
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 1209– 1213

1209
IJRITCC | June 2017, Available @ http://www.ijritcc.org

Implementation Ids for Web Security Mechanism against Injection and Multiple

Attacks

Pranali Mankar
Department of Computer Science and Engineering

TGPCET Nagpur

Prof. Jayant Adhikari
Department of Computer Science and Engineering

TGPCET Nagpur

Abstract:- In this paper we propose a philosophy and a model apparatus to assess web application security instruments. The approach is in view

of the thought that infusing sensible Vulnerabilities in a web application and assaulting them naturally can be utilized to bolster the evaluation of

existing security systems and apparatuses in custom setup situations. The investigations incorporate the assessment of scope and bogus positives

of an interruption recognition framework for SQL Injection assaults and the viability's evaluation of two top business web application

defenselessness scanners. Results demonstrate that the infusion of vulnerabilities and assaults is to be sure a viable approach to assess security

components and to bring up their shortcomings as well as courses for their change.

Keywords: SQL Injection, XSS, VAIT.

__*****___

I. Introduction

Nowadays there is an increasing dependency on web

applications, ranging from individuals to large

organizations. Almost everything is stored, available or

traded on the web. Web applications can be personal

websites, blogs, news, social networks, web mails, bank

agencies, forums, e-commerce applications, etc. The

omnipresence of web applications in our way of life and in

our economy is so important that it makes them a natural

target for malicious minds that want to exploit this new

streak.

We need means to evaluate the security of web applications

and of attack counter measure tools. To handle web

application security, new tools need to be developed, and

procedures and regulations must be improved, redesigned or

invented. Moreover, everyone involved in the development

process should be trained properly. All web applications

should be thoroughly evaluated, verified and validated

before going into production.

II. Literature Review

[1] In this paper they propose a methodology and a

prototype tool to evaluate web application security

mechanisms. The methodology is based on the idea that

injecting realistic vulnerabilities in a web application and

attacking them automatically can be used to support the

assessment of existing security mechanisms and tools in

custom setup scenarios. To provide true to life results, the

proposed vulnerability and attack injection methodology

relies on the study of a large number of vulnerabilities in

real web applications. In addition to the generic

methodology, the paper scribes the implementation of the

Vulnerability & Attack Injector Tool (VAIT) that allows the

automation of the entire process. The drawback of this paper

is methods are more complicated and less efficient.

[2]In this methodology has been used to extend a debugging

tool aimed at testing fault tolerance protocols developed by

BULL France. It has been applied successfully to the

injection of faults in the inter-replica protocol that supports

the application-level fault tolerance features of the

architecture of the ESPRIT-funded Delta4project. The

results of these experiments are analyzed in detail [2].

[3]The paper describes a dependability evaluation method

based on fault injection that establishes the link between the

experimental evaluation of the fault tolerance process and

the fault occurrence process. The main characteristics of a

fault injection test sequence aimed at evaluating the

coverage of the fault tolerance process are presented. The

various steps by which the fault occurrence and fault

tolerance processes are combined to evaluate dependability

measures are identified and their interactions are analyzed

[3].

[4]In this paper, due to our increasing reliance on computer

systems, security incidents and their causes are important

problems that need to be addressed. To contribute to this

objective, the paper describes a new tool for the discovery of

security vulnerabilities on network connected servers. The

AJECT tool uses a specification of the server's

communication protocol to automatically generate a large

number of attacks accordingly to some predefined test

classes. Then, while it performs these attacks through the

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 1209– 1213

1210
IJRITCC | June 2017, Available @ http://www.ijritcc.org

network, it monitors the behavior of the server both from a

client perspective and inside the target machine[4].

III. Proposed System

To give consistent with life comes about, the proposed

helplessness and assault infusion procedure depends on the

investigation of an expansive number of vulnerabilities in

genuine web applications. Notwithstanding the non-specific

approach, the paper portrays the Vulnerability's usage &

Attack Injector Tool (VAIT) that permits the whole

robotization process. We utilized this instrument to run an

arrangement of trials that exhibit the attainability and the

viability of the proposed procedure.

The tool will test on top of widely used applications in two

scenarios. The first to evaluate the effectiveness of the

VAIT in generating a large number of realistic

vulnerabilities for the offline assessment of security tools, in

particular web application vulnerability scanners. The

second to show how it can exploit injected vulnerabilities to

launch attacks, allowing the online evaluation of the

effectiveness of the counter measure mechanisms installed

in the target system, in particular an intrusion detection

system.

