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Abstract:  Principal component Analysis (PCA) has gained much attention among researchers to address the pboblem of high dimensional data 

sets.during last decade a non-linear variantof PCA has been used to reduce the dimensions on a non linear hyperplane.This paper reviews the 

various Non linear techniques ,applied on real and artificial data .It is observed that Non-Linear PCA outperform in the counterpart in most cases 

.However exceptions are noted. 
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I. INTRODUCTION 

 Data collection and Data storage capacity is 

improving day by day, which led to exponential rise in data 

and information .Many scientists and researchers are working 

on different field like engineering, astronomy, medical, 

remote sensing, e-commerce ,social networking and media 

etc are facing high volume of data transaction on daily basis 

.It become challenge in data analysis to deal with high 

volume data. Traditional statistical methods are not 

performing well because of  increase in  observation  but 

mostly because of  high dimension data set used  for the 

observation. 

 Real world data usually has high dimensionality,its 

dimensionality needs to be reduced. Dimensionality 

reduction is the process of reducing the dimension by 

transforming the high dimensional data into low dimension 

without loosing the parameter require to analyses the 

property of data .The reduced representation should have a 

dimensionality that corresponds to the intrinsic 

dimensionality of the data. The intrinsic dimensionality of 

data is the minimum number of parameters needed to 

account for the observed properties of the data [1].In many 

Domains Dimensionality reduction is important , since it 

reduces the curse of dimensionality and other unwanted 

properties of high-dimensional spaces [2].Dimensionality 

reduction will smooth the classification, visualization and 

compression  of high dimension data. Traditionally Principal 

component analysis and (PCA) and factor Analysis was 

implemented for dimensionality reduction [3].However 

complex Nonlinear problems cannot solved by these linear 

techniques. Therefore from the last few years several non 

linear  techniques  was proposed  . Non linear techniques  

have advantage over linear techniques  solve the problems of 

real world .Real world data are nonlinear in nature .From the 

previous research it is observed that the nonlinear techniques 

are performing better then  linear techniques on artificial 

task. For instance, the Swiss roll dataset comprises a set of 

points that lie on a spiral-like two-dimensional manifold 

within a three-dimensional space. A vast number of 

nonlinear techniques are perfectly able to find this 

embedding, whereas linear techniques fail to do so.In 

contrast to that success of non linear techniques over  natural 

dataset  is poor. Above all it is not clear that upto what exent 

the performance of non linear technique  differ from the 

linear technique[7].The aims of the paper is to identify the 

weaknesses of nonlinear techniques and suggest how the 

perfornmance of system are improved . The investigation is 

performed by both a theoretical and an empirical evaluation 

of the dimensionality reduction techniques. 

their linear counterparts on complex artificial tasks. For 

instance, the Swiss roll dataset comprises a set of points that 

lie on a spiral-like two-dimensional manifold within a three-

dimensional space. A vast number of nonlinear techniques 

are perfectly able to find this embedding, whereas linear 

techniques fail to do so. In contrast to these successes on 

artificial datasets, successful applications of nonlinear 

dimensionality reduction techniques on natural datasets are 

scarce. Beyond this observation, it is not clear  

 

II.   DIMENSIONALITY REDUCTION 

 High-dimensional data, meaning data that requires 

more than two or three dimensions to represent, can be 

difficult to interpret. One approach to simplification is to 

assume that the data of interest lie on an embedded non-

linear manifold within the higher-dimensional space. If the 

manifold is of low enough dimension, the data can be 

visualized in the low dimensional space.The problem of 

(nonlinear) dimensionality reduction can be defined as 

follows[8]. Assume we have a dataset represented in a n×D 

matrix X consisting of n data vectors xi (iϵ {1, 2, . . . , n}) 

with dimensionality D. Assume further that this dataset has 

intrinsic dimensionality d (where d < D, and often d _ D). 

Here, in mathematical terms, intrinsic dimensionality means 

that the points in dataset X are lying on or near a manifold 

with dimensionality d that is embedded in the D-dimensional 

space. Dimensionality reduction techniques transform dataset 

X with dimensionality D into a new dataset Y with 

dimensionality d, while retaining the geometry of the data as 

much as possible. In general, neither the geometry of the data 

manifold, nor the intrinsic dimensionality d of the dataset X 
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are known. Therefore, dimensionality reduction is an ill-

posed problem that can only be solved by assuming certain 

properties of the data (such as its intrinsic dimensionality). 

