
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 7 141 – 144

141
IJRITCC | July 2017, Available @ http://www.ijritcc.org

Secure Transaction Model for NoSQL Database Systems: Review

Mrs. Chaitra M

Asst. Prof, Dept. of CSE

SJBIT, Bengaluru, India.

 Md Aquib Raza Usmani

1
, Priyanshu

2
, Ranjan Mishra

3
, Rashid Ahmed

4

SJBIT, Bengaluru, Karnataka

Abstract— NoSQL cloud database frameworks would consist new sorts of databases that would construct over many cloud hubs and would be

skilled about storing and transforming enormous information. NoSQL frameworks need to be progressively utilized within substantial scale

provisions that require helter skelter accessibility. What’s more effectiveness for weaker consistency? Consequently, such frameworks need help

for standard transactions which give acceptable and stronger consistency. This task proposes another multi-key transactional model which gives

NoSQL frameworks standard for transaction backing and stronger level from claiming information consistency. Those methodology is to

supplement present NoSQL structural engineering with an additional layer that manages transactions. The recommended model may be

configurable the place consistency, accessibility Furthermore effectiveness might make balanced In view of requisition prerequisites. The

recommended model may be approved through a model framework utilizing MongoDB. Preliminary examinations show that it ensures stronger

consistency Furthermore supports great execution.

Keywords—NoSQL databases, cloud, multi-key, transactions, consistency, availability, efficiency.

__*****___

I. INTRODUCTION

The concept of Big Data has led to an introduction of a new

set of databases used in the cloud computing environment,

that deviate from the characteristics of standard databases.

The design of these new databases embraces new features

and techniques that support parallel processing and

replication of data. Data are distributed across multiple

nodes and each node is responsible for processing queries

directed to its subset of data. Each subset of data managed

by a node is called shard. This technique of data storage and

processing using multiple nodes improve performance and

availability.

The architecture of these new systems, also known as

NoSQL (Not Only SQL) databases, is designed to scale

across multiple systems. In contrast to traditional relational

databases which is built on sound mathematical model,

NoSQL databases are designed to solve the problem of Big

Data which is characterized by 3Vs (Volume, Variety,

Velocity) or 4Vs (Volume, Variety, Velocity, and Value)

model. As such, NoSQL systems do not follow standard

models or design principles in processing Big Data.

Different vendors provide proprietary implementation of

NoSQL systems such that they meet their (business) needs.

For instance, unlike traditional relational database systems

which rely heavily on normalization and referential

integrity, NoSQL systems incorporate little or no

normalization in the data management. The primary

objective of NoSQL systems is to ensure high efficiency,

availability and scalability in storing and processing Big

Data. NoSQL systems do not ensure stronger consistency

and integrity of data.

They therefore do not implement ACID (Atomicity,

Consistency, Isolation and Durability) transactions.

However, it is important to provide stronger consistency

and integrity of data while maintaining appropriate levels of

efficiency, availability and scalability.

II. RELATED WORK

A. While the use of MapReduce systems for large scale

data analysis has been widely recognized and studied,

we have recently seen an explosion in the number of

systems developed for cloud data serving. These

newer systems address “cloud OLTP” applications,

though they typically do not support ACID

transactions. Examples of systems proposed for cloud

serving use include BigTable, PNUTS, Cassandra,

HBase, Azure, CouchDB, SimpleDB, Voldemort, and

many others.

B. NoSQL Cloud data stores provide scalability and high

availability properties for web applications, but at the

same time they sacrifice data consistency. However,

many applications cannot afford any data

inconsistency. CloudTPS is a scalable transaction

manager which guarantees full ACID properties for

multi-item transactions issued by Web applications,

even in the presence of server failures and network

partitions.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 7 141 – 144

142
IJRITCC | July 2017, Available @ http://www.ijritcc.org

C. Megastore is a storage system developed to meet the

requirements of today's interactive online services.