Fig1. System Architecture

Http Request:

 Request-Line

The Request-Line begins with a method token, followed by

the Request-URI and the protocol version, and ending with

CRLF. The elements are separated by space SP characters.

Request Method

The request method indicates the method to be performed on

the resource identified by the given Request-URI. The

method is case-sensitive and should always be mentioned in

uppercase. The following table lists all the supported

methods in HTTP/1.1.

Request-URI

The Request-URI is a Uniform Resource Identifier and

identifies the resource upon which to apply the request.

Following are the most commonly used forms to specify an

URI.

Request Header Fields

We will study General-header and Entity-header in a

separate chapter when we will learn HTTP header fields.

Attack detection system:

Intrusion detection is the act of detecting unwanted traffic

on a network or a device. A intrusion detection system (IDS)

provides a layer of defense which monitors network traffic

for predefined suspicious activity or patterns, and alert

system administrators when potential hostile traffic is

detected.

Http Filter:

A filter is an object that is invoked at the preprocessing and

postprocessing of a request. It is mainly used to perform

filtering tasks such as conversion, logging, compression,

encryption and decryption, input validation etc.

Attack detection system:

Intrusion detection is the act of detecting unwanted traffic

on a network or a device. A intrusion detection system (IDS)

provides a layer of defense which monitors network traffic

for predefined suspicious activity or patterns, and alert

system administrators when potential hostile traffic is

detected.

 Intrusion detection faces a number of challenges; an

intrusion detection system must reliably detect malicious

activities in a network and must perform efficiently to cope

with the large amount of network traffic.Network based

intrusion detection are the most deployed IDS. An IDS can

be a piece of installed software or a physical appliance.

Many IDS tools will also store a detected event in a log to

be reviewed at a later date or will combine events with

other data to make decisions regarding policies or damage

control. This paper discusses the various types of attacks

that can be detected in a simulated network environment.

The different types of attacks are Probe attacks, R2L, Dos

and U2R attacks.

Several types of IDS technologies exist due to the

variance of network configurations. Each type has

advantages and disadvantage in detection, configuration,

and cost. NIDS (Network Intrusion Detection Systems)

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 1209– 1213

1211
IJRITCC | June 2017, Available @ http://www.ijritcc.org

Network Intrusion Detection Systems are placed at a

strategic point or points within the network to monitor

traffic to and from all devices on the network. Ideally one

would scan all inbound and outbound traffic. NIDS

analyzes network traffic at all layers of the Open Systems

Interconnection (OSI) model and makes decisions about the

purpose of the traffic, analyzing for suspicious activity.

Most NIDSs are easy to deploy on a network and can often

view traffic from many systems at once. HIDS (Host

Intrusion Detection Systems) Host Intrusion Detection

Systems are run on individual hosts or devices on the

network. A HIDS monitors the inbound and outbound

packets from the device only and will alert the user or

administrator if suspicious activity is detected. HIDS

analyze network traffic and system-specific settings such as

software calls, local security policy, local log audits, and

more. A HIDS must be installed on each machine and

requires configuration specific to that operating system.

Classifier:

A classifier sometimes called a counter word is

a word or affix that is used to accompany nouns and can be

considered to "classify" the noun depending on the type of

its referent.

In practice, the use of both static and dynamic analysis is a

key feature of the methodology that allows increasing the

overall performance and effectiveness, as it provides the

means to inject more vulnerability that can be successfully

attacked and discarded those that cannot.

The proposed methodology provides a practical

environment that can be used to test countermeasure

mechanisms (such as intrusion detection systems (IDSs),

web application vulnerability scanners, web application fire-

walls, static code analyzers, etc.), train and evaluate security

teams, help estimate security measures (like the number of

vulnerabilities present in the code), among others.

SQL INJECTION ATTACK

SQL injection is a code injection technique, used

to attack data-driven applications, in which

nefarious SQL statements are inserted into an entry field for

execution (e.g. to dump the database contents to the

attacker). SQL injection must exploit a security

vulnerability in an application's software, for example, when

user input is either incorrectly filtered for string

literal escape characters embedded in SQL statements or

user input is not strongly typed and unexpectedly executed.

SQL injection is mostly known as an attack vector for

websites but can be used to attack any type of SQL

database.

