
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 619 – 624

619
IJRITCC | June 2017, Available @ http://www.ijritcc.org

Signal Capturing on VLSI Systems in Real Time

S. Khadar Bhasha

Assistant Professor, Department of ECE

Aditya Engineering College, Surampalem

East Godavari, A.P, INDIA.

khadarbasha4321@gmail.com

B.H.K. Bhagat Kumar

Assistant Professor, Department of ECE

Aditya Engineering College, Surampalem

East Godavari, A.P, INDIA.

harikumar470@gmail.com

Abstract—Now-a- days, every communication system is prototyped on FPGAs before fabricating them on ASIC. Counter side, the FPGAs with

very high gate logic densities and embedded block RAMs allowed the high speed signal capturing and storage for real time analysis. By

performing various functions on the captured data allows high speed spectrum analysis. These two allow the prototyping of complex

communication system on FPGA and real time analysis of implemented blocks. There are several types of interface methods possible to

communicate the FPGA with a computer. In this paper novel techniques are implemented for capturing and analyzing the signals of any design

on FPGA with configurable UART interface. VHDL will be used for implementation of necessary modules such as block memory, capture

FSM, triggering logic and UART interface. Necessary scripts will be developed to generate the synthesizable VHDL code as per the

requirements of user. The captured data will be sent to PC using UART. Xilinx ISE will be used for synthesis and performance analysis.

Keywords- FPGA, capture FSM, Xilinx ISE, UART

__*****___

I. INTRODUCTION:

The high speed spectrum analysis is achieved by

performing signal processing functions on the captured data.

This can allow the prototyping of complex communication

system on FPGA and real time analysis of implemented

blocks. There are several types of interface methods possible

to communicate the FPGA with a computer. Because of low

weight and easy availability of UART on several FPGA

boards, it is appropriate option for transferring the capture

data.

In this dissertation , we have focused on how the

signals are captured using FSM and they are bringing back on

the system for testing the design on FPGA IC.UART is used

here for interfacing with the system. An efficient module for

the proposed architecture is implemented in VHDL on FPGA.

The simulation results of the top blocks are shown. The design

is reconfigurable for the different captured signals.

Fig 1. Design Flow and System response

 The Fig.1 clearly explains the view of the design flow

and system response. After implementing any design on an

FPGA chip, our project captures the selected data. Then by

means of a communication module, we can see the required

data on a computer monitor.

 This paper presents the combination of a dynamic

FPGA probe, which enables routing of signal groups within an

FPGA to a logic analyzer for measurement through a small

number of physical package pads, with an FFT-based vector

signal analysis software package. This combination provides

simultaneous measurement of time domain, frequency

spectrum, and modulation quality on digital signals inside an

FPGA. It also provides the quick selection of various internal

nets for signal analysis without time consuming redesigns of

the FPGA.

Fig 2. Block diagram of System Response

Field Programmable Gate Arrays (FPGAs) are in

widespread use for digital signal processing (DSP) in wireless,

aerospace, and defense applications. Their programmability

enables designers to build early prototype systems while

specifications are still changing, as well as to support multiple

communication technologies with a single hardware design.

Their increasing performance enables digital processing of

increasingly wider bandwidths, improving signal quality while

reducing power consumption and material cost. As an

increasing portion of a transceiver is digital, the number of

probe points for analog spectrum and vector signal analysis is

decreasing. Digital signal processing systems possess the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 619 – 624

620
IJRITCC | June 2017, Available @ http://www.ijritcc.org

ability to create near-perfect signal quality due to the lack of

noise and nonlinearities associated with analog signal

processing. However, tradeoffs are constantly made in signal

quality in DSP systems to meet requirements in system cost,

power consumption, and time to market. For this reason,

signal analysis on digital components and sub-components is

needed to view the relative impact of design tradeoffs on

signal quality.

II. ANALYSIS AND DESIGN

This chapter provides brief overview of capture

module, communication module. Capture module consists of

capture state machine and sample counter. Communication

module consists of FIFO and UART

a) BLOCK LEVEL IMPLEMENTATION:

Fig 3. Capture module

Capture module is the one which is used to capture

the data from an implemented design in which the signals are

to be observed. A separate behavioral logic is developed to

meet this requirement. It takes an 8 bit input data and holds it

for some time till it stored in FIFO.

