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Abstract

In this paper we propose a fuzzy Laplace transform to solve variable
coefficient fuzzy differential equations under strongly generalized differ-
entiability concept.The fuzzy Laplace transform of derivative was used
to solve second order variable coefficient fuzzy initial value problems and
fuzzy boundary value problems if t is multiplied with first or second deriva-
tive term.To illustrate applicability of proposed method we solve fuzzy
differential equations using different types of fuzzy numbers i.e. triangu-
lar,trapezoidal,Gaussian etc and compare the solutions.We plot 3D plots
for different values of r-level sets by mathematica software.

Keywords:Fuzzy Number.Fuzzy valued function.triangular,trapezoidal and Gaus-
sian fuzzy numbers.Fuzzy Laplace Transform.Strongly generalized differential.Fuzzy
initial value problem.Fuzzy boundary value problem..

1 Introduction

The fuzzy differential equation is very much important topic in field of science
and engineering to solve dynamic problem.The concept of a fuzzy derivative
was first introduced by Chang and Zadeh [56],followed up by Dubois and Prade
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[17] who used the extension principle in their approach.Other fuzzy derivative
concepts were proposed by Puri and Ralescu [45], and Goetschel and Vaxman
[26]as an extension of the Hukuhara derivative of multivalued functions.Kandel
and Byatt [33] applied the concept of fuzzy differential equation to the analysis
of fuzzy dynamical problems.The fuzzy differential equations and fuzzy initial
value problems are studied by Kaleva[31, 32]and Seikkala [51]

Two analytical methods for solving an nth-order fuzzy linear differential
equation with fuzzy initial conditions presented by Buckley and Feuring [12,
13].Mondal and Roy [42] described the solution procedure for first order linear
non-homogeneous ordinary differential equation in fuzzy environment.Existence
and uniqueness of fuzzy boundary value problem has been proved by Esfahani et
al.[18].Lakshikantham et al. [38] investigated the solution of two point boundary
value problems associated with non-linear fuzzy differential equation by using
the extension principle.Generalized differentiability concept is used by Bade et
al.[11] to investigated first order linear fuzzy differential equations.Based on the
idea of collocation method Allahviranloo et al. [5] solved nth order fuzzy lin-
ear differential equations.Far and Ghal-Eh [19] proposed an iterative method
to solve fuzzy differential equations for the linear system of first order fuzzy
differential equation with fuzzy constant coefficient.Variation of constant for-
mula has been handle by Khastan et al.[37] to solve first order fuzzy differential
equations.Akin et al.[2] developed an algorithm based on α-cut of fuzzy set for
solution of second order fuzzy initial value problems.A new approach has been
developed by Gasilov et al.[22] to get the solution of fuzzy initial value problem.

The concept of generalized H-differentiability is studied by Chalco-Cano and
Roman Flores [14] to solve fuzzy differential equation.Hasheni et al.[29, 28] stud-
ied homotopy analysis method for solution of system of fuzzy differential equa-
tion s and obtained analytic solution of fuzzy Wave like equations with variable
coefficients.As regards, methods to solve nth order fuzzy differential equation
are discussed in [5, 25, 30, 35, 48, 55].the Variational iteration method (VIM)
was successfully applied by Jafari et al.[30] for solving nth order fuzzy differen-
tial equation.A new result on multiple solutions for nth order fuzzy differential
equations under generalized differentiability has been proposed by Khastan et
al.[35].Based on idea of collocation method allahviranloo et al.[5] solved nth or-
der fuzzy linear differential equations.Integral form of nth order fuzzy differential
equations has been developed by Salahshour [48]under generalized differentiabil-
ity.Mansuri and Ahmady [41] implemented characterization theorem for solving
nth order fuzzy differential equations.Also Tapaswini and Chakraverty[53] im-
plemented homotopy perturbation method for the solution of nth order fuzzy
linear differential equations.Bade[10] found Solutions of fuzzy differential equa-
tions based on generalized differentiability.

