
International Journal on Recent and Innovation Trends in Computing and Communication                               ISSN: 2321-8169 

Volume: 5 Issue: 7                                                    189 – 194 

_______________________________________________________________________________________________ 

189 
IJRITCC | July 2017, Available @ http://www.ijritcc.org 
_______________________________________________________________________________________ 

Analytic Analysis for Oil Recovery During Cocurrent Imbibition in Inclined 

Homogeneous Porous Medium 

 
Dipak J. Prajapati 

Department of Mathematics  

Government Engineering College, Modasa 

Gujarat, India 

djganit@gmail.com 

 

N. B. Desai 

Department of Mathematics 

A. D. Patel Institute of Technology, 

New V. V. Nagar, India 

drnbdesai@yahoo.co.in 

 

Abstract—This paper focuses on the analysis of cocurrent imbibition phenomenon which occurs during secondary oil recovery process.In 

cocurrent imbibition, a strongly wetting phase(water) displaces a non-wetting phase(oil) spontaneously under the influence of capillary forces 

such that the oil moves in the same direction to the water. We use an optimal homotopy analysis method to derive an approximate analytical 

expression for saturation of water when the viscosity of the non-wetting phase is non-negligible. 
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I. INTRODUCTION 

When a porous medium is partially covered by water, oil 

recovery is dominated by cocurrent imbibition i.e. the 

production of non-wetting phase has the same direction of 

flow as the wetting phase.This phenomenon has been studied 

by many researchers and solved by different methods [1-5]. To 

find the distribution of water saturation in porous medium, 

pertaining nonlinear partial differential equation(PDE) should 

be solved with appropriate conditions. The purpose of this 

work is to solve nonlinear PDE describing cocurrent 

imbibition in inclined homogeneous porous medium by 

Optimal Homotopy analysis method(OHAM).This method has 

been applied recently to a number of problems for solving 

nonlinear ordinary and partial differential equations[15-26].  

During secondary oil recovery process, it is assumed that 

the water is injected into fractured oil saturated 

inclinedhomogeneous porous medium and cocurrent imbibition 

occurs. It is also assumed that the macroscopic behavior of 

fingers is governed by statistical treatment. Thus, only average 

cross- sectional area occupied by fingers is taken into account, 

the size and shape of individual fingers are ignored. The 

velocities of both the phases are considered under gravitational 

and inclination effect. We assume that the porosity and the 

permeability of the porous medium are constant for the 

investigated flow system. The saturation of injected water 

S𝑖 𝑥, 𝑡  is then defined as the average cross-sectional area 

occupied by injected water at distance 𝑥 and time 𝑡. 

II. GOVERNING EQUATIONS 

The generalized Darcy’s law for the wetting and non-
wetting phases[7]: 

𝑉𝑖 = −
𝑘𝑖

𝜇𝑖

𝐾  
𝜕𝑝𝑖

𝜕𝑥
+ 𝜌𝑖𝑔𝑠𝑖𝑛𝜃                    (1) 

𝑉𝑛 = −
𝑘𝑛

𝜇𝑛

𝐾  
𝜕𝑝𝑛

𝜕𝑥
+ 𝜌𝑛𝑔𝑠𝑖𝑛𝜃                    (2) 

where 𝑉𝑖  and 𝑉𝑛are the velocities of water and oil respectively, 

𝑘𝑖  and 𝑘𝑛 are the relative permeabilities of water and 

oilrespectively,𝜇𝑖  and𝜇𝑛  are the constant viscosities of water 

and oil respectively, 𝐾 is the permeability of the inclined 

homogeneous porous medium, 𝑝𝑖 and 𝑝𝑛 are the pressures of 

water and oil respectively, 𝜌𝑖and 𝜌𝑛are the constant densities 

of water and oil respectively, 𝑔 is the acceleration due to 

gravity, 𝜃 is the angle of inclination with porous matrix. 

Mass balance of water volume assuming incompressible 

flow in one dimension with no overall flow can be expressed as 

follows [7-8]: 

𝑃
𝜕𝑆𝑖

𝜕𝑡
+

𝜕𝑉𝑖

𝜕𝑥
= 0                                      (3) 

where𝑃 is the porosity of the medium.  

The expression of the total velocity 𝑉𝑡 of two phases in 

cocurrent imbibition phenomenon can be written as [11] 

𝑉𝑡 = 𝑉𝑖 + 𝑉𝑛                                        (4) 

The relation between the capillary pressure  𝑝𝑐  generated 

by an interface and the difference in pressure across the 

interface between the non-wetting and wetting phases is [9]: 

𝑝𝑐 = 𝑝𝑛 − 𝑝𝑖                                       (5) 

We assume the linear relationship between capillary 

pressure and phase saturation as [12] 

𝑝𝑐 𝑆𝑖 = −𝛽𝑆𝑖                                   (6) 
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where𝛽 is a constant. 