Finite state machine (FSM) or simply a state machine

is a model of behavior composed of a finite number of states,

transitions between those states, and actions. A finite state

machine is an abstract model of a machine with a primitive

internal memory. At their simplest, they are models of

behaviors of a system or a complex object, with a limited

number of defined conditions or modes, where mode

transitions are changes with circumstances. Since the state

machine needs to remember the past inputs, a memory element

is required. In hardware the memory element is generally flip-

flop. Physically memory is always finite, and in almost every

practical machine a summary of inputs is sufficient for

generating output. It means that the number of states in the

machine is going to be finite. Hence, it is named Finite State

Machine (FSM).

There are a number of abstract modeling techniques

that may help or spark understanding in the definition and

design of a finite state machine, most come from the area of

design or mathematics.

Fig 4. A possible FSM-CS implementation

Hierarchical Task Analysis (HTA): Though it does

not look at states, HTA is a task decomposition technique that

looks at the way a task can be split into subtask, and the order

in which they are performed.

b) ASYNCHRONOUS FIFO DESIGN:

FIFO is an acronym for First In, First Out. FIFO is a

memory element and also provides synchronization between

the input and output data. To reach this requirement of

synchronization we need a separate mechanism. In general

writing into FIFO and reading from the FIFO may be of

different speeds namely W-CLK and R-CLK respectively. We

are implementing the FIFO with a special architecture

according to the requirement. This expression describes the

principle of a queue processing technique or servicing

conflicting demands by ordering process by first-come, first-

served (FCFS) behavior: what comes in first is handled first,

what comes in next waits until the first is finished, etc. Thus it

is analogous to the behavior of persons queuing where the

persons leave the queue in the order they arrive, or waiting

one's turn at a traffic control signal.

Fig. 5. FIFO read & write pointers.

For FIFOs of non-trivial size a dual-port SRAM is

usually used where one port is used for writing and the other is

used for reading. A synchronous FIFO is a FIFO where the

same clock is used for both reading and writing. An

asynchronous FIFO uses different clocks for reading and

writing. Asynchronous FIFOs introduce metastability issues.

Common implementation of an asynchronous FIFO uses a

Capture

Module

Input Data

Clock

Captured Data

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 619 – 624

621
IJRITCC | June 2017, Available @ http://www.ijritcc.org

Gray code (or any unit distance code) for the read and writes

pointers to ensure reliable flag generation.

c) ASYNCHRONOUS FIFO POINTERS:

In order to understand FIFO design, one needs to

understand how the FIFO pointers work. The write pointer

always points to the next word to be written; therefore, on

reset, both pointers are set to zero, which also happens to be

the next FIFO word location to be written. On a FIFO-write

operation, the memory location that is pointed to by the write

pointer is written, and then the write pointer is incremented to

point to the next location to be written. Similarly, the read

pointer always points to the current FIFO word to be read.

Again on reset, both pointers are reset to zero, the FIFO is

empty and the read pointer is pointing to invalid data because

the FIFO is empty and the empty flag is asserted. As soon as

the first data word is written to the FIFO, the write pointer

increments, the empty flag is cleared, and the read pointer that

is still addressing the contents of the first FIFO memory word,

immediately drives word, the receiver would clock once to

output the data word from the FIFO, and clock a second time

to capture the data word into the receiver. That would be

needlessly inefficient.

The FIFO is empty when the read and write pointers

are both equal. This condition happens when both pointers are

reset to zero during a reset operation, or when the read pointer

catches up to the write pointer, having read the last word from

the FIFO. That first valid word onto the FIFO data output port,

to be read by the receiver logic. The fact that the read pointer

is always pointing to the next FIFO word to be read means that

the receiver logic does not have to use two clock periods to

read the data word.

A FIFO is full when the pointers are again equal, that

is, when the write pointer has wrapped around and caught up

to the read pointer. This is a problem. The FIFO is either

empty or full when the pointers are equal, but which? One

design technique used to distinguish between full and empty is

to add an extra bit to each pointer. When the write pointer

increments previous final FIFO address, the write pointer will

increment the unused MSB while setting the rest of the bits

back to zero as shown in Fig2.4.The same is done with the

read pointer. If the MSBs of the two pointers are different, it

means that the write pointer has wrapped one more time that

the read pointer. If the MSBs of the two pointers are the same,

it means that two pointers have wrapped the same number of

times. Using n-bit pointers where (n-1) is the number of

address bits required to access the entire FIFO memory buffer;

the FIFO is empty when both pointers, including the MSBs are

equal. And the FIFO is full when both pointers, except MSBs

are equal. The FIFO design uses n-bit pointers for a FIFO with

2(n-1) write-able locations to help handle full and empty

conditions.