Paper is organized as In section 2 preliminaries,In section 3 Examples by
using fuzzy Laplace transform ,In section 4 Result and Discussion,In section 5
conclusion.
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2 Preliminaries

Definition 2.1 Fuzzy Number
A fuzzy number is a fuzzy set like µ : R→ I = [0, 1] which satisfies:

(a) µ is upper semi-continuous,

(b) µ is fuzzy convex i.e µ(λx+(1−λ)y) ≥ min{µ(x), µ(y)}∀x, y ∈ R, λ ∈ [0, 1],

(c) µ is normal i.e ∃x0 ∈ R for which µ(x0) = 1,

(d) supp µ = {x ∈ R | µ(x) > 0} is support of u, and its closure cl(supp µ) is
compact.

Definition 2.2 r-cut
It is crisp set derived from its parent fuzzy set A where r-cut is defined as
Ar = {x ∈ R | µ(x) ≥ r}
Definition 2.3 Triangular Fuzzy Number
Consider triangular fuzzy number Ã = (a, b, c) is depicted in Fig.1 The mem-
bership function µ(x) of Ã will be defined as follows.

µ(x) =


0 , x < a
x−a
b−a , a ≤ x ≤ b
c−x
c−b , b ≤ x ≤ c
0 , x > c

The triangular fuzzy number Ã = (a, b, c) can be represented with an order pair
of function of r-cut approach i.e.[µ(r), µ(r)] = [a+ (b− a)r, c− (c− b)r] , where
r ∈ [0, 1]

Fig.1 Triangle membership function

Definition 2.4 Trapezoidal Fuzzy Number
Consider trapezoidal fuzzy number Ã = (a, b, c, d) is depicted in Fig.2 The mem-
bership function µ of Ã will be defined as follows.

µ(x) =


0 , x < a
x−a
b−a , a ≤ x ≤ b
1 , b ≤ x ≤ c
d−x
d−c , c ≤ x ≤ d
0 , x ≥ d
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The trapezoidal fuzzy number Ã = (a, b, c, d) can be represented with an order
pair of function of r-cut approach i.e.[µ(r), µ(r)] = [a + (b− a)r, d− (d− c)r] ,
where r ∈ [0, 1]

Fig.2 Trapezoidal fuzzy number

Definition 2.5 Gaussian Fuzzy Number
The asymmetric Gaussian fuzzy number Ã = (α, σl, σr).The membership func-
tion µ(x) of Ã will be defined as follows.

µ(x) =

 e
− (x−α)2

2σ2
l , x ≤ α

e
− (x−α)2

2σ2r , x ≥ α

where ,the modal value (center) denote as α and σl, σr denote left and right hand
spreads(fuzziness i.e.width) corresponding to the Gaussian Distribution.For sym-
metric Gaussian fuzzy number the left and right-hand spreads are equal i.e.σl =
σr = σ.So symmetric Gaussian fuzzy number may be written as Ã = (α, σ, σ)

and corresponding function may be defined as µ(x) = e−β(x−α)
2

,∀x ∈ R where
β = 1

2σ2 . The symmetric Gaussian fuzzy number in parametric form can be
represented as

Ã = [µ(r), µ(r)] =
[
α−

√
− (loger)

β , α+
√
− (loger)

β

]
where r ∈ [0, 1]

Fig.3 Gaussian fuzzy number

For all the above type of fuzzy numbers the left and right bound of fuzzy numbers
satisfy the following requirements

1. µ(r) is a bounded monotonic increasing left continuous function over [0, 1],

2. µ(r) is a bounded monotonic decreasing left continuous function [0, 1],

3. µ(r) ≤ µ(r), 0 ≤ r ≤ 1.
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Definition 2.6 Fuzzy arithmetic
For any arbitrary two fuzzy numbers u =(u(r), u(r)), v = (v(r), v(r)), 0 ≤ r ≤ 1
and arbitrary k ∈ R.we define addition,subtraction,multiplication,scalar multi-
plication by k.(see in [21])