According to Scheidegger and Johnson [13], we consider 

the analytical relationship between relative permeability and 

phase saturation as 

𝑘𝑖 = 𝑆𝑖                                             (7) 

The pressure of injected water can be expressed in the form 

𝑝𝑖 =
𝑝𝑛 + 𝑝𝑖

2
+

𝑝𝑖 − 𝑝𝑛

2
= 𝑝 −

1

2
𝑝𝑐                        (8) 

where𝑝  is the average pressure which is constant. 

Using (1) to (8), we obtain the following nonlinear partial 

differential equation for the saturation of injected phase: 

             𝑃
𝜕𝑆𝑖

𝜕𝑡
−

𝐾𝛽

2𝜇𝑖

𝜕

𝜕𝑥
 𝑆𝑖

𝜕𝑆𝑖

𝜕𝑥
 −

𝐾𝜌𝑖𝑔𝑠𝑖𝑛𝜃

𝜇𝑖

𝜕𝑆𝑖

𝜕𝑥
= 0          (9) 

Using dimensionless variables 

𝑋 =
𝑥

𝐿
,           𝑇 =

𝐾𝛽𝑡

2𝜇𝑖𝐿
2𝑃

 

(9) reduces to 

𝜕𝑆𝑖

𝜕𝑇
=

𝜕

𝜕𝑋
 𝑆𝑖

𝜕𝑆𝑖

𝜕𝑋
 + 𝐴

𝜕𝑆𝑖

𝜕𝑋
                          (10) 

where𝐴 =
2𝐿𝜌𝑖𝑔𝑠𝑖𝑛  𝜃

𝛽
 and 𝑆𝑖 𝑥, 𝑡 = 𝑆𝑖 𝑋, 𝑇 . 

Eq. (10) is the nonlinear partial differential equation 

governing cocurrent imbibition phenomenon in inclined 

homogeneous porous medium. The solution of this equation 

represents the water saturation. 

We assume following boundary conditions for the 

saturation of injected phase: 

𝑆𝑖 0, 𝑇 = 𝑎𝑇     𝑓𝑜𝑟 𝑇 > 0                         (11) 

and 

𝑆𝑖 1, 𝑇 = 𝑏𝑇     𝑓𝑜𝑟 𝑇 > 0                         (12) 

where𝑎and 𝑏 are constants. 

We solve (10) together with boundary conditions (11) and 

(12) using optimal homotopy analysis method to obtain 

saturation distribution of water. 

III. OPTIMAL HOMOTOPY ANALYSIS SOLUTION 

To solve(10) by optimal homotopy-analysis method, we 

choose the initial approximation 

𝑆𝑖0
 𝑋, 𝑇 = 𝑎𝑇 +

 𝑏 − 𝑎  1 − 𝑒−𝑋 

 1 − 𝑒−1 
𝑇              (13) 

of 𝑆𝑖 𝑋, 𝑇 which satisfies boundary conditions and the 

auxiliary linear operator as 

            ℒ 𝜑 𝑋, 𝑇; 𝑞  =
𝜕2𝜑 𝑋, 𝑇; 𝑞 

𝜕𝑋2
+

𝜕𝜑 𝑋, 𝑇; 𝑞 

𝜕𝑋
           (14) 

with the property  ℒ 𝐶 = 0 , where 𝐶 is integral constant 

and  𝜑 𝑋, 𝑇; 𝑞  is an unknown function.Furthermore, in the 

view of (10), we have defined the nonlinear operator as

 

  𝒩 𝜑 𝑋, 𝑇; 𝑞  = 𝜑 𝑋, 𝑇; 𝑞 
𝜕2𝜑 𝑋, 𝑇; 𝑞 

𝜕𝑋2
+  

𝜕𝜑 𝑋, 𝑇; 𝑞 

𝜕𝑋
 

2

 

+ 𝐴
𝜕𝜑 𝑋, 𝑇; 𝑞 

𝜕𝑋
−

𝜕𝜑 𝑋, 𝑇; 𝑞 

𝜕𝑇
               (15) 

By means of the optimal homotopy analysis-method, Liao 

[20] constructs the so-called zeroth-order deformation 

equation  

 1 − 𝑞 ℒ 𝜑 𝑋, 𝑇; 𝑞 − 𝑆𝑖 0
 𝑋, 𝑇  

= 𝑐0𝑞𝐻 𝑋, 𝑇 𝒩 𝜑 𝑋, 𝑇; 𝑞                      (16) 

where 𝑞 ∈  0,1  is the embedding parameter, 𝑐0 ≠ 0  is 

convergence control parameter and𝐻 𝑋, 𝑇 is nonzero auxiliary 

function.  