Throughout the paper, we denote a high-dimensional 

datapoint by xi, where xi is the ith row of the D-dimensional 

data matrix X. The low-dimensional counterpart of xi is 

denoted by yi, where yi is the ith row of the d-dimensional 

data matrix Y . In the remainder of the paper, we adopt the 

notation presented above. 
 Figure 1 shows a taxonomy of techniques for 

dimensionality reduction. The main distinction between 

techniques for dimensionality reduction is the distinction 

between linear and nonlinear techniques. Linear techniques 

assume that the data lie on or near a linear subspace of the 

high-dimensional space. Nonlinear techniques for 

dimensionality reduction do not rely on the linearity 

assumption as a result of which more complex embedding of 

the data in the high-dimensional space can  

 

 
 

Fig. 1 Taxonomy for Dimensionality Reduction[8] 

 

 

 

 In machine learning and statistics, dimensionality 

reduction is the process of reducing the number of random be 

identified. variables under consideration, [9] and can be 

divided into feature selection and feature extraction. [10]  

 

A. Feature selection 

 Feature selection approaches try to find a subset of 

the original variables (also called features or attributes). Two 

strategies are filter (e.g. information gain) and wrapper (e.g. 

search guided by the accuracy) approaches. In some cases, 

data analysis such as regression or classification can be done 

in the reduced space more accurately than in the original 

space. 

 

B. Feature extraction 

 Feature extraction transforms the data in the high-

dimensional space to a space of fewer dimensions. The data 

transformation may be linear, as in principal component 

analysis (PCA), but many nonlinear dimensionality reduction 

techniques also exist. [11, 12] For multidimensional data, 

tensor representation can be used in dimensionality reduction 

through multilinear subspace learning. [13]  

 

III.  NONLINEAR TECHNIQUES FOR 

DIMENSIONALITY REDUCTION 

 

Consider a dataset represented as a matrix (or a database 

table), such that each row represents a set of attributes (or 

features or dimensions) that describe a particular instance of 

something. If the number of attributes is large, then the space 

of unique possible rows is exponentially large. Thus, the 

larger the dimensionality, the more difficult it becomes to 

sample the space. This causes many problems. Algorithms 

that operate on high-dimensional data tend to have a very 

high time complexity. Many machine learning algorithms, 

for example, struggle with high-dimensional data. This has 

become known as the curse of dimensionality. Reducing data 

into fewer dimensions often makes analysis algorithms more 

efficient, and can help machine learning algorithms make 

more accurate predictions. 

     In this section, we discuss nonlinear techniques for 

dimensionality reduction, as well as their weaknesses and 

applications as reported in the literature. Nonlinear 

techniques for dimensionality reduction can be subdivided 

into three main types :( 1) techniques that attempt to preserve 

global properties of the original data in the low dimensional 

representation, (2) techniques that attempt to preserve local 

properties of the original data in the low-dimensional 

representation, and (3) techniques that perform global 

alignment of a mixture of linear models. 

 

A. Global Techniques for Non Linear Dimensionality 

Reduction 

 Global techniques preserve the global properties of 

data. There are six global nonlinear techniques for 

dimensionality reduction: (1) MDS, (2) Isomap, (3) MVU, 

(4) Kernel PCA, (5) auto encoders and (6) diffusion map. 

1) MDS: 

 

Multidimensional scaling (MDS) represents a collection of 

nonlinear techniques that maps the high dimensional data 

representation to a low-dimensional representation while 

retaining the pairwise distances be-tween the data points as 

much as possible. The quality of the mapping is expressed in 

the stress function, a measure of the error between the 

pairwise distances in the low-dimensional and high-

dimensional representation of the data. Two important 

examples of stress functions (for metric MDS) are the raw 

stress function and the Summon cost function. 

 

 

2) Isomap: 

In statistics, Isomap is one of the widely used low-

dimensional embedding methods, where geodesic distances 

on a weighted graph are incorporated with the classical 

scaling (metric multidimensional scaling). Isomap is used for 

computing a quasi-isometric, low-dimensional embedding of 

a set of high-dimensional data points. The algorithm provides 

a simple method for estimating the intrinsic geometry of a 

data manifold based on a rough estimate of each data point’s 
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neighbors on the manifold. Isomap is highly efficient and 

generally applicable to a broad range of data sources and 

dimensionality. 