u+ v = (u(r) + u(r), v(r) + v(r)),
u− v = (u(r)− v(r), u(r)− v(r)),

u · v =
(min{u(r)v(r), u(r)v(r), u(r)v(r), u(r)v(r)},max{u(r)v(r), u(r)v(r), u(r)v(r), u(r)v(r)})

ku =

{
(ku(r), ku(r)), k ≥ 0
(ku(r), ku(r)), k < 0

Definition 2.7 Hukuhara-difference
Let x, y ∈ E.If there exists z ∈ E such that x = y + z,then z is called the
Hakuhara-difference of fuzzy numbers x and y,and it is denoted by z = x	 y.
The 	 sign stands for Hukuhara-difference,and x	 y 6= x+ (−1)y.
Definition 2.8 Hukuhara-differentiability
Let f : (a, b)→ E and t0 ∈ (a, b).We say that f is Hukuhara-differential at t0,if
there exists an element f

′
(t0) ∈ E such that for all h > 0 sufficiently small,

∃f(t0 + h)	 f(t0), f(t0)	 f(t0 − h) and the limits holds(in the metric D)

lim
h→0

f(t0 + h)	 f(t0)

h
= lim
h→0

f(t0)	 f(t0 − h)

h
= f

′
(t0).

Definition 2.9 Generalized Hukuhara differentiability
Let f : (a, b) → E and t0 ∈ (a, b).We say that f is (1)-differential at t0,if there
exists an element f

′
(t0) ∈ E such that for all h > 0 sufficiently small,

∃f(t0 + h)	 f(t0), f(t0)	 f(t0 − h) and the limits holds(in the metric D)

lim
h→0

f(t0 + h)	 f(t0)

h
= lim
h→0

f(t0)	 f(t0 − h)

h
= f

′
(t0).

and f is (2)-differentiable if for all h > 0 sufficiently small,∃f(t0) 	 f(t0 +
h),∃f(t0 − h)	 f(t0)and the limits(in the metric D)

lim
h→0

f(t0)	 f(t0 + h)

−h
= lim
h→0

f(t0 − h)	 f(t0)

−h
= f

′
(t0).

If f
′
(t0) exist in above cases then i.e called Generalized fuzzy derivative of f(t).

Definition 2.10 Strongly generalized differentiability
Let f : (a, b)→ E and t0 ∈ (a, b).We say that f is strongly generalized differen-
tial at t0(Bede-Gal differential)if there exist an element f

′
(t0) ∈ E such that

(i)for all h > 0 sufficiently small,∃f(t0 + h) 	 f(t0),∃f(t0) 	 f(t0 − h)and the
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limits(in the metric D)

lim
h→0

f(t0 + h)	 f(t0)

h
= lim
h→0

f(t0)	 f(t0 − h)

h
= f

′
(t0).

or
(ii)for all h > 0 sufficiently small,∃f(t0) 	 f(t0 + h),∃f(t0 − h) 	 f(t0)and the
limits(in the metric D)

lim
h→0

f(t0)	 f(t0 + h)

−h
= lim
h→0

f(t0 − h)	 f(t0)

−h
= f

′
(t0).

or
(iii)for all h > 0 sufficiently small,∃f(t0 + h)	 f(t0),∃f(t0 − h)	 f(t0)and the
limits(in the metric D)

lim
h→0

f(t0 + h)	 f(t0)

h
= lim
h→0

f(t0 − h)	 f(t0)

−h
= f

′
(t0).

or
(iv)for all h > 0 sufficiently small,∃f(t0)	 f(t0 + h),∃f(t0)	 f(t0 − h)and the
limits(in the metric D)

lim
h→0

f(t0)	 f(t0 + h)

−h
= lim
h→0

f(t0)	 f(t0 − h)

h
= f

′
(t0).