SQL injection attacks allow attackers to spoof identity,

tamper with existing data, cause repudiation issues such as

voiding transactions or changing balances, allow the

complete disclosure of all data on the system, destroy the

data or make it otherwise unavailable, and become

administrators of the database server. This form of SQL

injection occurs when user input is not filtered for escape

characters and is then passed into an SQL statement. This

results in the potential manipulation of the statements

performed on the database by the end-user of the

application.

The following line of code illustrates this vulnerability:

statement = "SELECT * FROM users WHERE name = '" +

userName + "';"

This SQL code is designed to pull up the records of the

specified username from its table of users. However, if the

"userName" variable is crafted in a specific way by a

malicious user, the SQL statement may do more than the

code author intended. For example, setting the "userName"

variable as:

' OR '1'='1

or using comments to even block the rest of the query (there

are three types of SQL comments). All three lines have a

space at the end:

' OR '1'='1' --

' OR '1'='1' ({

' OR '1'='1' /*

renders one of the following SQL statements by the parent

language:

SELECT * FROM users WHERE name = '' OR '1'='1';

SELECT * FROM users WHERE name = '' OR '1'='1' -- ';

If this code were to be used in an authentication procedure

then this example could be used to force the selection of

every data field (*) from all users rather than from one

specific user name as the coder intended, because the

evaluation of '1'='1' is always true (short-circuit evaluation).

 CROSS-SITE SCRIPTING (XSS) ATTACK

Cross-site scripting (XSS) is a type of computer

security vulnerability typically found in web applications.

XSS enables attackers to inject client-side scripts into web

pages viewed by other users. A cross-site scripting

vulnerability may be used by attackers to bypass access

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 1209– 1213

1212
IJRITCC | June 2017, Available @ http://www.ijritcc.org

controls such as the same-origin policy. Cross-site scripting

carried out on websites accounted for roughly 84% of all

security vulnerabilities documented by Symantec as of

2007. Their effect may range from a petty nuisance to a

significant security risk, depending on the sensitivity of the

data handled by the vulnerable site and the nature of any

security mitigation implemented by the site's owner.

Security on the web depends on a variety of mechanisms,

including an underlying concept of trust known as the same-

origin policy.

Cross-site scripting attacks use known vulnerabilities in

web-based applications, their servers, or the plug-in systems

on which they rely. Exploiting one of these, attackers fold

malicious content into the content being delivered from the

compromised site. When the resulting combined content

arrives at the client-side web browser, it has all been

delivered from the trusted source, and thus operates under

the permissions granted to that system. By finding ways of

injecting malicious scripts into web pages, an attacker can

gain elevated access-privileges to sensitive page content, to

session cookies, and to a variety of other information

maintained by the browser on behalf of the user. Cross-site

scripting attacks represent a special case of code injection.

Microsoft security-engineers introduced the term "cross-site

scripting" in January 2000. The expression "cross-site

scripting" originally referred to the act of loading the

attacked, third-party web application from an unrelated

attack-site, in a manner that executes a fragment

of JavaScript prepared by the attacker in the security

context of the targeted domain (taking advantage of

a reflected or non-persistent XSS vulnerability). The

definition gradually expanded to encompass other modes of

code injection, including persistent and non-JavaScript

vectors (including ActiveX, Java, VBScript, Flash, or

even HTML scripts), causing some confusion to newcomers

to the field of information security.

IV. Experimental Results

Fig 1. SQL Injection Login Page

Fig 2. Xss Attack log in page window

V. Conclusion

The SQL - Injection Attacks are tremendously dangerous in

association to other types of Web-based attacks, for the

reason that here the end result is data manipulation.SQL

injection holes can be easily exploited by a technique called

SQL Injection Attacks. This proposed integrated approach is

an effort to add some more security measures to databases to

avoid SQL injection attack. we will try to improve the

technique by making it fully secure and efficient for other

types of SQL injection attacks also. Then, this technique

will be able to prevent SQL Injection Attacks completely.

References

[1] Jose Fonseca, Marco Vieira, and Henrique Madeira

“Evaluation of Web Security MechanismsUsing

Vulnerability & Attack Injection”-IEEE

TRANSACTIONS ON DEPENDABLE AND SECURE

COMPUTING, VOL. 11, NO. 5,

SEPTEMBER/OCTOBER 2014

[2] D. Avresky, J. Arlat, J.C. Laprie, and Y. Crouzet, “Fault

Injection for Formal Testing of Fault Tolerance,” IEEE

Trans. Reliability, vol. 45, no. 3, pp. 443-455, Sept.

2011\

[3] J. Arlat, A. Costes, Y. Crouzet, J.-C.Laprie, and D.