It is obvious that for the embedding parameter 𝑞 = 0and 

𝑞 = 1, (16) becomes 

                             𝜑 𝑋, 𝑇; 0 =   𝑆𝑖 0
 𝑋, 𝑇                                  (17) 

and 

                             𝜑 𝑋, 𝑇; 1 =   𝑆𝑖 𝑋, 𝑇                                  (18) 

respectively. Thus, as 𝑞 increases from 0 to 1, the solution 

𝜑 𝑋, 𝑇; 𝑞 varies from the initial guess 𝑆𝑖 0
 𝑋, 𝑇  to the solution 

𝑆𝑖 𝑋, 𝑇  of (10). 

Obviously, 𝜑 𝑋, 𝑇; 𝑞 is determined by the auxiliary linear 

operator ℒ , the initial guess 𝑆𝑖0
 𝑋, 𝑇  and the auxiliary 

parameter 𝑐0. We have great freedom to select all of them. 

Assuming that all of them are so properly chosen that the 

Taylor series 

            𝜑 𝑋, 𝑇; 𝑞 = 𝑆𝑖0
 𝑋, 𝑇 +  𝑆𝑖𝑚

 𝑋, 𝑇 𝑞𝑚

∞

𝑚=1

              (19) 

exists and converges at 𝑞 = 1, we have the homotopy-series 

solution 

𝑆𝑖 𝑋, 𝑇 = 𝑆𝑖0
 𝑋, 𝑇 +  𝑆𝑖𝑚

 𝑋, 𝑇 

∞

𝑚=1

                   (20) 

where 
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𝑆𝑖𝑚
 𝑋, 𝑇 =  1

𝑚!

𝜕𝑚𝜑 𝑋, 𝑇; 𝑞 

𝜕𝑞𝑚
 
𝑞=0

                        (21) 

Differentiating the zeroth order deformation equation (16) 

𝑚 times with respect to the embedding parameter 𝑞 and then 

dividing by 𝑚! and finally setting 𝑞 = 0, we have the so called 

high order deformation equation 

  ℒ 𝑆𝑖𝑚
 𝑋, 𝑇 − 𝜒𝑚𝑆𝑖𝑚−1

 𝑋, 𝑇  = 𝑐0𝐻 𝑋, 𝑇 ℛ𝑚  𝑋, 𝑇    (22) 

subject to the boundary conditions 

𝑆𝑖𝑚
 0, 𝑇 = 0 and𝑆𝑖𝑚

 1, 𝑇 = 0, 𝑚 ≥ 1          (23) 

where 

ℛ𝑚  𝑋, 𝑇 =  1

 𝑚 − 1 !

𝜕𝑚−1𝒩 𝜑 𝑋, 𝑇; 𝑞  

𝜕𝑞𝑚−1
 
𝑞=0

, 𝑚 ≥ 1    (24) 

 

and 𝜒𝑚 =  
0, 𝑖𝑓 𝑚 ≤ 1
1,         𝑖𝑓 𝑚 > 1.

  25  

For simplicity, assume𝐻 𝑋, 𝑇 = 1.Theeqs. (22) are second 

order ordinary linear differential equations for all  𝑚 ≥ 1and 

can be solved by symbolic computation software such as 

Mathematica. Thus we convert the original nonlinear problem 

(10)-(11)-(12) into an infinite sequence of linear sub-problems 

governed by (22)-(23). 

Hence the approximate analytical solution to the given 

nonlinear problem takes the following form: 

𝑆𝑖 𝑋, 𝑇 = 𝑎𝑇 + 𝛼 1 − 𝑒−𝑋 𝑇

+ 𝑐0  
1 − 𝑒−𝑋

1 − 𝑒−1
 𝛼𝑎𝑒−1𝑇2 + 𝛼2𝑒−2𝑇2

− 𝛼𝑒−1𝐴𝑇 + 𝛼𝑒−1 + 𝑎 + 𝛼 + 𝛼2𝑒−𝑋𝑇2

− 𝛼2𝑒−𝑋𝑋𝑇2 − 𝑎𝛼𝑒−𝑋𝑋𝑇2 − 𝛼2𝑒−2𝑋𝑇2

+ 𝛼𝐴𝑒−𝑋𝑋𝑇 − 𝛼𝑒−𝑋𝑋 − 𝑎𝑋 − 𝛼𝑋 

+ ⋯                                                                 (26) 

where𝛼 =
𝑏−𝑎

1−𝑒−1 . 

