic services that are of interest are:

 query answering: known a query q with illustrious

variables and a KB K, return the set ans(q;K) of

tuples ~c of constants of K such that in each model I

of K we have ~c ∈ q
I
. Note that this job generalizes

instance checking in DLs, i.e., inspection whether a

given object is an example of a specified concept in

each model of the knowledge base.
 query containment: specified two queries q1 and q2

and a KB K, validate whether in every model I of K

q1
I
 ⊑ q2

I
 . Note That this job generalizes logical

implication of inclusion assertions in DLs.
 KB satisfiability: verify whether a KB is satisfiable.

Example 1 Let the infinitesimal concepts Professor and

Student, the roles TeachesTo and HasTutor, and the following

DL-Lite TBox T :

Professor ⊑ ƎTeachesTo Student ⊑ ƎHasTutor

ƎTeachesTo¯ ⊑ Student ƎHasTutor¯ ⊑ Professor

Professor ⊑ ¬Student (funct HasTutor).

Suppose that the ABox A contains just the assertion

(John,Mary). At last, think the query q(x) ←TeachesTo(x,y),

HasTutor(y, z), asking for professors that teach to students that

have a tutor.

Even though prepared with higher logic services, at

initial sight DL-Lite might seem rather feeble in modeling

intensional knowledge, and therefore of partial use in practice.

Although the ease of its language and the specific form of

inclusion assertions acceptable, DL-Lite is capable to capture

the major notions (though not all, obviously) of both

ontologies, and of intangible modeling formalisms used in

databases and software engineering. In particular, DL-Lite

assertions allow to specify ISA, e.g., stating that concept A1 is

subsumed by concept A2, using A1 ⊑ A2; disjointness, e.g.,

between concepts A1 and A2, using A1 ⊑ ¬A2; role-typing,

e.g., stating that the first (resp., second) component of the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 7 502 – 506

504

IJRITCC | July 2017, Available @ http://www.ijritcc.org

relation R is an instance of A1 (resp., A2), using ƎR ⊑ A1

(resp., ƎR¯ ⊑ A2); participation constraints, e.g., stating that

all instances of concept A participate to the relation R as the

first (resp., second) component, using A ⊑ ƎR (resp., A ⊑

ƎR¯); non-participation constraints, using A ⊑ ¬ƎR and A ⊑

¬ƎR¯; functionality restrictions on relations, using (funct R)

and (funct R¯). Notice that DL-Lite is a firm subset of OWL

Lite, the fewer expressive sublanguage of OWL, which

presents various constructs (e.g., some kinds of role limits)

that are non expressible in DL-Lite, and that make logic in

OWL Lite non- well-mannered in general.[14]

III. MODEL DEVELOPMENT

The current trend for building an ontology-based data

management system is to capitalize on efforts made to design

a preexisting well established DMS. The method amount’s to

extracting from the reference DMS a piece of schema relevant

to the new application needs a module, possibly personalizing

it with extra-constraints with respect to the application under

construction, and then managing a dataset using the resulting

schema.

3.1 Proposed System

Here, we extend the existing definitions of modules

and we introduce novel properties of robustness that provide

means for checking easily that a robust module-based DMS

evolves safely with respect to both the schema and the data of

the reference DMS We carry out our investigations in the

splitting of documents into paragraphs instead of ontological

language, like RDFS, OWL, and OWL2 from W3C. Notably,

we focus on the splitting of paragraphs, and the extensions of

file for comparison purpose for efficiently managing large

datasets.

3.2Advantages

1. This is very useful to maintain data.

2. Redundancy is avoided.

3. For execution it requires less time so increases system

efficiency.

3.3 Scope

Our main Aim is to restore the database for user

satisfaction Data handling we introduce novel properties of

robustness that provide means for checking easily that a robust

module-based DMS evolves safely with respect to both the

schema and the data of the reference DMS. We carry out our

investigations in the splitting of document into paragraphs and

store the references of each text file instead of signature logics

which underlie modern ontology languages, like RDFS, OWL,

and OWL2 from W3C.

3.4 Data Flow Diagram

FIGURE 3.1 Data Flow Diagram

3.2.3 File Similarity

Algorithm for file similarity is as following:

1. Select the particular file which you want to save.

2. Check the extension of the File

3.If extension is txt:

i. Accept the file path.

User Login

Check username and

password

Choose text file input

Split file into

paragraph and save

reference

Check extension of file

Check font and

contents Check tag value

Save into database

logout

Construct graph for time and memory

utilization

Invalid

valid

pdf xml

txt

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 7 502 – 506

505

IJRITCC | July 2017, Available @ http://www.ijritcc.org

ii. Divide the file paragraph wise.

iii. Compare each paragraph with the database.

iv. If paragraph already present then return the reference

instead of saving it

v. If no similar paragraph saved in folder save that paragraph

with reference no.

vi. Finally return all reference and save in database.

3. If extension is pdf:

i. Accept the file path.

ii. Read the file.

iii. Compare the file with database file.

iv. Check for each and every contents and font.

v. If equal return the reference.

vi. Else save in database.

vii. Finally return all reference and save in database.