(h and −h at denominators mean 1
h and 1

−h ,respectively)

Theorem 2.1 [14].Let f : R→ E be a function and denotef(t) = (f(t, r), f(t, r)),for
each r ∈ [0, 1].Then

1. If f is (i)-differentiable,then f(t, r) and f(t, r) are differentiable function
and

f
′
(t) = (f

′
(t, r), f

′

(t, r))

2. If f is (ii)-differentiable,then f(t, r) and f(t, r) are differentiable function
and

f
′
(t) = (f

′

(t, r), f
′
(t, r))

Definition 2.11 Piecewise Continuous Function
f(t) is piecewise continuous function in a ≤ t ≤ b if there exist a finite numbers
of points t1, t2, ......, tN such that f(t) is continuous on each open subinterval
a < t < t1,t1 < t2,.......,tN < t < b, and has a finite limit as t approaches each
endpoint from the interior of that subinterval.
Definition 2.12 Exponential Order
f(t) is of exponential order as t→∞ if there exist real constants K, c, T 3
|f(t)| ≤ e−ct, t ≥ T.
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Definition 2.13 Fuzzy Laplace Transform
Fuzzy Laplace Transform is an example of integral transform relation of the
form
F̃ (s) =

∫ b
a
K(t, s)f(t)dt,

where t is time and K(t, s) is kernel of transform which transform f(t) to F̃ (s)
i.e. which transform time domain to frequency domain.The most well known
integral transform is Laplace transform
where a = 0 and b =∞
K(t, s) = e−st

F̃ (s) = limb→∞
∫ b
0
e−stf(t)dt,

limb→∞
∫ b
0
e−stf(t)dt = (limb→∞

∫ b
0
e−stf(t)dt, limb→∞

∫ b
0
e−stf(t)dt)

also by using definition of classical Laplace transform:

l[f(t, r)] = limb→∞
∫ b
0
e−stf(t)dt and

l[f(t, r)] = limb→∞
∫ b
0
e−stf(t)dt

then we follow
L[f(t)] = (l[f(t, r), l[f(t, r))

Theorem 2.2 [4].Let f
′
(t) be an integrable fuzzy-valued function,and f(t) is

the primitive of f
′
(t) on [0,∞).Then

L[f
′
(t)] = sL[f(t)]	 f(0)

where f is (i)-differentiable
or
L[f

′
(t)] = (−f(0))	 (−sL[f(t)])

where f is (ii)-differentiable
Theorem 2.3 [4].Let f(t) and g(t) be continuous fuzzy-valued functions and
c1, c2 are constants.suppose that f(t)e−st, g(t)e−st are improper fuzzy Riemann-
integrable on [0,∞],then
L[(c1f(t)) + (c2g(t))] = (c1L[f(t)]) + (c2L[g(t)]).
Theorem 2.4 Let f

′′
(t) be integrable fuzzy-valued function,and f(t),f

′
(t) are

primitive of f
′
(t),f

′′
(t) on [0,∞].Then

L[f
′′
(t)] = s2L[f(t)]	 sf(0)	 f ′(0)

where f is (i)-differentiable and f
′

is (i)-differentiable or
L[f

′′
(t)] = s2L[f(t)]	 sf(0)− f ′(0)

where f is (ii)-differentiable and f
′

is (ii)-differentiable or
L[f

′′
(t)] = 	(−s2)L[f(t)]− sf(0)− f ′(0)

where f is (i)-differentiable and f
′

is (ii)-differentiable or
L[f

′′
(t)] = 	(−s2)L[f(t)]− sf(0)	 f ′(0)

where f is (ii)-differentiable and f
′

is (i)-differentiable
Theorem 2.5 Let f(t) satisfies the condition of existence theorem of Laplace
transform and L[f(t)] = F̃ (s) then
L[tf(t)] = −F̃ ′(s)
Hence if f

′
(t) satisfies the condition of existence theorem of Laplace transform

then
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L[tf
′
(t)] = − d

ds
L[f

′
(t)] = − d

ds

{
sF̃ (s)− f(0)

}
= −sF̃

′
(s)− F̃ (s)

similarly for f
′′

L[tf
′′
(t)] = − d

ds
L[f

′′
(t)] = − d

ds

{
s2F̃ (s)− sf(0)− f

′
(0)
}

= −s2F̃
′
(s)− 2F̃ (s) + f(0)