 Isomap is one representative of isometric mapping 

methods, and extends metric multidimensional scaling 

(MDS) by incorporating the geodesic distances imposed by a 

weighted graph. To be specific, the classical scaling of 

metric MDS performs low-dimensional embedding based on 

the pairwise distance between data points, which is generally 

measured using straight-line Euclidean distance. Isomap is 

distinguished by its use of the geodesic distance induced by a 

neighborhood graph embedded in the classical scaling. This 

is done to incorporate manifold structure in the resulting 

embedding. Isomap defines the geodesic distance to be the 

sum of edge weights along the shortest path between two 

nodes (computed using Dijkstra's algorithm, for example). 

The top n eigenvectors of the geodesic distance matrix, 

represent the coordinates in the new n-dimensional Euclidean 

space. 

 The connectivity of each data point in the 

neighborhood graph is defined as its nearest k Euclidean 

neighbors in the high-dimensional space. This step is 

vulnerable to "short-circuit errors" if k is too large with 

respect to the manifold structure or if noise in the data moves 

the points slightly off the manifold. Even a single short-

circuit error can alter many entries in the geodesic distance 

matrix, which in turn can lead to a drastically different (and 

incorrect) low-dimensional embedding. Conversely, if k is 

too small, the neighborhood graph may become too sparse to 

approximate geodesic paths accurately. 

Following the connection between the classical scaling and 

PCA, metric MDS can be interpreted as kernel PCA. In a 

similar manner, the geodesic distance matrix in Isomap can 

be viewed as a kernel matrix. The doubly centered geodesic 

distance matrix K in Isomap is of the form 

 

 Where is the 

elementwise square of the geodesic distance matrix D = 

[Dij], H is the centering matrix, given by 

 

However, the kernel matrix K is not always positive semi 

definite. The main idea for kernel Isomap is to make this K 

as a Mercer kernel matrix (that is positive semi definite) 

using a constant-shifting method, in order to relate it to 

kernel PCA such that the generalization property naturally 

emerges. 

3) Maximum Variance unfolding: 

Semidefinite embedding (SDE) or maximum variance 

unfolding (MVU) is an algorithm in computer science that 

uses semi programming to perform non-linear dimensionality 

reduction of high-dimensional Victoria input data.  MVU can 

be viewed as a non-linear generalization of Principal 

component analysis. Non-linear dimensionality reduction 

algorithms attempt to map high-dimensional data onto a low-

dimensional Euclidean vector space. Maximum variance 

Unfolding is a member of the manifold learning family, 

which also include algorithms such as isomap and locally 

linear embedding. In manifold learning, the input data is 

assumed to be sampled from a low dimensional manifold that 

is embedded inside of a higher dimensional vector space. The 

main intuition behind MVU is to exploit the local linearity of 

manifolds and create a mapping that preserves local 

neighborhoods at every point of the underlying 

manifold.MVU creates a mapping from the high dimensional 

input vectors to some low dimensional Euclidean vector 

space in the following steps: A neighborhood graph is 

created. Each input is connected with its k-nearest input 

vectors (according to Euclidean distance metric) and all k-

nearest neighbors are connected with each other. If the data 

is sampled well enough, the resulting graph is a discrete 

approximation of the underlying manifold. The 

neighborhood graph is "unfolded" with the help of semi 

definite programming. Instead of learning the output vectors 

directly, the semi definite programming aims to find an inner 

product matrix that maximizes the pairwise distances 

between any two inputs that are not connected in the 

neighborhood graph while preserving the nearest neighbor’s 

distances. The low-dimensional embedding is finally 

obtained by application of multidimensional scaling on the 

learned inner product matrix. The steps of applying semi 

definite programming followed by a linear dimensionality 

reduction step to recover a low-dimensional embedding into 

a Euclidean space were first proposed by Linial, London, and 

Rabinovich.     

4) Kernel Principal Component Analysis:  

Perhaps the most widely used algorithm for manifold 

learning is kernel PCA [14].It is a combination of 

Principal component analysis and the kernel trick. 

PCA begins by computing the covariance matrix of 

the matrix  

 

It then projects the data onto the first k eigenvectors of that 

matrix. By comparison, KPCA begins by computing the 

covariance matrix of the data after being transformed into a 

higher-dimensional space, 

 

It then projects the transformed data onto the first k 

eigenvectors of that matrix, just like PCA. It uses the kernel 

trick to factor away much of the computation, such that the 
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entire process can be performed without actually 

computing . Of course must be chosen such that it 

has a known corresponding kernel. Unfortunately, it is not 

trivial to find a good kernel for a given problem, so KPCA 

does not yield good results with some problems. For 

example, it is known to perform poorly with the Swiss roll 

manifold. 