Powell, “Fault Injection and Dependability Evaluation of

Fault-Tolerant Systems,” IEEE Trans. Computers, vol.

42, no. 8, pp. 913-923, Aug. 2011.

[4] N. Neves, J. Antunes, M. Correia, P. Ver_ıssimo, and R.

Neves, “Using Attack Injection to Discover New

Vulnerabilities,” Proc. IEEE/IFIP Int‟l Conf. Dependable

Systems and Networks, 2006.

[5] N. Jovanovic, C. Kruegel, and E. Kirda, “Precise Alias

Analysis for Static Detection of Web Application

Vulnerabilities,” Proc. IEEE Symp. Security Privacy,

2006.

[6] IBM Global Technology Services “IBM Internet Security

Systems X-Force 2012 Trend & Risk Report,” IBM

Corp., Mar. 2013.

[7] J. Fonseca and M. Vieira, “Mapping Software Faults

with Web Security Vulnerabilities,” Proc. IEEE/IFIP

Int‟l. Conf. Dependable Systems and Networks, June

2008

[8] J. Fonseca, M. Vieira, and H. Madeira, “Training

Security Assurance Teams using Vulnerability

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 1209– 1213

1213
IJRITCC | June 2017, Available @ http://www.ijritcc.org

Injection,” Proc. IEEE Pacific Rim Dependable

Computing Conf., Dec. 2008.

[9] J. Carreira, H. Madeira, and J.G. Silva, “Xception:

Software Fault Injection and Monitoring in Processor

Functional Units,” IEEE Trans. Software Eng., vol. 24,

no. 2, Feb. 1998.

[10] D.T. Stott, B. Floering, D. Burke, Z. Kalbarczpk, and

R.K. Iyer, “NFTAPE: A Framework for Assessing

Dependability in Distributed Systems with Lightweight

Fault Injectors,” Proc. Computer Performance and

Dependability Symp., 2000.

[11] J. Christmansson and R. Chillarege, “Generation of an

Error Set that Emulates Software Faults,” Proc. IEEE

Fault Tolerant Computing Symp., 1996.

[12] H Madeira, M. Vieira, and D. Costa, “On the Emulation

of Software Faults by Software Fault Injection,” Proc.

IEEE/IFIP Int„l Conf. Dependable System and Networks,

2000.

[13] J. Fonseca, M. Vieira, and H. Madeira, “Testing and

Comparing Web Vulnerability Scanning Tools for SQLi

and XSS Attacks,” Proc. IEEE Pacific Rim Int‟l Symp.

Dependable Computing, Dec. 2007.

[14] J. Dur~aes and H. Madeira, “Emulation of Software

Faults: A FieldData Study and a Practical Approach,”

IEEE Trans. Software Eng., vol. 32, no. 11, pp. 849-867,

Nov. 2006.

[15] Ananta Security “Web Vulnerability Scanners

Comparison,”anantasec.blogspot.com/2009/01/web-

vulnerability-scannerscomparison.html, accessed 1 May

2013, 2009.

[16] J. Fonseca, M. Vieira, and H. Madeira,“The Web

Attacker Perspective- A Field Study,” Proc. IEEE Int‟l.

Symp. Software Reliability Eng., Nov. 2010

[17] [17] G. Buehrer, B. Weide, and P. Sivilotti, “Using Parse

Tree Validation to Prevent SQLi Attacks,” Proc. Int‟l

Workshop Software Eng. and Middleware, 2005

[18] [18] I. Elia, J. Fonseca, and M. Vieira, “Comparing SQLi

Detection Tools Using Attack Injection: An

Experimental Study,” Proc. IEEE Int‟l Symp. Software

Reliability Eng., Nov. 2010.

[19] [19] M. Buchler, J. Oudinet, and A. Pretschner, “Semi-

Automatic Security Testing of Web Applications from a

Secure Model,” Proc. Int‟l Conf. Software Security and

Reliability, 2012.

[20] [20] Y.-W. Huang, S.-K.Huang, T.-P.Lin, and C.-H.

Tsai, “Web Application

[21] Security Assessment by Fault Injection and Behavior

Monitoring,” Proc. Int‟l Conf. World Wide Web, pp.

148-159, 2003.

[22] [21] J. Fonseca, M. Vieira, and H. Madeira, “Detecting

Malicious SQL,”

[23] Proc. Conf. Trust, Privacy & Security in Digital

Business, Sept. 2007