Megas- tore blends the scalability of a NoSQL

datastore with the convenience of a traditional

RDBMS in a novel way, and provides both strong

consistency guarantees and high availability. We

provide fully serializable ACID semantics within re-

grained partitions of data. This partitioning allows us

to synchronously replicate each write across a wide

area network with reasonable latency and support

seamless failover between datacenters [4]

Deuteronomy: Transaction Support for Cloud Data.

D. The Deuteronomy system supports efficient and

scalable ACID transactions in the cloud by

decomposing functions of a database storage engine

kernel into: (a) a transactional component (TC) that

manages transactions and their “logical” concurrency

control and undo/redo recovery, but knows nothing

about physical data location and (b) a data component

(DC) that maintains a data cache and uses access

methods to support a record-oriented interface with

atomic operations, but knows nothing about

transactions. The Deuteronomy TC can be applied to

data anywhere (in the cloud, local, etc.) with a variety

of deployments for both the TC and DC. In this paper,

we describe the architecture of our TC, and the

considerations that led to it. Preliminary experiments

using an adapted TPC-W workload show good

performance supporting ACID transactions for a wide

range of DC latencies.

E. ANSI SQL-92 [MS, ANSI] defines Isolation Levels in

terms of phenomena: Dirty Reads, Non Repeatable

Reads, and Phantoms. This paper shows that these

phenomena and the ANSI SQL definitions fail to

characterize several popular isolation levels, including

the standard locking implementations of the levels.

Investigating the ambiguities of the phenomena leads

to clearer definitions; in addition new phenomena that

better characterize isolation types are introduced. An

important multiversion isolation type, Snapshot

Isolation, is defined.

F. We present the design and implementation of COPS, a

key-value store that delivers this consistency model

across the wide-area. A key contribution of COPS is

its scalability, which can enforce causal dependencies

between keys stored across an entire cluster, rather

than a single server like previous systems. The central

approach in COPS is tracking and explicitly checking

whether causal dependencies between keys are

satisfied in the local cluster before exposing writes.

III. SYSTEM ARCHITECTURE

The below figure shows a general block diagram

describing the activities performed by this project. The

entire architecture has been implemented in nine

modules which we will see in high level design and

low level design in later chapters.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 7 141 – 144

143
IJRITCC | July 2017, Available @ http://www.ijritcc.org

Three major divisions in this project are

Data Access Layer

Data access layer is the one which exposes all

the possible operations on the data base to the outside

world. It will contain the DAO classes, DAO

interfaces, POJOs, and Utils as the internal

components. All the other modules of this project will

be communicating with the DAO layer for their data

access needs.

Account Operations

Account operations module provides the following

functionalities to the end users of our project.

• Register a new seller/ buyer account

• Login to an existing account

• Logout from the session

• Edit the existing Profile

• Change Password for security issues

• Forgot Password and receive the current

password over an email

• Delete an existing Account

Account operations module will be re-using the

DAO layer to provide the above functionalities.

Connection to Couch DB and Databases

Here, the end user can create a connection to

the couch DB by specifying the host name and the

port number of the installed instance. The end user can

also connect to a remote couch db that is present in a

different geographic location by just entering its host’s

IP address and the port number. The default port

number will be 5984. However, the user can modify

this during the couch DB installation. The user can

create a new data base or view the list of all existing

databases he/she have created using this module. The

user can also grant the permission on the database to

the other users of the transaction layer. By granting

the permission, the user is allowing the other

participant to perform any of the transaction

operations on the database he/she have created. In

addition to that, the user can delete the database or the

user can also remove the permission he/she had

granted to the other users.

Data Models

Here, the user can define the data model for

his dataset. We are introducing the concept of data

models to ensure that the user can perform various

data operations on any type of the data. We are strictly

refraining our self from hardcoding the data structure

thus giving a freedom to the user to define his own

data models. The user just have to define all the keys

along with the type of the data that can be a probable

value for that key, while defining the data model. The

user can also view the list of all the data models he/she

have created along with the possibility of deleting any

of them if they don’t wanted to use going forward.