KPCA has an internal model, so it can be used to map points 

onto its embedding that were not available at training time. 

5) Auto encoders 

An auto encoder is a feed-forward neural network which is 

trained to approximate the identity function. That is, it is 

trained to map from a vector of values to the same vector. 

When used for dimensionality reduction purposes, one of the 

hidden layers in the network is limited to contain only a 

small number of network units. Thus, the network must learn 

to encode the vector into a small number of dimensions and 

then decode it back into the original space. Thus, the first 

half of the network is a model which maps from high to low-

dimensional space, and the second half maps from low to 

high-dimensional space. Although the idea of auto encoders 

is quite old, training of deep auto encoders has only recently 

become possible through the use of restricted Boltzmann 

machines and stacked demising auto encoders.  

6) Diffusion Maps 
Diffusion maps is a machine learning algorithm introduced 

by R. R. Coif man and S. Landon.[15, 16] It computes a 

family of embedding of a data set into Euclidean space (often 

low-dimensional) whose coordinates can be computed from 

the eigenvectors and eigenvalues of a diffusion operator on 

the data. The Euclidean distance between points in the 

embedded space is equal to the "diffusion distance" between 

probability distributions centered at those points. Different 

from other dimensionality reduction methods such as 

principal component analysis (PCA) and multi-dimensional 

scaling (MDS), diffusion maps is a non-linear method that 

focuses on discovering the underlying manifold that the data 

has been sampled from. By integrating local similarities at 

different scales, diffusion maps gives a global description of 

the data-set. Compared with other methods, the diffusion 

maps algorithm is robust to noise perturbation and is 

computationally inexpensive. 

B) Local Techniques 

 

Local Techniques for dimensionality reduction are based 

preserving   properties of small neighborhoods around the 

data points. By preservation of local properties of the data, 

the global layout of the data manifold is retained as well. 

This subsection presents four local nonlinear techniques for 

dimensionality reduction: (1) LLE, (2) Laplacian Eigen 

maps, (3) Hessian LLE, and (4) Modified LLE (5) LTSA  

1) Locally-Linear Embedding 

Locally-Linear Embedding (LLE) [17] was presented at 

approximately the same time as Isomap. It has several 

advantages over Isomap, including faster optimization when 

implemented to take advantage of sparse matrix algorithms, 

and better results with many problems. LLE also begins by 

finding a set of the nearest neighbors of each point. It then 

computes a set of weights for each point that best describe 

the point as a linear combination of its neighbors. Finally, it 

uses an eigenvector-based optimization technique to find the 

low-dimensional embedding of points, such that each point is 

still described with the same linear combination of its 

neighbors. LLE tends to handle non-uniform sample 

densities poorly because there is no fixed unit to prevent the 

weights from drifting as various regions differ in sample 

densities. LLE has no internal model. 

LLE computes the barycentric coordinates of a point Xi 

based on its neighbors Xj. The original point is reconstructed 

by a linear combination, given by the weight matrix Wij, of 

its neighbors. The reconstruction error is given by the cost 

function E (W). 

 

The weights Wij refer to the amount of contribution the point 

Xj has while reconstructing the point Xi. The cost function is 

minimized under two constraints: (a) Each data point Xi is 

reconstructed only from its neighbors, thus enforcing Wij to 

be zero if point Xj is not a neighbor of the point Xi and (b) 

The sum of every row of the weight matrix equals 1. 

 

The original data points are collected in a D dimensional 

space and the goal of the algorithm is to reduce the 

dimensionality to d such that D >> d. The same weights Wij 

that reconstructs the ith data point in the D dimensional space 

will be used to reconstruct the same point in the lower d 

dimensional space. A neighborhood preserving map is 

created based on this idea. Each point Xi in the D 

dimensional space is mapped onto a point Yi in the d 

dimensional space by minimizing the cost function 

 

In this cost function, unlike the previous one, the weights Wij 

are kept fixed and the minimization is done on the points Yi 

to optimize the coordinates. This minimization problem can 

be solved by solving a sparse N X N Eigen value problem (N 

being the number of data points), whose bottom d nonzero 

Eigen vectors provide an orthogonal set of coordinates. 