Fig 6. Block diagram for FIFO

III. BINARY FIFO CONSIDERATIONS

Trying to synchronize a binary count value from one

clock domain to another is problematic because every bit of an

n-bit counter can change simultaneously for example 7->8 in

binary numbers is 0111->1000, all bits changed. One approach

to the problem is sample and hold periodic binary count values

in a holding register and pass a synchronized ready signal to

the new clock domain. When the ready signal is recognized,

the receiving clock domain sends back a synchronized

acknowledge signal to the sending Clock domain.

A sampled pointer must not change until an

acknowledge signal is received from the receiving clock

domain. A count-value with multiple changing bits can be

safely transferred to a new clock domain using this technique.

Upon receipt of an acknowledge signal, the sending clock

domain has permission to clear the ready signal and re-sample

the binary count value.

Using this technique, the binary counter values are

sampled periodically and not the entire binary counter values

can be passed to a new clock domain. The question is, do we

need to be concerned about the case where a binary counter

might continue to increment and overflow or underflow the

FIFO between sampled counter values? The answer is no

FIFO full occurs when the write pointer catches up to the

synchronized and sampled read pointer.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 619 – 624

622
IJRITCC | June 2017, Available @ http://www.ijritcc.org

Fig 7. FIFO full and empty conditions

The synchronized and sampled read pointer might not

reflect the current value of the actual read pointer but the write

pointer will not try to count beyond the synchronized read

pointer value. Overflow will not occur .FIFO empty occurs

when the read pointer catches up to the synchronized and

sampled write pointer. The synchronized and sampled write

pointer might not reflect the current value of the actual write

pointer but the read pointer will not try to count beyond the

synchronized write pointer value. Underflow will not occur .A

common approach to FIFO counter-pointers is to use Gray

code counters. Gray codes only allow one bit to change for

each clock transition, eliminating the problem associated with

trying to synchronize multiple changing signals on the same

clock edge.

A. HANDLING FULL & EMPTY CONDITIONS

Exactly how FIFO full and FIFO empty are

implemented is design-dependent. In the FIFO design ,

assumes that the empty flag will be generated in the read-clock

domain to insure that the empty flag is detected immediately

when the FIFO buffer is empty, that is, the instant that the read

pointer catches up to the write pointer (including the pointer

MSBs). Similarly assumes that the full flag will be generated

in the write-clock domain to insure that the full flag is detected

immediately when the FIFO buffer is full, that is, the instant

that the write pointer catches up to the read pointer (except for

different pointer MSBs).

B. GENERATING EMPTY:

As shown in Figure 3.5, the FIFO is empty when the

read pointer and the synchronized write pointer are equal. The

empty comparison is simple to do. Pointers that are one bit

larger than needed to address the FIFO memory buffer are

used. If the extra bits of both pointers (the MSBs of the

pointers) are equal, the pointers have wrapped the same

number of times and if the rest of the read pointer equals the

synchronized write pointer, the FIFO is empty.

C. GENERATING FULL:

The full comparison is not as simple to do as the

empty comparison. Pointers that are one bit larger than needed

to address the FIFO memory buffer are still used for the

comparison, but simply using Gray code counters with an

extra bit to do the comparison is not valid to determine the full

condition. The problem is that a Gray code is a symmetric

code except for the MSBs.

IV. UART

This provides brief overview of communication block

and its components UART, timer block, multiplexer. The

Universal Asynchronous Receiver/Transmitter (UART)

controller is the key component of the serial communications

subsystem of a computer. The UART takes bytes of data and

transmits the individual bits in a sequential fashion. Serial

transmission of digital information (bits) through a single wire

or other medium is much more cost effective than parallel

transmission through multiple wires. The primary functions of

the UART are to perform serial-to-parallel and parallel-to-

serial conversion of data and to perform error detection by

inserting & checking parity bits and to insert & detect start and

stop bits.

Fig 8. Communication module

 In this module we have two blocks called a timer or

clock divider and a UART block. Clock divider generates 8

different clock frequencies which are generally used in

computer displays and monitors. One of the clocks is selected

to run the UART by means of a Multiplexer and with respect

to the requirement. Input and output data are received and

transmitted with respect to this clock.

V. SIMULATION RESULTS

The simulation results are obtained upon execution of

the VHDL files that give the model for finite state machine

(FSM), Multiplexer, first in first out, UART on Model-SIM

simulator tool. The waveforms of each module are discussed.

a) CLOCK GENERATION

In The above simulation Fig5.1.2 we can see the

various clk's generated by using 50MHz clk. We have

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 619 – 624

623
IJRITCC | June 2017, Available @ http://www.ijritcc.org

generated eight different clk speeds which are very useful

when data is transmitted from the Transmission block.