Operations

Here, the end user can perform various data

operations. The possible data operations include the

write access, read access, update, or the delete access.

Before the user can perform any of these mentioned

data operations, they will have to select the database

against which the data operations must be performed.

The data operations performed on this module will not

be logging anything unlike the Transaction module.

Transactions

Here, the end user can initiate a new

transaction and perform various data operations on as

discussed in the previous division. Before the end user

can perform the transaction, he/she will have to select

the database against which the transaction has to be

executed. The database the user is going to select will

be either the one, he/she created him/herself or the one

which the other users have granted the access to it.

Each and every single operation in the transaction

session will be logged in the local mysql table and will

be available to view in the GUI. The end user can

either rollback or commit the transaction after all the

data operations he/she have performed.

Data flow diagram

A data flow diagram is the graphical

representation of the flow of data through an

information system. DFD is very useful in

understanding a system and can be efficiently used

during analysis. A DFD shows the flow of data

through a system. It view a system as a function that

transforms the inputs into desired outputs. Any

complex systems will not perform this transformation

in a single step and a data will typically undergo a

series of transformations before it becomes the output.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 7 141 – 144

144
IJRITCC | July 2017, Available @ http://www.ijritcc.org

IV. CONCLUSION

This project proposed a new model, called M-Key transaction

model, for NoSQL database systems. It provides NoSQL

databases with standard ACID transactions support that ensures

consistency of data. The project described the design of the

proposed model and the architecture within which it is

implemented. As a proof of concept the proposed approach is

implemented using real Couch DB database system.

Future work

Generalize the transaction layer to operate across multiple

NoSQL systems so that the adoption of this layer is easy.

Integrate the transaction protocol with the NOSQL system

provided as a service on the cloud.

REFERENCES

[1] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu

Ramakrishnan, Russell Sears “Benchmarking Cloud Serving

Systems with YCSB”.

[2] Z. Wei, G. Pierre, and C. H. Chi, “CloudTPS: Scalable

transactions for web applications in the cloud,” IEEE Trans. Serv.

Comput., vol. 5, 2012.

[3] J. Baker, C. Bond, J. Corbett, and J. Furman, “Megastore:

Providing Scalable, Highly Available Storage for Interactive

Services.,” Proc. of the Conference on Innovative Data system

Research (CIDR 2011), 2011.

[4] J. J. Levandoski, Lomet Mohamed F. Mokbel Kevin Keliang

Zhao “Deuteronomy: Transaction Support for Cloud Data,” Conf.

on Innov. Data Systems Research (CIDR), California, USA.vol.

48, 2011.

[5] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P.

O’Neil, “A Critique of ANSI SQL Isolation Levels”, 2007.

[6] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen,

“Don’t Settle for Eventual: Scalable Causal Consistency for

Wide-Area Storage with COPS. In: Proc. of the 23rd ACM

Symposium on Operating Systems Principles. Cascais, Portugal.

2011.

[7] D. DeWitt and J. Gray, “Parallel Database Systems: The Future

of High Performance Database Systems,” Commun. ACM, vol.

35(6), Jun. 1992.

[8] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. a. Wallach, M.

Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A

distributed storage system for structured data,” 7th Symp. Oper.

Syst. Des. Implement. (OSDI ’06), Nov. 6-8, Seattle, USA, 2006.

[9] S. Das and A. El Abbadi, “G-Store: A Scalable Data Store for

Transactional Multi key Access in the Cloud,” In: Proc. of the 1st

ACM symposium on Cloud computing. Indianapolis, USA,

ACM, 2010.

[10] A. Silberstein, A. Silberstein, B. F. Cooper, B. F. Cooper, U.

Srivastava, U. Srivastava, E. Vee, E. Vee, R. Yerneni, R.

Yerneni, R. Ramakrishnan, and R. Ramakrishnan, “PNUTS:

Yahoo!’s Hosted Data Serving PLatform,” Proc. 2008 ACM

SIGMOD Int. Conf. Manag. Data - SIGMOD ’08, 2008.

http://www.ijritcc.org/