Generally the data points are reconstructed from K nearest 

neighbors, as measured by Euclidean distance. For such an 

implementation the algorithm has only one free parameter K, 

which can be chosen by cross validation. 
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2) Laplacian Eigen maps 

Laplacian Eigen maps [18] uses spectral techniques to 

perform dimensionality reduction. This technique relies on 

the basic assumption that the data lies in a low dimensional 

manifold in a high dimensional space.[19] This algorithm 

cannot embed out of sample points, but techniques based on 

Reproducing kernel Hilbert space regularization exist for 

adding this capability.[19] Such techniques can be applied to 

other nonlinear dimensionality reduction algorithms as well. 

Traditional techniques like principal component analysis do 

not consider the intrinsic geometry of the data. Laplacian 

Eigen maps builds a graph from neighborhood information 

of the data set. Each data point serves as a node on the graph 

and connectivity between nodes is governed by the proximity 

of neighboring points (using e.g. the k-nearest neighbor 

algorithm). The graph thus generated can be considered as a 

discrete approximation of the low dimensional manifold in 

the high dimensional space. Minimization of a cost function 

based on the graph ensures that points close to each other on 

the manifold are mapped close to each other in the low 

dimensional space, preserving local distances. The Eigen 

functions of the Laplace–Beltrami operator on the manifold 

serve as the embedding dimensions, since under mild 

conditions this operator has a countable spectrum that is a 

basis for square integral functions on the manifold (compare 

to Fourier series on the unit circle manifold). Attempts to 

place Laplacian Eigen maps on solid theoretical ground have 

met with some success, as under certain nonrestrictive 

assumptions, the graph Laplacian matrix has been shown to 

converge to the Laplace–Beltrami operator as the number of 

points goes to infinity. [21] Mat lab code for Laplacian Eigen 

maps can be found in algorithms [22] and the PhD thesis of 

Belkin can be found at the Ohio State University [21]. 

 

3) Hessian LLE 
Like LLE, Hessian LLE [23] is also based on sparse matrix 

techniques. It tends to yield results of a much higher quality 

than LLE. Unfortunately, it has a very costly computational 

complexity, so it is not well-suited for heavily-sampled 

manifolds. It has no internal model. 

 

4) Modified LLE 
Modified LLE (MLLE) [24] is another LLE variant which 

uses multiple weights in each neighborhood to address the 

local weight matrix conditioning problem which leads to 

distortions in LLE maps. MLLE produces robust projections 

similar to Hessian LLE, but without the significant additional 

computational cost. 

 

5) Local Tangent Space Alignment 
Local tangent space alignment (LTSA) [25] is a method for 

manifold learning, which can efficiently learn a nonlinear 

embedding into low-dimensional coordinates from high-

dimensional data, and can also reconstruct high-dimensional 

coordinates from embedding coordinates. It is based on the 

intuition that when a manifold is correctly unfolded, all of 

the tangent hyperplanes to the manifold will become aligned. 

It begins by computing the k-nearest neighbors of every 

point. It computes the tangent space at every point by 

computing the d-first principal components in each local 

neighborhood. It then optimizes to find an embedding that 

aligns the tangent spaces, but it ignores the label information 

conveyed by data samples, and thus cannot be used for 

classification directly. 

 

C) Global Alignment of Linear Models 

 Techniques that perform global alignment of linear models 

combine these two types: they compute a number of locally 

linear models and perform a global alignment of these linear 

models. There are two such techniques (1) LLC (2) manifold 

charting. 

1) LLC 

 

Locally Linear Coordination (LLC) [25] computes a number 

of locally linear models and subsequently performs a global 

alignment of the linear models. This process consists of two 

steps: (1) computing a mixture of local linear models on the 

data by means of an Expectation Maximization (EM) 

algorithm and (2) aligning the local linear models in order to 

obtain the low dimensional data representation using a 

variant of LLE. 

 

2) Manifold Charting 

 

Similar to LLC, manifold charting constructs a low 

dimensional data representation by aligning a MoFA or 

MoPPCA model [26]. In contrast to LLC, manifold charting 

does not minimize a cost function that corresponds to another 

dimensionality reduction technique (such as the LLE cost 

function). Manifold charting minimizes convex cost function 

that measures the amount of disagreement between the linear 

models on the global coordinates of the data points. The 

minimization of this cost function can be performed by 

solving a generalized Eigen problem. 

 

IV. CONCLUSIONS 

 

This paper presents a review of techniques for Non Linear 

dimensionality reduction. From the analysis  we may 

conclude that nonlinear techniques for dimensionality 

reduction are, despite their large variance, not yet capable of 

outperforming traditional PCA. In the future, we look 

forward to  implement new nonlinear techniques for 

dimensionality reduction that do not rely on local properties 

of the data manifold. 
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