The solution represents the saturation distribution of water 

𝑆𝑖 𝑋, 𝑇  at distance 𝑋  and time 𝑇 . The convergence of the 

solution depends on the convergence control parameter 𝑐0. As 

shown in [14, 17, 20], we can determine the possible optimal 

value of convergence-control parameter𝑐0 by minimizing the 

averaged squared residual 

𝐸𝑚 =
1

 𝑀 + 1  𝑁 + 1 
   𝒩   𝑆𝑖 𝑛

 
𝑖

𝑀
,
𝑗

𝑁
 

𝑚

𝑛=0

  

2𝑁

𝑗 =0

𝑀

𝑖=0

     (27) 

where we have chosen 𝑀 = 𝑁 = 50in this paper. 

At the given order of approximation, the minimum of the 

averaged squared residual corresponds to the optimal 

approximation. 

The value of 𝑐0  can be optimally identified from the 

condition  

𝑑𝐸𝑚  𝑐0 

𝑑𝑐0

= 0                                   (28) 

In this paper, the command NMinimize of the computer 

algebra system Mathematica is used to find out the minimum of 

averaged squared residual and the corresponding optimal 

convergence-control parameter. 

IV. NUMERICAL RESULTS AND DISCUSSION 

To obtain the numerical values of the solution, we assume 

the value of constants as 𝐿 = 1; 𝜌𝑖 = 0.1;  𝑔 = 9.8; 𝛽 =

2;  𝑎 = 0.001; 𝑏 = 0.01; 𝛼 = 0.01;  𝐴 = 0 for𝜃 = 0° ; 𝐴 =

0.09 for𝜃 = 5°; 𝐴 = 0.17 for𝜃 = 10°. 

A. 𝜃 = 0° inclination with porous matrix. 

Fig.1 shows the curve of averaged squared residual at the 

10th order of approximation𝐸10  versus 𝑐0 when𝜃 = 0° . Using 

Mathematica, we find that 𝐸10  has its minimum value 
61097134.7  at 𝑐0 = −0.83which can be seen in Fig. 1. 

 

 
Fig.1. Averaged Squared Residual 𝐸10when θ = 0°.  

 

Table 1 indicates the numerical values of saturation of 

injected water up to 10th order approximation when θ =

0°using 𝑐0 = −0.83. The graph of saturation of injected water 

versus distance 𝑋for fixed time 𝑇 = 10, 20, … , 100 is shown 

in Fig. 2. 
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Fig.2: Saturation of water versus distance 𝑋 for fixed time 

𝑇 = 10, 20, … , 100when𝜃 = 0°. 

 

B. 𝜃 = 5° inclination with porous matrix. 

Fig.3 shows the curve of averaged squared residual at the 

10th order of approximation𝐸10  versus 𝑐0when 𝜃 = 5°. Using 

Mathematica, we find that 𝐸10  has its minimum value 
51045049.2  at 𝑐0 = −0.84 which can be seen in Fig. 3 

also. 

 

 
Fig.3. Averaged Squared Residual 𝐸10whenθ = 5°. 

 

The numerical values of saturation of injected water up to 

10th order approximation are obtained when θ = 5°  using 

𝑐0 = −0.84 (Table 2). Fig.4 shows the graph of saturation of 

injected water versus distance 𝑋  for fixed time 𝑇 =

10, 20, … , 100. 

 

Fig.4: Saturation of water versus distance 𝑋 for fixed time  

𝑇 = 10, 20, … , 100when θ = 5°. 

 

C. 𝜃 = 10° inclination with porous matrix. 

Fig.5 shows the curve of averaged squared residual at the 

10th order of approximation𝐸10  versus 𝑐0when θ = 10°.Using 

Mathematica, we find that 𝐸10  has its minimum value 
51068927.6  at 𝑐0 = −0.57which can be seen in Fig. 5 

also. 

 

 Fig.5: Averaged Squared Residual 𝐸10when θ = 10°. 

 

Table 3 indicates the numerical values of saturation of 

injected water up to 10th order approximation for θ =

10° taking 𝑐0 = −0.57 . The graph of saturation of injected 

water versus distance 𝑋  for fixed time 𝑇 = 10, 20, … , 100  is 

shown in Fig.6. 
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Fig.5: Saturation of water versus distance 𝑋 for fixed time  

𝑇 = 10, 20, … , 100 when 𝜃 = 10°. 