3. If extension is XML:

i. Accept the file path.

ii. Read the file.

iii. Compare the file with database file.

iv. Check with file whether it is similar or identical

v. If equal return the reference.

vi. Else save in database.

vii. Finally return all reference and save

IV. RESULT

Proposed system is tested on text, pdf and xml dataset which is

kept in a folder. By using this technique on the text document

it is split into number of paragraphs and stored into a folder

with unique reference number. If same paragraph will appear

in other text file then it is not stored into a file and it will just

provide the reference number of that paragraph into database.

FIGURE 4.1 Graph of Memory Utilization for Module

Extractor and File Similarity.

FIGURE 4.2 Graph of Time Needed for Execution for Module

Extractor and File Similarity.

CONCLUSIONS

The modules introduced in existing paper generalize

both the modules obtained by extracting a subset of a schema

with respect to selected relations or by forgetting about

relations. In addition, in contrast with existing work, we have

considered the problem of safe personalization of modules

built from an existing reference DMS. This raises new issues

to check easily that a module-based DMS evolves

independently but coherently with respect to the reference

DMS from which it has been built. We have developed file

similarity technique where text data is split into number of

paragraphs these paragraphs are stored in a folder with unique

reference number. Whenever next time same paragraph will

occur in the file it will just provide the same reference number

to that paragraph which is already stored in folder. An

extensive analysis has been carried out on the performance of

our technique on dataset used for existing system. Our

technique offers better performance with less time even when

the module extractor need first OWL file which is generated

manually by using protégé software which take more time to

execution.

REFERENCES

[1] https://en.wikipedia.org/wiki/Web_Ontology_Language

[2] http://www.obitko.com/tutorials/ontologies-semantic-

web/ontologies.html

[3] Shweta B.Barshe, D.K.Chitre “Agricuture System based on

OntologyAgroSearch”, IJETAE, vol. 2, no. 8, 2012

[4] A. Bonnaccorsi, “On the Relationship between Firm Size and

Export Intensity,” Journal of International Business Studies,

XXIII (4), 1992, pp. 605-635.

[5] Francois Goasdou, and Marie-Christine Rousset, “Robust

Module Based Data Management”, Institute of Electricals and

Electronic Engineering , vol. 25, no. 3, 2013.

[6] R. Caves, Multinational Enterprise and Economic Analysis,

Cambridge University Press, Cambridge, 1982.

[7] M. Clerc, “The Swarm and the Queen: Towards a Deterministic

and Adaptive Particle Swarm Optimization,” In Proceedings of

the IEEE Congress on Evolutionary Computation (CEC), 1999,

pp. 1951-1957.

[8] H.H. Crokell, “Specialization and International

Competitiveness,” in Managing the Multinational Subsidiary,

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 7 502 – 506

506

IJRITCC | July 2017, Available @ http://www.ijritcc.org

H. Etemad and L. S, Sulude (eds.), Croom-Helm, London,

1986.

[9] K. Deb, S. Agrawal, A. Pratab, T. Meyarivan, “A Fast Elitist

Non-dominated Sorting Genetic Algorithms for Multiobjective

Optimization: NSGA II,” KanGAL report 200001, Indian

Institute of Technology, Kanpur, India, 2000.

[10] J. Geralds, "Sega Ends Production of Dreamcast," vnunet.com,

para. 2, Jan. 31, 2001.

[11] S. Abiteboul and O. Duschka. “Complexity of answering

queries using materialized views”. In Proc. of PODS’98, pages

254–265.

[12] S. Abiteboul, R. Hull, and V. Vianu. “Foundations of

Databases”. Addison Wesley Publ. Co., 1995.

[13] M. Arenas, L. E. Bertossi, and J. Chomicki. “Consistent query

answers in inconsistent databases”. In Proc. of PODS’99, pages

68–79.

[14] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F.

Patel-Schneider, editors. “The Description Logic Handbook:

Theory, Implementation and Applications”. Cambridge

University Press, 2003.

[15] A. Borgida and R. J. Brachman. “Conceptual modeling with

description logics. In Baader et al”. chapter 10, pages 349–372.

[16] A. Borgida, R. J. Brachman, D. L. McGuinness, and L. A.

Resnick. “CLASSIC: A structural data model for objects”. In

Proc. of ACM SIGMOD, 1989, pages 59–67.

[17] L. Bravo and L. Bertossi. “Logic programming for consistently

querying data integration systems”. In Proc. of IJCAI 2003,

pages 10–15.

[18] A. Cal`ı, D. Lembo, and R. Rosati, “On the decidability and

complexity of query answering over inconsistent and

incomplete databases”. In Proc. of PODS 2003, pages 260–271.

[19] D. Calvanese. Reasoning with inclusion axioms in description

logics: Algorithms and complexity. In Proc. of ECAI’96, pages

303–307. John Wiley & Sons.

[20] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R.

Rosati. “What to ask to a peer: Ontology-based query

reformulation”. In Proc. of KR 2004, pages 469–478.

[21] D. Calvanese, G. De Giacomo, and M. Lenzerini. “Answering

queries using views over description logics knowledge bases”.

In Proc. of AAAI 2000, pages 386–391.

http://www.ijritcc.org/

