
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 6 1271 – 1274

1271
IJRITCC | June 2017, Available @ http://www.ijritcc.org

Analyatical Study and Evaluation of Database Optimization Techniques

Jayana Ahuja

Master of Computer Application Department

Sarvajanik Collage of Engineering & Technology

Surat, India

ahujajayana@gmail.com

Gayatri Kapadia

Master of Computer Application Department

Sarvajanik Collage of Engineering & Technology

Surat, India

gayatriskapadia@gmail.com

Abstract— Data Management can be considered as one of most crucial part in world of technology. The primary challenge is not just

maintaining data & information, but to access them in an efficient manner as well. Database optimization techniques have been designed to

address these tasks that may otherwise limit the performance of a database to an extent of vulnerability. In this paper we discuss the aspects of

performance optimization related to data access in transactional databases. Furthermore, we analyze the effect of these optimization techniques.

One of key part in database management is database management tools they provide query optimizer that helps to find out the efficient method

for SQL query statement to access requested data by user. This optimizer chooses the plan with the lowest cost among all considered candidate

plans. Optimizer uses available statistics to calculate cost, for a specific query in a given environment, the cost computation accounts for factors

of query execution such as I/O, CPU, and communication.

Keywords- Database, Optimization, Database performance, Database Management Tools

__*****___

I. INTRODUCTION

Due to fast changing nature of information technology, it

becomes very important to have powerful computers and

powerful methods to collect, store, transfer and combine huge

amounts of data but at very low cost. It will be almost

impossible to handle or access this large amount of data if all

our database operations are not optimized. When a database

associated application performs slowly, there is a 90%

probability that the data access routines of that application are

not optimized, or not written in the best possible way.

Optimization helps to find out how to view query execution

plans on your database. [1]

II. ARCHITECTURE OF QUERY PROCESSING

The Database Engine processes queries on a variety of data

storage architectures such as local tables, partitioned tables,

and tables distributed across multiple servers. The following

topics cover how SQL Server processes queries and optimizes

query reuse through execution plan caching. [2]

III. OPTIMIZATION OBJECTIVES

Objective of optimization process should be either to

maximize the output for a given number of resources or to

minimize the resources’ usage for a given output. Query

optimization tries to minimize the response time for a given

query language and mix of query types in a given system

environment[1] [11]. The total cost to be minimized is sum of

following costs:

Communication Cost:

Cost of transmitting data from the site where they are stored to

the sites where computations are performed and results are

presented.

Secondary Storage Access Cost:

The cost of loading data pages from secondary storage into

main memory.

Storage Cost:

The cost of occupying secondary storage and memory buffers.

Computation Cost:

The cost for using the central processing unit (CPU).

Typical optimizer estimate the size of the result. The result

size estimation plays an important role in cost estimation

because the output of the operation is an input of the next

operation.

IV. PRINCIPLES OF QUERY OPTIMIZATION

1. Optimizing queries with statistics:

 Query optimization with statistics uses the collected

statistics on the tables and indexes in a query to select an

execution plan that can process the query in the most efficient

manner. As a general rule, Oracle recommends that you collect

statistics on your base table if you are interested in improving

your query performance. Optimizing with statistics enables a

more accurate estimation of the selectivity and costs of the

CONTAINS predicate and thus a better execution plan.[9]

2. Optimizing queries for response time:

 A CONTAINS query optimized for response time

provides a fast solution for when you need the highest scoring

documents from a hint list. Besides using query hints, there are

other parameters that can influence query response time such

as:

 Collection of table statistics

 Memory allocation

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 6 1271 – 1274

1272
IJRITCC | June 2017, Available @ http://www.ijritcc.org

 Sorting

 Presence of LOB columns in your base table

 Partitioning

 Parallelism

 The number term expansions in your query, etc.

3. Optimizing queries for throughput:

 Query Throughput (QthD) is a measurement used to

determine the performance of a database system. The

throughput metric is a classical throughput measure

characterizing the ability of the system to support a multi-user

workload in a balanced way.

V. OPTIMIZATION TECHNIQUES:

Before you start fidgeting with individual SQL statements, it is

important to note that hints are probably the last thing you

should consider adding when attempting to optimize your

code. There are several levels of optimization [8] that you start

with the server, then the database instance, and finally go

down through the database objects to individual statements.

After all, the effect of any changes made to individual

statements, particularly hints, may be lost when the database is

fine-tuned later on.[15]

As a database developer/architect you may not want to treat

the path that leads to the desk of the DBA. Fortunately, there

is a bunch of things you can do to improve the runtime

performance of your statements: [15]

A. Indexes

 An index is a copy of selected columns of data from

a table that can be searched very efficiently that also includes a

low-level disk block address or direct link to the complete row

of data it was copied from. Some databases extend the power

of indexing by letting developers create indexes on functions

or expressions. Indexes used to improve database performance

and statistics[3][12][14]

B. Constraints

 Constraints enforce limits to the data or type of data

that can be inserted/updated/deleted from a table. The whole

purpose of [3] constraints is to maintain the data integrity

during an update/delete/insert into a table. [12][15]