V. CONCLUSIONS 

The approximate analytical solution is obtained for the 

concurrent imbibition phenomenon in inclined homogeneous 

porous medium by optimal homotopy analysis method. The 

convergence of solution is guaranteed by using optimal value 

of convergence control parameter. The saturation of injected 

water increases when angle of inclination with porous matrix 

increases. The water saturation increases when the distance 

increases for fixed time. 
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TABLE 1: Numerical values of the saturation of injected water for𝜃 = 0°. 

T X=0.1 X=0.2 X=0.3 X=0.4 X=0.5 X=0.6 X=0.7 X=0.8 X=0.9 X=1 

10 0.023558 0.052737 0.084317 0.117539 0.151809 0.186671 0.221786 0.256907 0.291870 0.326570 

20 0.035053 0.078396 0.124219 0.171351 0.219011 0.266713 0.314182 0.361291 0.408013 0.454380 

30 0.045124 0.099590 0.155979 0.213130 0.270387 0.327424 0.384118 0.440467 0.496523 0.552360 

40 0.054205 0.117842 0.182779 0.248077 0.313282 0.378216 0.442855 0.507238 0.571428 0.635482 

50 0.062597 0.134078 0.206341 0.278724 0.350948 0.422933 0.494692 0.566269 0.637711 0.709059 

60 0.070514 0.148886 0.227660 0.306426 0.385033 0.463450 0.541702 0.619823 0.697846 0.775797 

70 0.078112 0.162653 0.247346 0.331977 0.416475 0.500835 0.585078 0.669227 0.753306 0.837332 

80 0.085506 0.175644 0.265796 0.355878 0.445867 0.535765 0.625587 0.715349 0.805063 0.894743 

90 0.092781 0.188048 0.283283 0.378472 0.473612 0.568708 0.663765 0.758792 0.853796 0.948781 

100 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

 

TABLE 2: Numerical values of the saturation of injected water for𝜃 = 5°. 

T X=0.1 X=0.2 X=0.3 X=0.4 X=0.5 X=0.6 X=0.7 X=0.8 X=0.9 X=1 

10 0.026667 0.058488 0.092117 0.126890 0.162294 0.197947 0.233571 0.268980 0.304060 0.338751 

20 0.039914 0.086912 0.135186 0.183872 0.232434 0.280582 0.328194 0.375263 0.421848 0.468045 

30 0.050800 0.109120 0.167810 0.226225 0.284086 0.341330 0.398020 0.454269 0.510202 0.565931 

40 0.060037 0.127311 0.194233 0.260515 0.326129 .0391172 0.455784 0.520096 0.584214 0.648215 

50 0.068108 0.142791 0.216691 0.289831 0.362348 0.434407 0.506151 0.577688 0.649093 0.720414 

60 0.075353 0.156374 0.236440 0.315780 0.394605 0.473082 0.551332 0.629434 0.707439 0.785376 

70 0.082012 0.168583 0.254236 0.339284 0.423942 0.508350 0.592599 0.676742 0.760813 0.844833 

80 0.088260 0.179772 0.270561 0.360917 0.451012 0.540946 0.630776 0.720537 0.810249 0.899926 

90 0.094224 0.190186 0.285739 0.381064 0.476219 0.571373 0.666437 0.761465 0.856468 0.951454 

100 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

 

TABLE 3: Numerical values of the saturation of injected water for𝜃 = 10°. 

T X=0.1 X=0.2 X=0.3 X=0.4 X=0.5 X=0.6 X=0.7 X=0.8 X=0.9 X=1 

10 0.028016 0.059594 0.092584 0.126638 0.161460 0.196804 0.232462 0.268268 0.304086 0.339813 

20 0.042326 0.089470 0.137675 0.186452 0.235438 0.284372 0.333078 0.381446 0.429419 0.476979 

30 0.053926 0.112824 0.172021 0.231135 0.289934 0.348293 0.406165 0.463555 0.520504 0.577070 

40 0.063524 0.131669 0.199433 0.266655 0.333284 0.399338 0.464878 0.529980 0.594728 0.659202 

50 0.071631 0.147308 0.222156 0.296233 0.369638 0.442485 0.514886 0.586944 0.658745 0.730359 

60 0.078621 0.160608 0.241569 0.321716 0.401235 0.480281 0.558978 0.637423 0.715688 0.793825 

70 0.084769 0.172164 0.258556 0.344224 0.429378 0.514171 0.598712 0.683078 0.767322 0.851480 

80 0.090283 0.182395 0.273705 0.364474 0.454883 0.545050 0.635055 0.724951 0.814770 0.904535 

90 0.095320 0.191600 0.287423 0.382953 0.478295 0.573518 0.668662 0.763753 0.858808 0.953836 

100 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
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