3 Examples

Example 3.1 Consider Variable coefficient differential equation ty
′′ − y′ = −1

subject to initial condition y(0) = 0
Consider Variable coefficient fuzzy differential equation where we are consider-
ing initial condition and forcing function both triangular fuzzy number ty

′′ − y′ = −1̃, t ∈ [0, 1]
y(0) = [r − 1, 1− r]
1̃ = [r, 2− r]

By using fuzzy Laplace transform method,we have:
L[ty

′′
]− L[y

′
] = −L[1̃]

By using FLT of derivative and Differentiation of FLT
l[y(t, r)] = r−1

s + r
s2 + A

s3

l[y(t, r)] = 1−r
s + 2−r

s2 + A
s3 ,where A is constant.

Hence solution is as follows:
y(t, r) = (r − 1) + rt+Bt2

y(t, r) = (1− r) + (2− r)t+Bt2,where B is constant.
The y(t, r) and y(t, r) at r ∈ [0, 1] are presented in Fig.4

y(t) = y(t, 1) = y(t, 1) = t+Bt2

0.00

0.05

0.10

t

0.0

0.5

1.0

r

-1.0

-0.5

0.0

0.5

1.0

yHt,rL

Fig.4 Solution y(t,r) by using Triangular fuzzy number
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Consider Trapezoidal fuzzy number ty
′′ − y′ = −1̃, t ∈ [0, 1]

y(0) = [r − 1, 2− r]
1̃ = [r, 3− r]

By using fuzzy Laplace transform method,we have:
L[ty

′′
]− L[y

′
] = −L[1̃]

By using FLT of derivative and Differentiation of FLT
l[y(t, r)] = r−1

s + r
s2 + A

s3

l[y(t, r)] = 2−r
s + 3−r

s2 + A
s3 ,where A is constant.

Hence solution is as follows:
y(t, r) = (r − 1) + rt+Bt2

y(t, r) = (2− r) + (3− r)t+Bt2,where B is constant.
The y(t, r) and y(t, r) at r ∈ [0, 1] are presented in Fig.5

y(t, 1) = t+Bt2 , y(t, 1) = 1 + 2t+Bt2

0.00

0.05

0.10

t

0.0

0.5

1.0

r

-1

0

1

2

yHt,rL

Fig.5 Solution y(t,r) by using Trapezoidal fuzzy number

Consider Gaussian fuzzy number
ty
′′ − y′ = −1̃, t ∈ [0, 1]

y(0) = [−
√
−(2loger),

√
−(2loger)]

1̃ = [1−
√

(−2loger), 1 +
√

(−2loger)]

By using fuzzy Laplace transform method,we have:
L[ty

′′
]− L[y

′
] = −L[1̃]

By using FLT of derivative and Differentiation of FLT

l[y(t, r)] =
−
√
−(2loger)
s +

1−
√

(−2loger)
s2 + A

s3

l[y(t, r)] =

√
−(2loger)

s +
1+
√

(−2loger)
s2 + A

s3 ,where A is constant.
Hence solution is as follows:
y(t, r) = [−

√
−(2loger)] + [1−

√
(−2loger)]t+Bt2

y(t, r) = [
√
−(2loger)] + [1 +

√
(−2loger)]t+Bt2,where B is constant.

The y(t, r) and y(t, r) at r ∈ [0, 1] are presented in Fig.6

y(t) = y(t, 1) = y(t, 1) = t+Bt2
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0.00

0.05

0.10

t

0.0

0.5

1.0

r

-5

0

5

10

yHt,rL

Fig.6 Solution y(t,r) by Gaussian fuzzy number

Example 3.2 Consider Variable coefficient differential equation ty
′′

+2y
′
+ty = 0

subject to boundary conditions
y(0) = 1
y(π) = 0
Consider Variable coefficient fuzzy differential equation where we are consider-
ing boundary conditions triangular fuzzy number ty