C. Materialized views:

 A materialized view is a database object that contains

the results of a query. For example, it may be a local copy of

data located remotely, or may be a subset of the rows and/or

columns of a table or join result, or may be a summary using

an aggregate function. [6]

D. Indexing in the table column in the database

 We need to create primary key in every table of the

database. When we create a primary key in a table, a clustered

index tree is created and all data pages containing the table

rows are physically sorted in the file system according to their

primary key values. Each data page contains rows which are

also sorted within the data page according to their primary key

values. So, each time we ask any row from the table, the

database server finds the corresponding data page first using

the clustered index tree and then finds the desired row within

the data page that contains the primary key value[11][7]

E. Rewrite SQL statements:

● We should exclude projections that are not required.

● We should minimize the amount of work done more

than once.

● We should factor sub queries that are used multiple

times in the same statement.[16]

● We should use EXISTS instead of IN because the

former stops processing once it has found a

match.[16]

● We should use CASE and/or DECODE to avoid

having to scan the same rows over and over again,

especially for aggregation functions that act on

different subsets of the same data.

● We should use analytic functions to do multiple or

moving/rolling aggregations with a single pass

through the data.

● We should avoid scalar sub queries in the SELECT-

list.

● We should use joins instead of sub queries while

using multiple tables, as it gives the optimizer more

room to play around in.

● We should use either inner join or outer join for

better result

● We should avoid implicit conversions of data types,

especially in the WHERE clause.

● Write WHERE clause predicates with a close eye on

the indexes available, including the leading edge of a

composite index.[16]

● We should avoid, whenever possible, comparison

operators such as <>, NOT IN, NOT EXISTS, and

LIKE without a leading '%' for indexed columns in

predicates.

● Don’t abuse HAVING to filter rows before

aggregating. We should try to avoid unnecessary

sorts, including when UNION ALL rather than

UNION is applicable.

● We should not use DISTINCT unless you have to use

it.

● We should use PL/SQL, especially packages with

stored procedures (and bind variables) and shared

cursors to provide a clean interface through which all

data requests are handled. Add hints once you have

determined that it is right and necessary to do so.[16]

F. Appropriate Covering Index:

If we know that our application will be performing the

same query over and over on the same table, we should

consider creating a covering index on the table [10]. A

covering index, which is a form of a composite index, includes

all of the columns referenced in SELECT, JOIN, and WHERE

clauses of a query. Because of this, the index contains the data

we are looking for and SQL Server doesn't have to look up the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 6 1271 – 1274

1273
IJRITCC | June 2017, Available @ http://www.ijritcc.org

actual data in the table, reducing logical and/or physical I/O,

and boosting performance. On the other hand, if the covering

index gets too big (has too many columns), this could actually

increase I/O and degrade performance. So we have to be very

careful to create the covering indexes. [12][13]

VI. QUERY OPTIMIZATION PERFORMANCE EVALUATION

Explain plan helps to analyze how indexes are being used or

where not to use indexes. To generate explain plan we

required file sorts, what are the tables, columns are being

queried. And we should define query structure, alter tables,

columns and data types.

The EXPLAIN PLAN statement displays execution plans

chosen by the Oracle optimizer for SELECT, UPDATE,

INSERT, and DELETE statements. A statement's execution

plan is the sequence of operations Oracle performs to run the

statement.

 The row source tree is the core of the execution plan.

It shows the following information:

 An ordering of the tables referenced by the statement

 An access method for each table mentioned in the

statement

 A join method for tables affected by join operations

in the statement

 Data operations like filter, sort, or aggregation

In addition to the row source tree, the plan table contains

information about the following:

 Optimization, such as the cost and cardinality of each

operation

 Partitioning, such as the set of accessed partitions

 Parallel execution, such as the distribution method of

join inputs

 Here in Experimental Evaluation we have use explain

plan for below query and before indexing and after

indexing cost is different.

VII. RESULT

 Here in Experimental Evaluation we have use explain

plan for below query and before indexing and after

indexing cost is different.

Classification Result

Before Indexing 239*4079*9=8,773,929

After indexing 1 * 1 * 9 = 9

Experimental Evaluation

select C.Name, Y.Name, Y.Population, Language from Country as C, City as Y, CountryLanguage as L where Y.Name =

C.Name and L.CountryCode = Y.CountryCode and C.Name = 'Macao' ;

Generate plan:

explain select C.Name, Y.Name, Y.Population, Language from Country as C, City as Y, CountryLanguage as L where

Y.Name = C.Name and L.CountryCode = Y.CountryCode and C.Name = 'Macao' ;

----+-------------+-------+------+---------------+---------+---------+---------------------+------+--------------------------------+ | id | select_type

| table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+------+-

--------------+---------+---------+---------------------+------+------------------------------

| 1 | SIMPLE | C | ALL | NULL | NULL| NULL| NULL | 239 | Using where

 | 1 | SIMPLE | Y | ALL | NULL | NULL| NULL| NULL | 4079 | Using where; Using join buffer

 | 1 | SIMPLE | L| ref | PRIMARY | PRIMARY | 3| world.Y.CountryCode | 9 | Using index +----+-------------