Generally systems transmit or receive data with 9.6 kbps speed

and we are using different speeds less or more than 9.6 kbps.

Fig 9.Simulation Result of clock generation

b) CLOCK SELECTION MUX

Fig 10.Simulation Result of clock selection mux

 Here we have to select any one clk from the

generated clks. We are using 8:1 multiplexer which selects the

data from input with respective selection lines.

c) COMMUNICATION BLOCK: UART

Fig 11. Simulation Result of UART

d) Top level RSC:

The following figure 5.4 gives the wave form that

depicts the performance of Top level RSC.

Fig 12. Simulation Result of Top module

e) RSC FPGA IMPLEMENTATION

The different blocks of the RSC processor are

synthesized for FPGA implementation. Xilinx project

navigator tool is used for this purpose. The design is targeted

to Xilinx FPGA Board.

f) RSC INTERNAL FPGA ROUTED VIEW

Figure 13. FPGA routed view

VI. CONCLUSION

In this paper, Reconfigurable Signal Capture concept

is studied. The RSC architecture was designed and various

blocks of RSC are modeled in VHDL. The design is

functionally verified by simulating the code in ModelSim from

Mentor Graphics. The FPGA synthesis is done using Xilinx

ISE tool and signals are transmitted through the UART. To

make measurement and debug easier and more robust, a new

integration between commercial Vector Signal Analysis

software and the logic analyzer is used.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 619 – 624

624
IJRITCC | June 2017, Available @ http://www.ijritcc.org

REFERENCES

[1] L. R. Fenstermaker and K. J. O'Conner, "A low-power

generator-based FIFO using ring pointers and current-mode

sensing," 1993 IEEE International Solid-State Circuits

Conference Digest of Technical Papers, San Francisco, CA,

USA, 1993, pp. 242-243.

[2] X. Wang and J. Nurmi, "A RTL Asynchronous FIFO Design

Using Modified Micropipeline", 2006 International Biennial

Baltic Electronics Conference, Tallinn, 2006, pp. 1-4.

[3] H. Ashour, "Design, simulation and realization of a

parametrizable, configurable and modular asynchronous

FIFO," 2015 Science and Information Conference (SAI),

London, 2015, pp. 1391-1395.

[4] W. S. Coates and R. J. Drost, "Congestion and starvation

detection in ripple FIFOs," Ninth International Symposium on

Asynchronous Circuits and Systems, 2003. Proceedings.,

2003, pp. 36-45.

[5] Xin Wang, T. Ahonen and J. Nurmi, "A synthesizable RTL

design of asynchronous FIFO," 2004 International

Symposium on System-on-Chip, 2004. Proceedings., 2004,

pp. 123-128.

[6] H. Han and K. S. Stevens, "Clocked and asynchronous FIFO

characterization and comparison," 2009 17th IFIP

International Conference on Very Large Scale Integration

(VLSI-SoC), Florianopolis, 2009, pp. 101-108.

[7] Ken Voelker, "Apply Error Vector Measurements in

Communications Design", Microwaves & RF, December

1995, pp. 143-152.

[8] “vector signal analysis of digital baseband and if signals

within an FPGA” Proc. IEEE, 0-7803-9101-2/05/$20.00

©2005

[9] “Using Cadence SPW and Virtex-II FPGAs for DSP Design”,

Xilinx Xcell Journal

Online,//www.xilinx.com/esp/wireless/rf/predistortion.htm.

[10] J. BHASKER, A VHDL primer, BS Publications, 2003.

[11] FLOYD, Digital fundamentals, 8th edition-, Pearson

education, 2005.

[12] SOC User guide, June, 2006, product version5.2.1.

AUTHOR’S BIOGRAPHIES

S. Khadar Bhasha received the M.Tech.

Degree in Embedded System from the SKD

Engineering college affiliated to JNTU

Anantapur in 2016. He is currently working

as an Assistant Professor in the Department

of Electronics & communication

Engineering, Aditya Engineering College, Surampalem, AP,

INDIA. He interests research in Low power VLSI system

design in signal processing.

B.H.K. Bhagat Kumar received the

M.Tech. Degree in Embedded System from

the Pragati engineering college affiliated to

JNTU Kakinada in 2013. He is currently

working as an Assistant Professor in the

Department of Electronics & communication

Engineering, Aditya Engineering College, Surampalem. His

research interests are VLSI & Embedded real time operating

system in relation with power consume and defilation.

http://www.ijritcc.org/