′′
+ 2y

′
+ ty = 0,

y(0) = [r, 2− r]
y(π) = [r − 1, 1− r]

By using fuzzy Laplace transform method,we have:
L[ty

′′
] + 2L[y

′
] + L[ty] = −L[0]

By using FLT of derivative and Differentiation of FLT l[y(t, r)] = (r)tan−1( 1
s )

l[y(t, r)] = (2− r)tan−1( 1
s )

Hence solution is as follows:
y(t, r) = (r) sintt
y(t, r) = (2− r) sintt
The y(t, r) and y(t, r) at r ∈ [0, 1] are presented in Fig.7

y(t) = y(t, 1) = y(t, 1) = sint
t

0.0

0.5

1.0
r

0
1 2

3
t

0.0

0.5

1.0

1.5

2.0

yHt,rL

Fig.7 Solution y(t,r) by using Triangular fuzzy number

Consider Trapezoidal fuzzy number ty
′′

+ 2y
′
+ ty = 0,

y(0) = [r, 3− r]
y(π) = [r − 1, 2− r]
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By using fuzzy Laplace transform method,we have:
L[ty

′′
] + 2L[y

′
] + L[ty] = −L[0]

By using FLT of derivative and Differentiation of FLT
l[y(t, r)] = (r)tan−1( 1

s )

l[y(t, r)] = (3− r)tan−1( 1
s )

Hence solution is as follows:
y(t, r) = (r) sintt
y(t, r) = (3− r) sintt
The y(t, r) and y(t, r) at r ∈ [0, 1] are presented in Fig.8

y(t, 1) = sint
t , y(t, 1) = 2 sintt

0.0

0.5

1.0
r

0
1 2

3

t

0

1

2

3

yHt,rL

Fig.8 Solution y(t,r) by using Trapezoidal fuzzy number

Consider Gaussian fuzzy number
ty
′′

+ 2y
′
+ ty = 0,

y(0) = [1−
√
−(2loger), 1 +

√
−(2loger)]

y(π) = [−
√

(−2loger),
√

(−2loger)]

By using fuzzy Laplace transform method,we have:
L[ty

′′
] + 2L[y

′
] + L[ty] = 0

By using FLT of derivative and Differentiation of FLT
l[y(t, r)] = [1−

√
(−2loger)]tan

−1( 1
s )

l[y(t, r)] = [1 +
√

(−2loger)]tan
−1( 1

s )
Hence solution is as follows:
y(t, r) = [1−

√
(−2loger)]

sint
t

y(t, r) = [1 +
√

(−2loger)]
sint
t

y(t) = y(t, 1) = y(t, 1) = sint
t

0.0

0.5

1.0
r

0
1 2

3

t

0

5

yHt,rL

Fig.9 Solution y(t,r) by using Gaussian fuzzy number
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4 Result and Discussion

From,Examples 1,2 we see that the solution of second order FIVP and FBVP
are depends on the derivative i.e.(i)-differentiable or (ii)-differentiable.Thus,as
in above examples,the solution can be adequately chosen among four cases of
the strongly generalize differentiability.On the other hand,In this new procedure
unicity of the solution is lost because we have four possibilities,but flexibility is
gained in fuzzy context.In above Examples,for Triangular and Gaussian fuzzy
numbers at r = 1 upper bound and lower bounds are same and that is same as
Exact solution of given differential equation but for Trapezoidal fuzzy number,it
is some interval that contain Exact solution as lower bound or upper bound.

5 Conclusion

The Fuzzy Laplace transform method provided solutions to variable coefficient
second order FIVPs and FBVPs by using the strongly generalize differentiability
concept.Here we solved FIVPs and FBVPs by using different types of fuzzy num-
bers like Triangular,Trapezoidal and Gaussian.In that Triangular fuzzy number
is easy to use in conclusion where as Trapezoidal fuzzy number required long
calculations and Gaussian fuzzy number include logarithmic function i.e. again
difficult to deal with it if asymmetric Gaussian fuzzy number occurs in calcula-
tion.The efficiency of method was described by solving numerical examples.
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