+-------+------+---------------+---------+---------+-------------------

3 rows in set (0.00 sec)

- Alter table country add index

- Alter table city add index

explain select C.Name, Y.Name, Y.Population, Language from Country as C, City as Y, CountryLanguage as L where

Y.Name = C.Name and L.CountryCode = Y.CountryCode and C.Name = 'Macao' ;

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |+----+-------------+-------

+------+---------------+---------+---------+---------------------+------+--------------------------+

 | 1 | SIMPLE | C | ref | c2 | c2 | 52 | const | 1 | Using where; Using index |

| 1 | SIMPLE | Y | ref | c2 | c2 | 35 | const | 1 | Using where |

| 1 | SIMPLE | L | ref | PRIMARY | PRIMARY | 3 | world.Y.CountryCode | 9 | Using index

3 rows in set (0.00 sec)

The original cost was 239 * 4079 * 9 = 8,773,929

 The new cost is 1 * 1 * 9 = 9

VIII. CONCLUSION

Different techniques using different representations show that

there are many other ways to represent query other than the

mentioned techniques. From the above experimental analysis,

we can say that the covering indexing at table level is simple

method to represent the query. Still, more research scope is in

Query Optimization and in this field more work can be

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 6 1271 – 1274

1274
IJRITCC | June 2017, Available @ http://www.ijritcc.org

implemented in distributed and deductive databases. Our

future work on query optimization includes comparison of

optimization techniques along with the different databases.

 REFERENCES

[1] Chaudhuri S. and K. Shim. Query optimization with aggregate views. In
Proceedings of the 5th International Conference on Extending Database
Technology, Avignon, France, March 1996.

[2] C.J. Date, "An Introduction to Database Systems", Addison

[3] Wesley, ISBN-10: 0321197844, ISBN-13: 978-0321197849,August 1,
2003.

[4] C. J. Date, "Foundation for Future Database Systems: The Third
Manifesto", Addison-Wesley Professional, ISBN-10:0201709287,
ISBN-13: 978-0201709285, 2000.

[5] Abdullah Dilsat : Query Optimization in Distributed Databases. Report,
Middle East Technical University, December 2003.

[6] Clare Churcher, "Beginning Database Design: From Novice to
Professional", Apress, ISBN-10: 1590597699, ISBN-13: 978-
1590597699, January 15, 2007.

[7] Chaudhuri S. and K. Shim: An Overview of Cost-based Optimization of
Queries with Aggregates. IEEE DE Bulletin, Sep. 1995. (Special Issue
on Query Processing).

[8] Chaudhuri S. and K. Shim: Including group-by in query optimization. In
Proceedings of the 20th International VLDB Conference, Santiago,
Chile, Sept 1994.

[9] Chaudhuri S.: An Overview of Query Optimization in Relational
Systems ; Pods’09, ACM New York, NY, USA, Year 1998. G Join R1
R2 G 1 Join R1 R2 Tree1 Tree3 G1 G R 2 Join R1 Tree2 Figure 3.
Single Block Query Transformations International Journal of Computer
Applications (0975 – 888) Volume 47– No.15, June 2012 9

[10] Sukheja Deepak and Umesh Kumar Singh : A Novel Approach of Query
Optimization for Distributed Database Systems. IJCSI International
Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011.

[11] International Journal of Computer Applications (0975 – 888) Volume
47– No.15, June 2012 - Analysis of Query Optimization Techniques in
Databases- Jyoti Mor M. Tech Student, CSE Dept. MRIU, Faridabad
Indu Kashyap Assistant Professor, CSE Dept. MRIU, Faridabad R. K.
Rathy, PhD. Professor, CSE Department MRIU, Faridabad

[12] Retrieved from https://www.codeproject.com/Articles/34372/Top-steps-
to-optimize-data-access-in-SQL-Server on 15-June-2017

[13] http://www.dbjournal.ro/archive/2/7_Ghencea_Gieger.pdf

[14] http://www.ijltet.org/wp-content/uploads/2015/02/62.pdf

[15] http://www.techfounder.net/2011/03/25/database-optimization-
techniques-you-can-actually-use/

[16] https://webdocs.cs.ualberta.ca/~zaiane/courses/cmput391-
02/slides/Lect3/sld001.htm

[17] http://paper.ijcsns.org/07_book/201008/20100842.pdf

http://www.ijritcc.org/
http://www.dbjournal.ro/archive/2/7_Ghencea_Gieger.pdf
http://www.ijltet.org/wp-content/uploads/2015/02/62.pdf
http://www.techfounder.net/2011/03/25/database-optimization-techniques-you-can-actually-use/
http://www.techfounder.net/2011/03/25/database-optimization-techniques-you-can-actually-use/
https://webdocs.cs.ualberta.ca/~zaiane/courses/cmput391-02/slides/Lect3/sld001.htm
https://webdocs.cs.ualberta.ca/~zaiane/courses/cmput391-02/slides/Lect3/sld001.htm

